

Experiendo cognoscitur

R-Matrix analysis of ¹⁴⁹Sm using DICER and DANCE data

Th. Stamatopoulos¹, P. Koehler¹, A. Couture¹, G. Rusev², B. DiGiovine³

- 1. Physics Division, Los Alamos National Laboratory, 87545, NM, USA
- 2. Chemistry Division, Los Alamos National Laboratory, 87545, NM, USA
- 3. Weapons Stockpile Modernization Division, Los Alamos National Laboratory, 87545, NM, USA

LA-UR-24-21273

Introduction: Motivation

According to a report by L. Leal (ORNL/TM-2005/065)

¹⁴⁹Sm capture rate underestimates measured capture rates for PWR experiments by 4.8%

- Only a few data sets in EXFOR
- Resonance parameters do
 exist but better uncertainties
 and covariances are needed

Introduction: Summary

- We performed capture and transmission measurements with:
 - the DANCE (Detector for Advanced Neutron Capture Experiments) instrument
 - Capture data from 8 eV 1 keV
 - and DICER (Device for Indirect Capture Experiments on Radionuclides) instruments
 - Transmission data from 1meV 1 keV
- Data analysis is complete
- R-Matrix analysis is complete
- Report with resonance parameters to be used in next evaluations:

LA-UR-23-32571 Combined study of n+¹⁴⁹Sm with DANCE and DICER at LANSCE A. Stamatopoulos, P. Koehler, E. Leal-Cidoncha

Phys. Rev. C manuscript is being reviewed by co-authors

The Los Alamos Neutron Science Center - LANSCE

The Los Alamos Neutron Science Center – LANSCE Lujan Center – Low energy neutrons

Experiments @ DICER

- ^{nat}Sm experiments were performed prior, in order to:
 - Get experience with the target fabrication
 - Get experience with powdered samples at DICER
- ~5mg ¹⁴⁹Sm thin sample
- ~12mg ¹⁴⁹Sm thick sample
- 1 mm diameter
- 97.669% purity
- Powder stuffed in capillary tubes
- Capillary tubes inserted in Al canisters

Incident neutron energy(eV)

Experiment @ DANCE

- DANCE to get the capture yields
- There metallic samples were used
 - 97.93% purity
 - 1,3 and 10 mg
 - 1cm in diameter
- DANCE also provides multiplicities
- Different multiplicity distributions for different spins
- DANCE is used as a spinometer

PHYSICAL REVIEW C 76, 025804 (2007)

R-Matrix analysis : Resonance parameters

Fits in capture and transmission data using SAMMY ٠

R-Matrix analysis : Resonance parameters

- 163 resonances were resolved, up to ~521 eV
- Uncertainties on Γ_{γ} : less than 13%, average uncertainty: ~3.5%
- Uncertainties on Γ_n : less than 18%, average uncertainty: ~3.8%

TABLE III: List of ¹⁴⁹Sm resonance parameters obtained from th present work along with their uncertainties. In cases were the data wer insensitive to the corresponding width, ENDF values were adopted. I those cases, the uncertainties are marked with a dash.

\mathbf{En}	$\delta \mathbf{En}$	Γ_{γ}	$\delta\Gamma_\gamma$	$\delta\Gamma_\gamma$	$ \Gamma_n$	$\delta\Gamma_n$	$\delta\Gamma_n$	$ \mathbf{J} $
(eV)		(meV)		(%)	(meV)		(%)	
`								
-123.7000	0.9277	60	-	-	2270	42.5	1.87	4
-88.4600	0.6912	64.9	-	-	6270	71.6	1.14	3
0.0970	0.0001	-65.62	-	-	0.545	0.000528	0.1	4
0.8703	0.0001	60.8	-	-	-0.749	0.000522	0.07	4
4.9450	0.0001	64	-	-	1.67	0.00169	0.1	4
6.4347	0.0001	66	-	-	0.847	0.0011	0.13	4
8.9112	0.0007	56.31	1.55	2.75	1.4	0.0103	0.74	3
8.9409	0.0002	77.86	0.27	0.34	7.19	0.0122	0.17	4
9.2017	0.0015	40.24	2.03	5.05	0.197	0.00422	2.14	3
12.0104	0.0001	67.58	0.32	0.47	1.74	0.00301	0.17	3
14.8669	0.001	57.12	1.78	3.12	1.45	0.0127	0.88	3
14.9166	0.0003	66.85	0.59	0.89	3.96	0.0127	0.32	4
15.8713	0.0006	63.85	1.45	2.27	0.323	0.00172	0.53	3
17.1631	0.0002	64.54	0.46	0.71	1.85	0.00387	0.21	4
23.2562	0.0005	97.55	1.33	1.36	0.908	0.0031	0.34	4
24.7428	0.0017	169.2	6.41	3.79	0.452	0.00671	1.48	4

