

Neutron Moderation: From Quanta to Continuum

Iyad Al-Qasir Nuclear Data Group

NCSP-TPR meeting Brookhaven National Laboratory February 20-22, 2024

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Neutron Moderation

 Historically, core moderator and reflector materials consist of relatively simple compounds of a simple material type or simple composition (e.g, H₂O, D₂O, Be, BeO, Graphite, ZrH₂).

- Recently, compact thermal fission reactors are of increased interest due to their potential to lower construction cost, enhance safety, and portability to remote areas.
- They are also considered as a point-source for process industrial heat
- The compact nature of these cores requires good neutron economy as well as preserving other thermal, mechanical, chemical properties, etc. How do we achieve this?

Multiscale Modeling

- Hierarchical Understanding
- **Predictive Capabilities**
- **Accelerated Development**

yr

hr

min

sec

ns

ps

fs

Moderators Doping

Isotope	Ab (%)	Scatt. XS	Abs. XS
⁹ Be	100	7.63	0.0076
¹¹ B	80	5.77	0.0055
¹⁵ N	0.37	5.21	0.000024
⁸⁸ Sr	82.58	6.42	0.058
Zr		6.46	0.185
⁹⁴ Zr	17.28	8.4	0.0229

Low Atomic Mass Number

- High scattering cross section
 Neutronic
- Low absorption cross section

Engineering Design/ Two Phase Composite Moderators

- Composite materials are formed by combining two or more materials that have quite different properties, and they do not dissolve or blend into each other
- The ultimate goal, is to arrive at a bulk material that is structurally and neutronically superior to traditional moderators (graphite, Be, BeO, etc.)
- Could be tailored to properties of interest such as thermal conductivity, strength, or fracture toughness

Example: Two Phase Composite Moderator

	Entrained Phase	Matrix Phase
Scattering	High	Fair
Absorption	Low	Low
Thermal Conductivity	Fair	High
Radiation resistivity	Fair	Good
Mechanical Stability	Fair	Good
Examples	Graphite, Be, Be₄¹¹B , BeO, Be₂C , YH _{2-x} , ZrH _{2-x}	MgO, SiC

Entrained Phase refers to a phase or component of a mixture that is carried along or transported by another medium or phase.

Matrix

Be₂C: reacts with moisture to form Be(OH)2. However, as an entrained phase it will not

YH_{2-x}, ZrH_{2-x}: High dense matrix forms barriers that prevents hydrogen leakage MgO-based composite moderators can exhibit considerably smaller critical volumes when compared to nuclear graphite

Snead et al., J. Asian Ceram. Soc. 10, 9 (2022).

Open slide master to edit

Thank you

