

Neutron Capture and Transmission Measurements and Evaluation of ⁵⁴Fe at the RPI LINAC

February 20-22nd, 2024

Presented by: S. Singh PI Y. Danon, ND1, Rensselaer Polytechnic Institute, Troy, NY, 12180

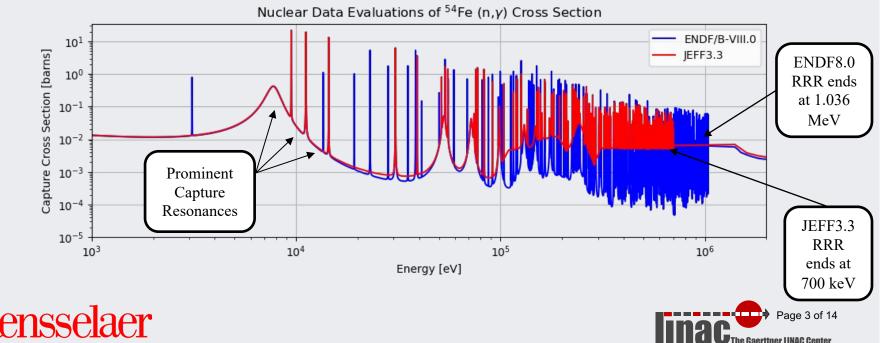
NCSP TPR, February 20-22nd 2024

Acknowledgements

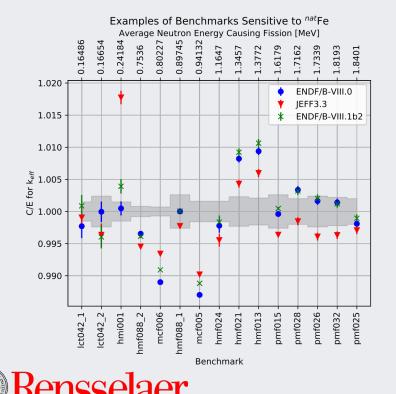
- Special thanks for technical guidance:
 - Dr. Yaron Danon (RPI)
 - Dr. Luiz Leal (ORNL)
 - Dr. Devin Barry, Dr. Adam Daskalakis, Dr. Michael Rapp (NNL)
- This work was sponsored by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the U.S. Department of Energy.

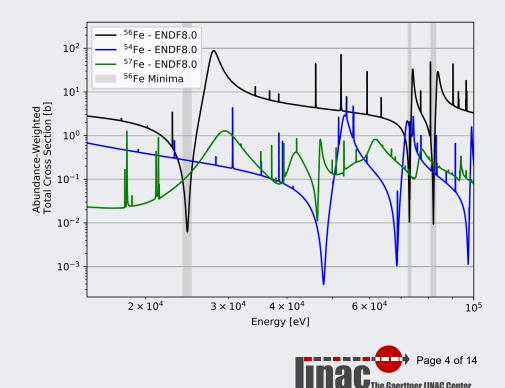
Major Accomplishments in 2023

- RPI ⁵⁴Fe capture and transmission implicit data covariances (IDC) were generated.
 - Fitting was compared w/ and w/o IDCs in SAMMY.
- ⁵⁴Fe RRR evaluation near completion using RPI differential data and other experiments from EXFOR.
 - Resonance parameters w/ SAMMY determined.
 - Evaluated covariances currently under investigation.
- Neutron beam imaging system in development to improve future RPI TOF measurements.
 - TOF measurements conducted to confirm beam position can be predicted accurately.