IABLE III – Continuea from previous column										
	\mathbf{En}	$\delta \mathbf{En}$	Γ_{γ}	$\delta \Gamma_{\gamma}$	$\delta \Gamma_{\gamma}$	Γ_n	$\delta\Gamma_n$	$\delta \Gamma_n$	$ \mathbf{J} $	
	(eV	(meV)		(%)	(meV)		(%)			
Ì	426.3241	0.0286	50	4.25	8.5	45	1.37	3.04	4	
	429.6465	0.0543	60	-	-	32.7	2.33	7.15	4	
	430.7652	0.1046	60.04	-	-	25.4	2.22	8.77	3	
	432.4598	0.0454	50.54	5.43	10.74	43.5	2.09	4.81	4	
	436.8267	0.1235	60	-	-	10.3	0.887	8.6	4	
	436.9302	0.1695	60.02	-	-	8.89	1	11.27	3	
	440.8384	0.0285	41.64	2.85	6.85	56.9	1.73	3.04	4	
	449.6931	0.0623	60.01	-	-	30.7	1.36	4.43	3	
	452.5806	0.0449	57.25	5.96	10.41	56.5	2.16	3.82	3	
	454.9622	0.0781	60	-	-	24	1.3	5.41	4	
	457.2479	0.0634	49.23	5.25	10.66	42.3	2.28	5.4	3	
	460.9260	0.0616	82.28	9.53	11.59	48.4	5.21	10.76	3	
	461.9848	0.0528	65.62	5.47	8.34	73.6	4.96	6.74	4	
	464.8767	0.2676	60	-	-	10.1	1.06	10.53	4	
	467.0235	0.0392	51.43	3.73	7.25	46.2	1.82	3.94	4	
	471.5969	0.0897	59.99	-	-	20	1.23	6.14	3	
	474.0793	0.1172	60	-	-	16.3	1.01	6.21	4	
	477.6819	0.0872	60	-	-	17.4	0.935	5.36	4	
	483.3276	0.0361	76.38	4.66	6.11	75.1	2.74	3.65	4	
	485.2824	0.2128	60	-	-	13	1.67	12.89	3	
	487.8185	0.0855	60	-	-	25	1.35	5.42	4	
	490.5794	0.0447	54.52	3.75	6.88	75.4	2.56	3.4	4	
	493.6053	0.1049	60	-	-	28.9	1.9	6.57	4	
	496.0529	0.043	62.74	3.25	5.19	-98.9	3.48	3.52	4	
	499.0333	0.081	53.66	9.58	17.85	29.3	1.83	6.24	3	
	504.3776	0.078	109.07	14.7	13.48	34.7	2.77	7.99	3	
	506.0744	0.0821	60	-	-	27.7	2.13	7.7	4	
	510.6419	0.0859	62.46	8.6	13.77	29.3	2.09	7.15	4	
	512.6020	0.0776	57.99	9.59	16.53	43.6	2.83	6.5	3	
	516.7416	0.0485	55.23	3.96	7.18	126	8.65	6.89	4	
	518.1875	0.1336	59.03	8.11	13.73	55.5	6.27	11.29	3	
	519.0864	0.2359	60	-	-	31.2	4.21	13.5	4	
	521.1491	0.0603	76.93	4.56	5.93	74.8	4.83	6.46	4	

Corrections

- Correction for missed resonances using Fuketa-Harvey method: Provides corrected number of resonances, strength functions (S₀) and level spacings (D₀).
- Similar corrections for various thresholds

Radiation widths

Radiation widths seem to change distribution around 225 eV •

Radiation widths

- Radiation widths seem to change distribution around 225 eV
- Kolmogorov-Smirnov (KS) test, which is sensitive to the tails, suggests they don't (KS statistics = 0.027, p-value = 0.0003)
- Anderson-Darling (AD) test, which is sensitive to deviations in both the center and the tails of the distributions, suggests that they are statistically different (pvalue = 0.363)
- q-q plot suggest that overall, they come from the same distribution with different parameters.

Neutron widths

- Neutron width Cumulative Distribution Functions (CDFs) seem to be statistically similar, as expected for different angular momenta.
- KS test: p-value of 0.735, suggests that the two CFDs are statistically similar
- AD test: p-value of 0.361, suggests that the two CFDs are statistically similar
- q-q plot does not question the KS and AD tests.

Neutron widths

- Neutron width Cumulative Distribution Functions (CDFs) seem to be statistically similar across the whole energy range of the present work.
- KS test: p-value of 0.782, suggests that the two CFDs are statistically similar
- AD test: p-value of 0.360, suggests that the two CFDs are statistically similar
- q-q plot does not question the KS and AD tests.

Level spacings, strength functions, comparison with evaluations

Our data indicate that:

- 38 spins are incorrectly assigned
- in the ENDF-VIII.0 and JEFF-3.3 evaluations
- 41 spins are incorrectly assigned in the JENDL-5 evaluation
- 58 new resonances were resolved
 - We resolved 215 resonances
 - Evaluations include 157 resonances
- Slight differences in the resonance energies
- Differences in resonance parameters up to 400%

Thank you for your attention!

FIESTA 2024 FISSION EXPERIMENTS AND THEORETICAL ADVANCES 3rd EDITION SCHOOL AND WORKSHOP

4/5/21 18

ζ-scores

Resonance energies

2.0 Linear fit ----- E^{1.5} fit 1.5 1.0 E_{eval} (eV) 0.5 NAMES OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY. 0.0 \mathbf{E}_{exp} 0.5 -1.0 -1.5 ENDF/B-VIII.0 **JENDL-5** -2.0 500 100 200 300 400 0 E_{exp} (eV)