

Recent updates to the ⁶Li, ⁹Be and ¹⁶O evaluations for ENDF/B-VIII.1

Nuclear Criticality Safety Program—Technical Program Review M. Paris, G. Hale & Mike Herman (LANL/T-2) N. Gibson, N. Kleedtke & D. Neudecker (LANL/XCP-5) Presenter: Bob Little (LANL)

2024 Feb 20-22

LA-UR-24-21184

Outline

- By "recent," we mean $\gtrsim 2020$
- Overview of R-matrix evalution procedure
- Evaluation work [for testing see recent NCSP & CSEWG talks]
 - $n+^{6}Li$
 - $n^{+9}Be$
 - **-** n+¹⁶O
- Conclusion

Evaluation pipeline *EDA R-matrix procedure*

- **1.EDAf90** code handles all types of data [*EXFOR/CSISRS; publications; priv. comm.*]
 - total, integrated, diff'l, polarized, unpolarized; neutron- and CP-induced: (n,X), (p,X), (d,X), (t,X),...
- 2. EDAf90 handles all the compound system (here: ¹⁰Be) data *simultaneously*
- 3. Optimization over parameters simultaneously fits all the data with the same parameters
- 4. EDAf90 → ENDF-6 formatted ENDF/B libraries for processing to CE & MG libraries
- 5. Testing & evaluation by hand; future: automate

R-matrix evaluation update/extension

- New evaluation highlights
 - Upper energy of R-matrix evaluation increased to $E_n \leq 8.0 \text{ MeV}$
 - Additional, inelastic channel ⁶Li(0+; 3.56 MeV)
 - Includes new data in all channels
 - Spectra ⁶Li(n,n'd)⁴He: corrected formatting error (LCT=1 \rightarrow LCT=2)

MF	MT	Description	Energy range [MeV]
3		Reaction cross sections	
	1	(n,total)	(0.00, 20.00)
	2	(z,z0)	(0.00, 20.00)
	4	(z,n)	(1.75, 20.00)
	24	$(z,2n\alpha)$	(4.32, 20.00)
	51	(z,n_1)	(1.75, 20.00)
	52	(z,n_2)	(2.34, 20.00)
		$(\mathbf{z},\mathbf{n}_i)$	
	81	$(\mathbf{z},\mathbf{n}_n)$	(18.10, 20.00)
	102	(\mathbf{z},γ)	(0.00, 20.00)
	103	(z,p)	(3.18, 20.00)
	105	(z,t)	(0.00, 20.00)
4		Angular distributions for emitted	
		particles	
	2	(z,z0)	
	24	$(z,2n\alpha)$	
	51	(z,n_1)	
	52	(z,n_2)	
		(z,n_i)	
	81	(z,n_n)	
5		Energy distributions for emitted	
		particles	
	24	$(z,2n\alpha)$	
6		Energy-angle distributions for	
		emitted particles	
	105	(z,t)	

MF	MT	Description	Energy range [MeV]
3		Reaction cross sections	
	1	(n,total)	(0.00, 20.00)
	2	(z,z0)	(0.00, 20.00)
	4	(z,n)	(4.16, 20.00)
	32	(z,nd)	(1.72, 20.00)
	41	(z,2np)	(4.32, 20.00)
	52	(z,n_2)	(4.16, 20.00)
	102	(\mathbf{z},γ)	(0.00, 20.00)
	103	(z,p)	(3.18, 20.00)
	105	(z,t)	(0.00, 20.00)
4		Angular distributions for emitted	
		particles	
	2	(z,z0)	
6		Energy-angle distributions for	
		emitted particles	
	32	(z,nd)	
	41	(z,2np)	
	52	(z,n_2)	
	103	(z,p)	
	105	(z,t)	

NB: No change in standards region for ${}^{6}\text{Li}(n,t){}^{4}\text{He}$

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VII.1
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}Li(n,n'd){}^{4}He$ spectra

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VII.1
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}Li(n,n'd){}^{4}He$ spectra

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VII.1
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ⁶Li(n,n'd)⁴He spectra

li6(n,n)li6^{*} d σ /d Ω E= 5.150 MeV

R-matrix evaluation update/extension

- Previous evaluation ENDF/B-VII.1
 - upper energy limit $E_n \leq 4.3 \text{ MeV}$
 - configuration: t+⁴He, n+⁶Li, n+⁶Li*(3⁺; 2.19 MeV), d+⁵He*(3/2⁻)
 - ~3,800 data points; $\chi^2/dof \approx 1.36$
 - formatting changes: MF=4→MF=6; MT=24→41 (n,2np)
- Updated evaluation (submitted for ENDF/B-VIII.1β1)
 - upper energy limit $E_n \leq 8.0 \text{ MeV}$
 - new configuration = old config + inelastic: n_2 +⁶Li(0⁺; 3.56 MeV)
 - new data covering all channels
 - corrected ${}^{6}Li(n,n'd){}^{4}He$ spectra

n+⁹Be

10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁻⁶

×

0

Δ

+

×

 \diamond

10⁻⁷

σ (barns)

R-matrix evaluation update/extension

ENDF/B-VIII.0

ENDF/B-VIII.1 Conneely (1986)

Firestone (2016)

Wallner (2019)

Shibata (1992)

25 keV MACS

10⁻⁶

10⁻⁵

Marin-Lambarri (2020)