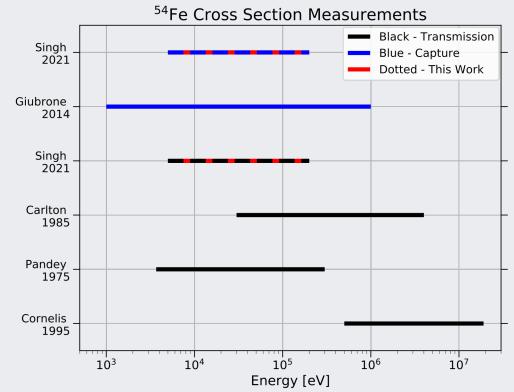


Project Overview



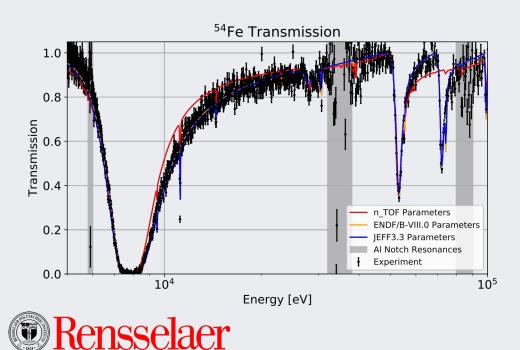

- Motivation:
 - Criticality safety calculations require high accuracy nuclear data to reduce uncertainties
 - ⁵⁴Fe neutron cross sections have not been well-studied relative to ⁵⁶Fe.
 - Iron is important in shielding, criticality safety, and stellar nucleosynthesis
- Project Goals:
 - Perform new RRR evaluation for ⁵⁴Fe cross section in the keV region using RPI and EXFOR nuclear data.
 - Evaluation will include covariances along w/ consideration of measurement covariances from RPI experiments.
 - Perform radiative capture and transmission measurements of ⁵⁴Fe in the keV energy region

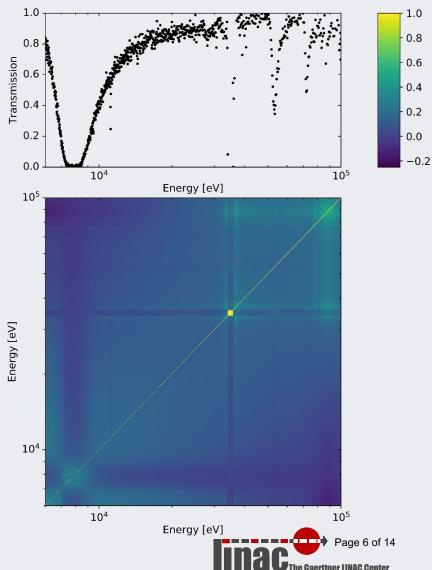
⁵⁴Fe (n, γ) Measurement Motivation


- Iron is very important to study with respect to radiation shielding, criticality safety, and stellar nucleosynthesis.
- Since Iron is an important structural material in nuclear reactors, benchmarks can be shown to have sensitivity to ^{nat}Fe cross sections.
- In the minima of ⁵⁶Fe cross sections, neutrons can stream through a shielding wall and pose a health risk.
 - The cross sections of minor isotopes is important in the minima of ⁵⁶Fe.

RPI ⁵⁴Fe Measurement Campaign Overview CSP

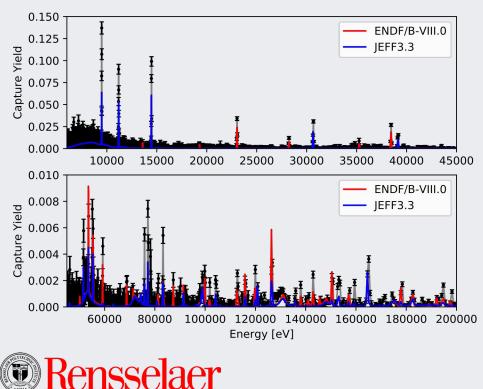
- The RPI capture and transmission measurements both provide valuable insight and address deficiencies in EXFOR.
- RPI capture measurement provides additional data for evaluation work and comparison to the n_TOF experiment.
- RPI transmission measurement provides valuable data below 30 keV, a region where prominent capture resonance occur
 - Will help in evaluation work.

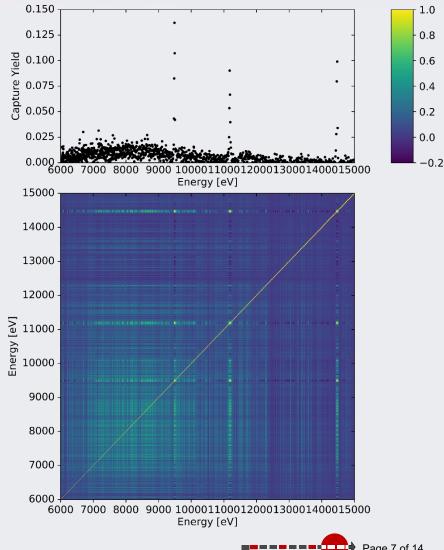




Overview of RPI Transmission Results

- Transmission is less sensitive to changes in evaluations.
 - Covariance passes all mathematical checks.
- Small correlations are present in the transmission experiment.



