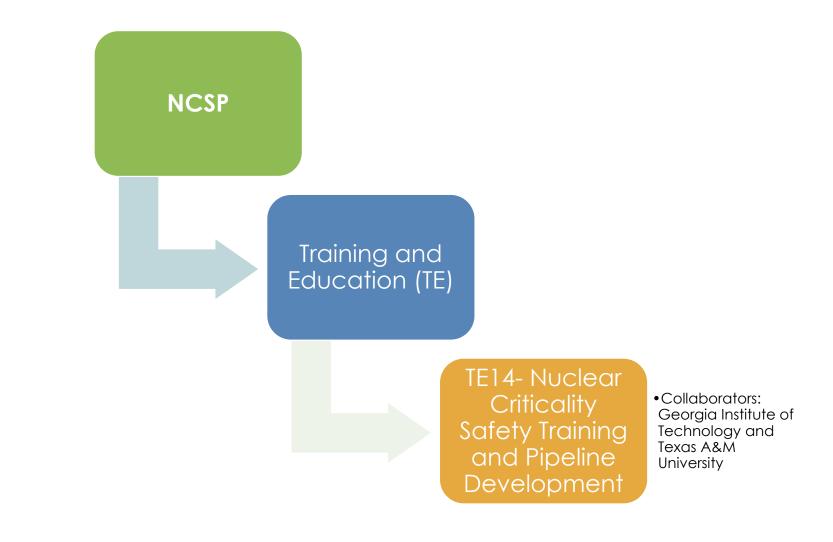


Overview and Status Update of the Nuclear Criticality Safety Training and Pipeline Program

Steven Biegalski, Doug Bowen, Sunil Chirayath, Alex Lang William Marshall, **Walid Metwally**, Pavel Tsvetkov

Nuclear Criticality Safety Program (NCSP) Technical Program Review February 20-23, 2024 Brookhaven National Laboratory, Riverhead, New York

ORNL is managed by UT-Battelle LLC for the US Department of Energy



Outline

- Introduction
- Program Overview
- Status Update

Introduction

3

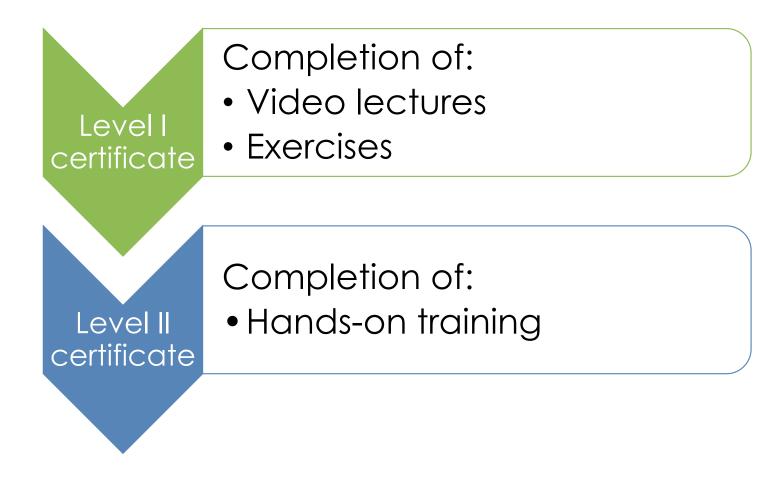
Introduction

- Why:
 - Gaps in knowledge of incoming professionals
 - Better prepare students for the NCSP Hands-on training courses
- What
 - Develop a pipeline of nuclear criticality specialists into the Department of Energy Laboratory Complex
- Who
 - Undergraduate and graduate engineering, physics, and mathematics students
 - Regional focus on the Southeastern United States

Program Overview

Phase 1: Program Development

- Years 1 and 2
- Develop training material
 - o Outline
 - Objectives
 - o Training Slides
 - o Video lectures
 - o Exercises
 - Hands-on training session
- Website


Phase 2: Recruiting & Program Delivery

- Years 3, 4, and 5
- Recruit students
- Offer the course (certificate program)

Nuclear Criticality Safety Certificate

Program Overview

Nuclear Criticality Safety Certificate

Status Update

Lecture #	Title
1	Course Introduction and Nuclear Criticality Safety Overview
2	Nuclear Particles and Nuclear Notation
3	Nuclear Structure and Radioactive Decay
4	Atom Density, Cross-Sections, and Nuclear Data
5	Radiation Interaction with Matter and Reaction Rates
6	Criticality and 6-Factor Formula
7	Neutron Flux and Fick's Law
8	Diffusion Equation
9	Critical Condition from Diffusion Equation
10	Delayed Neutrons and Pulses
11	Factors in criticality safety and MAGICMERV
12	Criticality Safety Considerations for U and Pu Systems
13	Hand Calculations - Hand calculation methods for criticality safety
14	History and lessons learned of Process Criticality Accidents
15	Safety Culture, Formality of Operations, ANS-8 standards, and Regulations (NRC/DOE)
16	Process Analysis (Part 1)
17	Process Analysis (Part 2)
18	Calculation/assessment lecture
19	Control Implementation, training, maintenance, credible abnormal conditions
20	Alarms and emergency response - Criticality Accident Alarm Systems and Emergency Preparedness
21	Validation requirements from ANS-8.1 and ANS-8.24
22	Validation approaches and methods
23	Examples of use validation to ensure subcriticality and use in control selection from process analysis
24	Criticality Safety Evaluation Process
25	Criticality Safety Evaluations Writing and Steps - Bringing it all Together
26	Criticality Safety Evaluations for U and Pu Systems
27	Summary and Review

7

Status Update

Phase 1: Program Development

Develop training material

Outline √
Objectives √
Training Slides √
Video lectures √
Exercises (in process)
Hands-on training session

Website

Phase 2: Recruiting & Program Delivery

Recruit students

• Offer the course (certificate program)

Moving Forward

- Aim to complete Phase 1 this year
- Start recruiting

9

Questions/Comments/Bright Ideas?

