

Thermal Scattering Law Research and Development at North Carolina State University

Ayman I. Hawari

LEIP Laboratories Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

NUCLEAR CRITICALITY SAFETY PROGRAM (NCSP) TECHNICAL PROGRAM REVIEW February 20 – 23, 2024 Brookhaven National Laboratory, Riverhead, NY

LEIP LABORATORIES

Acknowledgement

- NNSA Nuclear Criticality Safety Program (NCSP)
 - Collaboration with LLNL
- Naval Nuclear Propulsion Program
- The LEIP Team
 Thermal scattering

FY 2023 Tasks

	Task	Task Title				
	ND2	Generation and Benchmarking of Thermal Neutron Scattering Cross Sections in Support of Advanced Nuclear Reactor Concepts				
	ND5	Development and Implementation of a Modern Doppler Broadening Approach Including Atomic Binding Effects				
	ND10	Development and Implementation of Machine Learning Methods for Thermal Scattering Law Evaluations				

APPENDIX B: Nuclear Data Priorities, Basis Statements, and Milestones

	Nuclear Data Evaluations								
	Materials	Pre- FY2024	FY2024	FY2025	FY2026	FY2027	FY2028	Post- FY2028	
	Uranium Metal (U)	LLNL/NCSU							
	Basis	TSL evaluation. Requested by the RPI for use in U-235 resonance parameter analysis.							
FV 22/21	Paraffin (C _n H _{2n+2})	LLNL/NCSU	LLNL/NCSU						
5 Year	Basis	TSL evaluation. A common moderator and moderating reflector material for which there are numerous critical benchmarks in the ICSBEP Handbook. A thermal scattering law for paraffin will improve simulations through higher fidelity and reduce uncertainties.							
Execution	Plutonium Oxide (PuO2)	LLNL/NCSU	LLNL/NCSU	1					
Plan	Basis	TSL evaluation. A common fissile compound for which there are critical experiments in the ICSBEP Handbook. A thermal scattering law for PuO ₂ will improve Doppler broadening using advanced methods currently under development as LLNL ND12.							
	Light Paraffinic Oil (Mineral Oil)		LLNL/NCSU	LLNL/NCSU	LLNL/NCSU				
	Basis	TSL evaluation. Mineral oil and other light paraffinic oils are moderators often found in fissile handling areas (FHAs). A thermal scattering law for light paraffinic oils would reduce excessing margins in nuclear criticality safety evaluations for fissile handling areas containing this class of moderator. TSL requested by NNL.							
	Uranium Silicide (U ₃ Si ₂)		LLNL/NCSU	LLNL/NCSU	LLNL/NCSU				
	Basis	TSL evaluation. A common fissile compound in use in advanced nuclear reactor fuel. A thermal scattering law for U_3Si_2 will improve Doppler broadening using advanced methods currently under development as LLNL ND12.							
	Triuranium Octoxide (U ₃ O ₈)			LLNL/NCSU	LLNL/NCSU	LLNL/NCSU			
	Basis	TSL evaluati experiments Doppler broa	on. A commo in the ICSBE idening using	n fissile comp P Handbook. advanced me	oound for whi A thermal sca thods currentl	ch there are n ttering law fo y under devel	umerous criti or U ₃ O ₈ will in lopment as LI	cal nprove LNL ND12	

APPENDIX B: Nuclear Data Priorities, Basis Statements, and Milestones

- 66 TSL evaluations were contributed to ENDF/B-VIII.1 for the following materials
 - Al2O3, Be-metal, Be-metal+Sd, BeO, FLiBe, CaH2, CH2, SiC, UC, HF, Paraffinic Oil, UN, PuO2, SiO2, UO2, U-metal, Grph-20P, Grph+Sd

ND2 – TSL Evaluations

Uranium Silicide

LEIP LABORATORIES

Plutonium dioxide

Paraffin

LEIP LABORATORIES

PULSTAN

ND5 – Advanced Methods

FLASSH Doppler Module

ND10 – Deep Learning and Artificial Neural Networks

TREAT neutron spectra steady-state 296K

NeTS working with Serpent

TREAT neutron spectra with varying temperatures

Med. APD Max APD Dataset Mean APD [%] [%] [%] NeTS (64-32-32-64 neurons / layer, 25 KB) Train 0.0778 0.0573 0.8046 Validation 0.0802 0.0589 0.9559 0.0827 0.0600 0.8305 Test

Publications

- E. Lee, N. C. Fleming, A. I. Hawari, "Benchmark of Neutron Thermalization in Graphite Using a Pulsed Slowing-Down-Time Experiment," *Nuclear Science and Engineering*, <u>https://doi.org/10.1080/00295639.2022.2162789</u>, 2023
- N. C. Fleming, C. A. Manring, B. K. Laramee, J. P. W. Crozier, E. Lee, A. I. Hawari, "FLASSH 1.0: Thermal Scattering Law Evaluation and Cross Section Generation for Reactor Physics Applications," Nuclear Science and Engineering, <u>https://doi.org/10.1080/00295639.2023.2194195</u>, 2023.
- 3. J.P.W. Crozier, A. I. Hawari, "Phonon-Informed Neural Thermal Scattering (NeTS) Optimization for Crystalline Graphite and Beryllium Metal," *Transactions of the American Nuclear Society*, 128, 2023.
- 4. J. Gil, A. I. Hawari, "Evaluation of Thermal Neutron Scattering Cross Section of Uranium Silicide with Ab Initio Lattice Dynamics," *Transactions of the American Nuclear Society*, 129, 2023.
- 5. J. P. W. Crozier, A. I. Hawari, "Ab Initio Evaluation of Plutonium Dioxide $S(\alpha, \beta)$ and Thermal Neutron Cross Sections," *Transactions of the American Nuclear Society*, 129, 2023.
- 6. T. Ahmed, B.K. Laramee, A. I. Hawari, "Thermal Scattering Law Data Development for Paraffin Wax," *Transactions of the American Nuclear Society*, 129, 2023.
- 7. A. Bauyrzhan, A. I. Hawari, "Investigation of the Impact of TSL Data Libraries on the MSRE Benchmark," *Transactions of the American Nuclear Society*, 129, 2023.

FY 2024 several papers accepted for PHYSOR 2024 and others are in preparation for journal submissions

Summary

- Meeting and exceeding all NCSP ND2 objectives
 - □ Significant number of evaluations contributed to ENDF/B-VIII.1
- Innovative methods (ND5 and ND10 tasks) significant progress including
 - Doppler module integration into FLASSH code
 - □ ML TSL approach integration into Serpent MC code.

Thank You