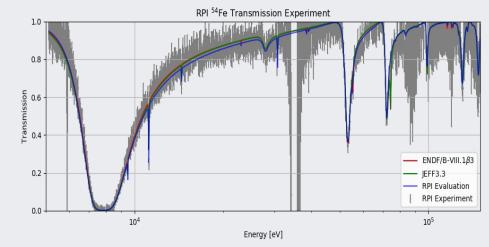


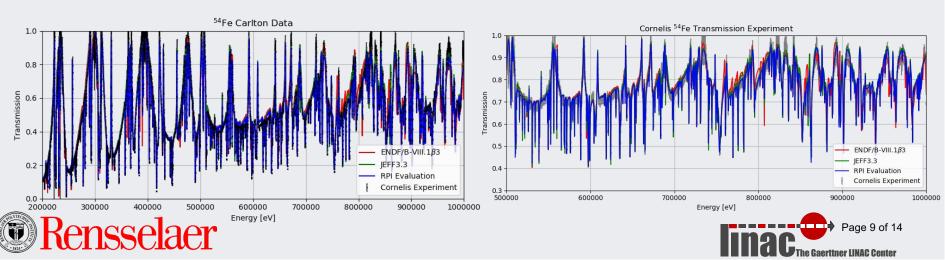
Overview of RPI Capture Results

- Capture yield shows large discrepancies.
- Stronger correlations between resonances are present in the experiment.

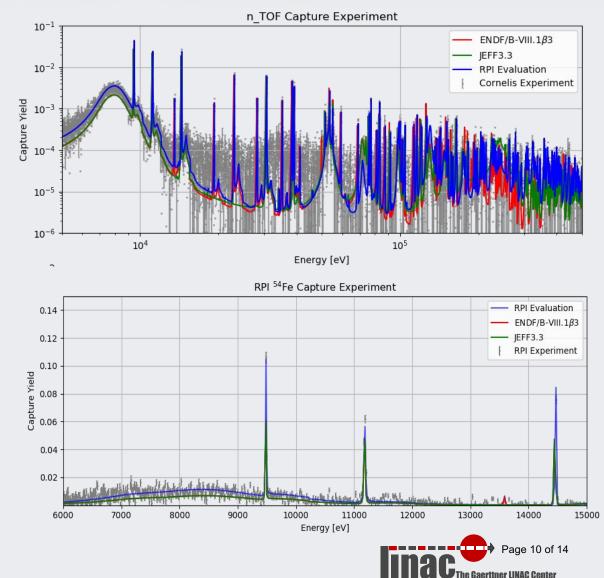
Overview of RPI 54Fe Evaluation Work

- SAMMY is being used to fit new RRR parameters up to 1.036 MeV
 - RRR not being extended due to lack of high-resolution measurements at higher energies
- Measurements are fit sequentially w/ the inclusion of IDCs for RPI data.
 - Fitting w/ or w/o IDCs does not significantly impact the fits potentially due to lower correlations in the data.
 - Covariance of fitted parameters is updated after each fit.
- Current evaluations have no MF-32, will be included in the RPI evaluation.
 - Work on evaluated covariances is still underway very preliminary analysis has been performed.




Transmission Fitting

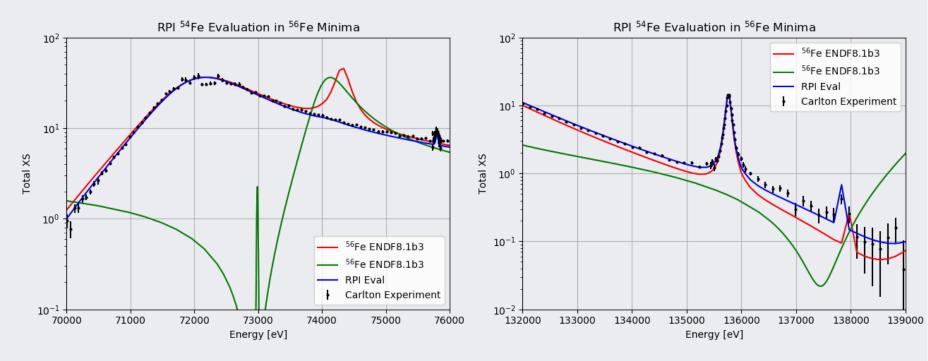
- Multiple transmission experiments fitted
 - RPI: 0.021 a/b enriched metallic sample, ~35m FP
 - Cornelis: 0.06 a/b enriched oxide sample, ~400 m FP GEEL.
 - Carlton: 0.166 a/b enriched metallic sample, ~200m ORELA
 - Pandey: (not pictured) 0.019 a/b, 78m FP ORELA


Capture Fitting

- Limited high-resolution capture data are available on EXFOR.
- Capture is increased relative to existing evaluations, resonance structure seen in experiments is better fit w/ RPI evaluation
- Direct capture was considered in evaluation but currently opting for inclusion of bound levels over direct capture background

