ORNL Neutron Cross Section Measurements of Zr-isotopes ----NCSP Task ND-1 + ND-3

K. Guber, J. Brown Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

C. Paradela, S. Kopecky, J. Heyse, and P. Schillebeeckx

Nuclear Physics Unit, EC-JRC Geel, Retieseweg 111, 2440 Geel, Belgium

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

GELINA

- Time-of-flight facility
- Pulsed white neutron source $(10 \text{ meV} < E_n < 20 \text{ MeV})$
- Multi-user facility with 10 flight paths (10–400 m)
- Measurement stations have \bullet special equipment to perform the following:
 - Total cross section measurements
 - Partial cross section measurements

National Laboratory

Neutron production

- e⁻ accelerated to $E_{e-,max} \approx 140 \text{ MeV}$
- (e⁻, γ) Bremsstrahlung in U-target (rotating & cooled with liquid Hg)
- (γ ,n) , (γ ,f) in U-target
- Low energy neutrons by water moderator in Be-canning
- NCSP-Y12 build a new neutron production target for GELINA

Capture cross section measurements at GELINA

Total energy detection principle

- C₆D₆ liquid scintillators
 - 125°
 - Pulse height weighting technique
 - Weighting function from Monte Carlo simulations
- Flux measurements (IC)
 - ${}^{10}B(n,\alpha)$
 - $^{235}U(n,f)$

$$Y_{exp} = N \sigma_{\phi} \, \frac{C_w - B_w}{C_{\phi} - B_{\phi}}$$

L = 10 m, 30 m, and 60 m

CAK RIDGE

Total cross section/transmission measurements

Detector stations Moderated: L = 30 m, 50 m (100 m, 200 m) Fast: L = 400 m Detector

Low energy : ⁶Li(n,t)α Li-glass High energy : H(n,n)H plastic scintillator

$$T = \frac{C_{in}}{C_{out}} \cong e^{-n\sigma_{tot}}$$

Isotopic Zr Campaign (ORNL-ND1)

- Goal: improve accuracy of evaluated cross sections for ^{90,91,92,94}Zr; at least the 4 major isotopes should be measured.
- Good high-resolution Oak Ridge National Laboratory (ORNL) transmission (total cross section) data for separated isotopes are available; data were retrieved from the Jack Harvey archive of ORELA experiments. Experiments were performed in the seventies using metallic samples at 80 and 200m FP length.
- Therefore, only neutron capture experiments must be performed using isotopically enriched samples
- Transmission and (n,γ) Experiments with natural samples have been performed at GELINA: list mode data sorted into time-of-flight (TOF) spectra for data reduction
- Natural sample data serve as a good sanity check of the ENDF files for separated isotopes

^{90,91,92}Zr sample

- Metallic samples are the first choice for capture experiments, as they help reduce backgrounds from sample scattered neutrons due to the lack of scattering compound material such as H,O and C
- The sample is sometimes not very uniform and warped, but for capture experiments, this is not a real problem
- However, transmission samples should be uniform, but with our good ORELA transmission data, this is not an issue
- But the nonuniform transmission data could be used to test analysis program data correction procedures; the results can be compared to existing ORELA transmission data

Zr-92,94 Isotope Leasing (ORNL-ND3)

- Zr-92 Sample delivered to JRC March 2023
- Metallic Zr
- Enrichment: 95%
- n = 0.00363 at/b
- FP: 60 m
- C₆D₆ capture system
- Sample thickness: 0.88mm

• Zr-94 Sample lease approved by DOE; sample is in production

Old ORNL ⁹¹Zr data

Resonance structure is visible above 100 keV, factor 5 more than previous evaluations. 80m data obtained using a ⁶Li-detector, 200m with NE110- detector

ORNL measurement activities for Zr at JRC-Geel

- No Zr-92 experiments performed before the summer break in 2023 due to budget constrains to operate GELINA and performance issue of the GELINA electron gun.
- After start up in late summer the RF window cracked, no replacement is available and new windows need adapter to fit on old klystrons.
- Ordered parts in fall 2023 and repair is expected to finish in spring 2024.
- Data sorting and reduction for transmission Zr-91 experiments
- Data sorting for Zr-91 capture experiments, problems with flux monitor

Zr-91 capture data

- During the capture experiment the n-flux monitor malfunctioned
- Part of the flux data was salvaged. This data was compared to a flux spectrum from previous Zr experiments
- It was determined the shape of the flux spectrum from Zr90 and Zr91 runs did not change. The Zr90 flux and can be used for the Zr91 data reduction.

Background determination in transmission using black resonance filters

⁹¹Zr transmission compared to ENDF

14

ORELA ⁹¹Zr transmission compared to ENDF

Status of NCSP experiments at EC-JRC Geel

	W	Cu	Ca	Ce	V	Zr	La
Sample	Metallic disks 182,183,184,186	Metallic disks 63 and 65	Metallic disks Nat Ca	Metallic disks Nat Ce, Ce-142 oxide	Metallic disks	Nat Zr metallic disks 90,91,92,94Zr	Nat La metallic disks
	2009–2011	2011–2012	2013–2014	2014–2015 2018–2019	2015–2016	2016–2017 2021–20	2017–2018
Experiments GELINA	60 m, 30 m (n,γ) transmission	60 m (n,γ)	60 m (n,γ) transmission	Nat Ce 60 m (n,γ) Nat Ce transmission, ¹⁴² Ce experiments completed	60 m (n,γ) transmission	Nat Zr 60 m (n,γ) + transmission ^{90,91} Zr transmission and (n,γ) data	60 m (n,γ) transmission
Data sorting	Finished 60 m + transmission	Finished 60 m	Finished 60 m transmission	Finished for thin and thick sample, ¹⁴² Ce data sorting finalized	Finished for thin and thick sample	Finished for thin and thick natural sample, ⁹⁰ Zr (n,γ)+ transmission, ⁹¹ Zr transmission + n,γ)	Finalized
Reduced to cross section	X-section, transmission	X-section	X-section transmission 0.6, 1.0, 5 cm samples	2 mm X-section 2 mm transmission 10 mm transmission ¹⁴² Ce data	Thin X-section 0.35 and 2 mm, transmission	⁹⁰ Zr transmission + (n,γ) ⁹¹ Zr transmission	X-section, transmission
Data testing	Data ready for evaluation	Data ready for evaluation	Data ready for evaluation	Data ready for evaluation	Data ready for evaluation	In progress	Data ready for evaluation
Analysis and evaluation	Finalized and submitted to National Nuclear Data Center	Finalized and submitted to National Nuclear Data Center	Finalized and submitted to National Nuclear Data Center	Finalized and submitted to National Nuclear Data Center	Finalized and submitted to National Nuclear Data Center	In progress RPI PhD Student	In progress

National Laboratory

16

People supporting JRC experiments and evaluations

- Peter Schillebeeckx, EC-JRC Geel
- Carlos Paradela, EC-JRC Geel
- Stefan Kopecky, EC-JRC Geel
- Ruud Wynats, EC-JRC Geel
- Mike Zach, Jenny Conner, ORNL/Isotopes
- Goran Arbanas, Jesse Brown, Chris Chapman, Luiz Leal, Jordan McDonnell, Marco Pigni, ORNL-ND group

Acknowledgments

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the US Department of Energy

Additionally, this work was also supported by JRC-Geel and the European Union