- Added ${}^{9}\text{Be}(n,\gamma){}^{10}\text{Be}$ eval
- (new evaluation work on hold for ENDF/B-IX.0 w

ts	Improved perf. on FLATTOP					
luation $(n.el), (n.inl), (n.\alpha)$ will	ENDF/B	VIII.0	VIII.1			
when $(n,2n\alpha)$ is re-evaluated)	C/E	0.134	0.919			
		E $\sigma_{(n,\gamma)}$ 0.0253 eV 8.49 m 0.0253 eV 9.70 m 0.0253 eV 9.70 m 0.0253 eV 8.27 m 0.0253 eV 8.27 m 0.0253 eV 8.27 m 0.0253 eV 8.31 m 15.0 keV 15.81 μ 30.0 keV 13.00 μ 55.0 keV 9.79 μ 27.8 keV 10.44 μ 473 keV 8.4 μ 500 keV 12.02 μ 622 keV 94.80 μ 622 keV 94.80 μ 622 keV 94.80 μ 625 keV 94.80 μ 626 [77] Firestone ([78] Wallner (20) [79]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
10^{-4} 10^{-3} 10^{-2} 10^{-1} 1	10 ⁰ 10 ¹					
E (MeV)						

10⁻⁸

n+¹⁶**O** Evaluation adjustment for ${}^{16}O(n, \alpha_i){}^{13}C^*$

- Abbreviated history
 - concern that ${}^{16}O(n, \alpha){}^{13}C$ absorption in ENDF/B-VIII.0 too large
 - LANL/EDA R-matrix fit considers $E_n \leq 7.0 \text{ MeV}$
 - Excited states $E_n > 5.6 \text{ MeV}$
- New data
 - supports ENDF/B-VIII.0 to 7.0 MeV
 - Prusachenko et al. IPPE 2022
 - H.-Y. Lee, S. Kuvin, et al. 2023
- Implement reduction in (n, α_i)
 - -i = 1,2,3 ↔ MT = 801,802,803
 - reduced by factor of 2 to agree with Davis

$^{-A}Z_i J^{\pi}$	$E_x(^{13}\mathrm{C})$ (MeV)	$Q_{n\alpha_i}$ (MeV)	E_n (MeV)
$^{13}C_0 \frac{1}{2}^-$	0.0	-2.215	2.355
${}^{13}C_1 \ \overline{\frac{1}{2}}^+$	3.08944	-5.304	5.639
${}^{13}\mathrm{C}_2 \; {\bar{3}}{\bar{2}}^-$	3.68451	-5.899	6.271
${}^{13}C_{3}\bar{5}^{+}$	3.85381	-6.068	6.451
$^{13}C_{4}^{\bar{5}+}$	6.864	-9.079	9.651

n+¹⁶O Evaluation adjustment for ${}^{16}O(n, \alpha_i){}^{13}C^*$

- Abbreviated history
 - concern that ${}^{16}O(n, \alpha){}^{13}C$ absorption in ENDF/B-VIII.0 too large
 - LANL/EDA R-matrix fit considers $E_n \leq 7.0 \text{ MeV}$
 - Excited states $E_n > 5.6 \text{ MeV}$
- New data
 - supports ENDF/B-VIII.0 to 7.0 MeV
 - Prusachenko et al. IPPE 2022
 - H.-Y. Lee, S. Kuvin, G. Hale, MP, ...
 PRC 109, 014601 (2024)
- Implement reduction in (n, α_i)
 - -i = 1,2,3 ↔ MT = 801,802,803
 - reduced by factor of 2 to agree with Davis

Conclusion

- n+6Li: Accepted for ENDF/B-VIII.1
 - reasonably good description of differential data up to 8.0 MeV

• n+9Be: Accepted for ENDF/B-VIII.1

- improved description of capture data
- n+16O: Accepted for ENDF/B-VIII.1
 - Improved description of (n, α) production data
 - reduced MT=801,802,803 by multiplicative factor of 0.5
- Aside:
 - Resonance parameters (MF=2) will not be released for ENDF/B-VIII.1
 - Will be coordinated with new NJOY capabilities for ENDF/B-IX.0

END ENDF END Thank you!

R-matrix *Overview of evaluation framework*

n+⁹Be *R-matrix configuration*

Ch	annel		$a_c(\mathrm{fm})$		ℓ_{\max}	
n+	$n+{}^{9}\mathrm{Be}(\frac{3}{2})$		4.67		3	
$^{4}\text{He}+^{6}\text{He}(0^{+})$			5.00		4	
(nr	$a)_0 + {}^8\text{Be}(2^+)$		5.20		3	
n –	$-{}^{9}\mathrm{Be}^{*}(rac{5}{2}^{-})$		5.20		1	
Process		E_n range	Obse	ervables	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$
$^{9}\text{Be}(n, n_0)^{9}\text{Be}$	(1.25 eV)	, 15.4 MeV)	$\sigma_{ m tot},\sigma,\sigma$	$\sigma(\theta), A_y(\theta)$	5782	1.65
$^{9}\text{Be}(n, {}^{4}\text{He}){}^{6}\text{He}$	(0.6	3, 8.5) MeV	σ_{i}	$,\sigma(heta)$	178	1.40
${}^{9}\text{Be}(n,2n){}^{8}\text{Be}$	(1.8	, 14.7) MeV		σ	40	NA
$^{9}\mathrm{Be}(n,n_{1})^{9}\mathrm{Be}^{*}$	(2.	$7, 5.0) { m MeV}$	($\sigma(heta)$	83	1.65
Total					6083	1.75

- Added data: elastic, (n,α) , (n,n_1)
- Extended upper energy from 1.6 MeV to 5.0 MeV