Rensselaer

Examples of Changes in Fe XS Minima



Page 11 of 14

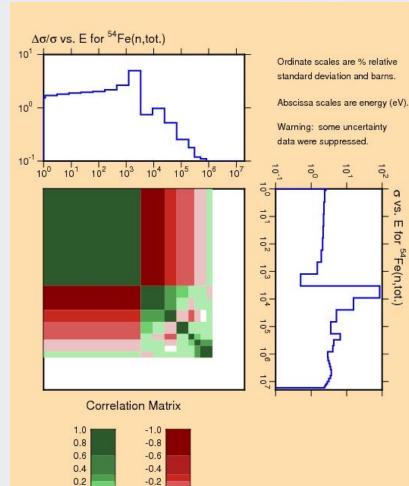
- Changes to ⁵⁴Fe XS in the region of ⁵⁶Fe XS minima may have implications on different applications including shielding.
- Some examples of changes made are shown below:
 - False resonance removed at about 74 keV

ensselaer

- Better fit obtained to differential data at 137 keV
- Validation studies are underway need to study impact on shielding experiments.

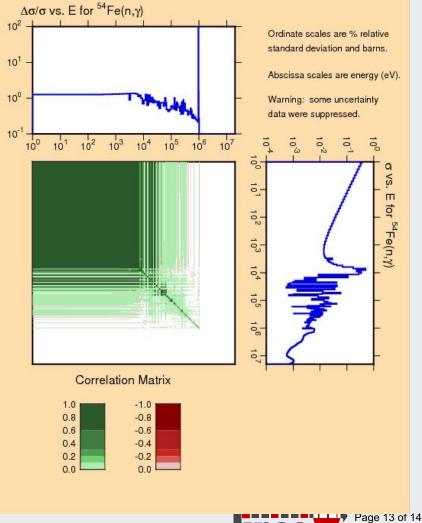
MACS and Thermal Values

Source	σ_{γ} [barns] at 0.0253 eV
RPI Evaluation	2.27
ENDF/B-VIII.0	2.25
JEFF-3.3	2.25
Litvinskij Capture	2.28
Wallner Capture	2.26 ± 0.15
NIST	2.25
Atlas (2018)	2.30 ± 0.07
Source	σ _t [barns] at 0.0253 eV
Source RPI Evaluation	
	0.0253 eV
RPI Evaluation	0.0253 eV 4.46
RPI Evaluation ENDF/B-VIII.0	0.0253 eV 4.46 4.43


Experiment or Eva	luation	Value [mb] @ 30 keV)
ENDF/B-VIII.	0	27.13	
RPI Eval		29.8	
KADoNiS-0.3	3	$\textbf{29.6} \pm 1.3$	
n_TOF Exp		$\textbf{30.8} \pm 1.6$	
Allen Exp		$\textbf{33.6} \pm 2.7$	
Experimen	nt V	alue @ 481 keV	
Wallman	(01 + 0.20 [].	

Wallner	$6.01\pm0.28\;[mb]$
n_TOF Exp	6.04 [mb]
RPI Eval	6.10 [mb]

• Evaluated uncertainty quantification is underway.


Preliminary Evaluated Covariances

0.0

Kensselaer

0.0

The Gaerttner LINAC Center

Validation Testing Plan

- Impact of new RPI ⁵⁴Fe evaluation needs to be studied in tandem with candidate files for ENDF/B-VIII.1.
- A suite of critical experiments sensitive to Natural Fe has been compiled and is currently being studied.
 - Current benchmark suite consists of ~15 critical experiments and growing.
- ^{nat}Fe differential experiments will be used as another validation new RPI evaluation should not break
 - Compensating changes may be attributed to other minor isotopes w/ enough evidence.
- Shielding experiments may show sensitivity to changes in Fe streaming windows
 - ²⁵²Cf leakage experiments, D-T source measurements, "Broomstick" measurements

"Do no harm"

- ⁵⁴Fe measurement campaign has concluded with IDCs fully developed for capture and transmission experiments.
- ⁵⁴Fe RRR evaluation campaign at RPI is near its conclusion, covariance matrix generation is needed for evaluation.
 - Evaluation is not currently planned for ENDF/B-VIII.1
- A new evaluation will offer improvements in crit safety, shielding, and stellar applications.
- Measurement + Evaluation paper will be completed by June 2024.
 - Experimental data will be available on EXFOR.
- RPI graduate school commitments to be completed by August 2024.

