IER 518: Data Analysis for High Multiplication Subcritical Experiments

2024 NCSP Technical Program Review

Jesse Norris, Eric Hudec* Lawrence Livermore National Laboratory *Oregon State University (OSU)

February 21, 2024

LLNL-PRES-860625

Overview

- Goals & Motivation
- Experimental Configurations & Computational Models
- Experimental Measurements & Simulations
- Data Analysis & Results
- Conclusion

Goals

- Measure time-tagged list-mode data for configurations exceeding 20-100 multiplication
 - Overlap and extend existing subcritical multiplication measurements
 - Provide intercomparison between LLNL, LANL, and IRSN detector systems
- Create fundamental physics benchmarks for ICSBEP with greater than 20 multiplication
 - Currently none exist with greater than about 20 multiplication
- Leverage existing critical experiment and detector system benchmarks to limit required modeling and uncertainty analysis
 - Minimize cost required to produce benchmark

Motivation

Inherently Safe Subcritical Assembly (ISSA, FUND-LLNL-ALPHAN-HE3-MULT-001)

Nelson, A., et. al., "Fundamental Physics Subcritical Neutron Multiplicity Benchmark Experiments Using Water Moderated Highly Enriched Uranium Fuel." International Conference on Nuclear Criticality Safety. Paris, France (2019).

Motivation

Inherently Safe Subcritical Assembly (ISSA, FUND-LLNL-ALPHAN-HE3-MULT-001)

Nelson, A., et. al., "Fundamental Physics Subcritical Neutron Multiplicity Benchmark Experiments Using Water Moderated Highly Enriched Uranium Fuel." International Conference on Nuclear Criticality Safety. Paris, France (2019).

Motivation

Inherently Safe Subcritical Assembly (ISSA, FUND-LLNL-ALPHAN-HE3-MULT-001)

Nelson, A., et. al., "Fundamental Physics Subcritical Neutron Multiplicity Benchmark Experiments Using Water Moderated Highly Enriched Uranium Fuel." International Conference on Nuclear Criticality Safety. Paris, France (2019).

Experimental Configuration

Photos courtesy of Sandia National Laboratory (SNL)

Location for dry wells inside the tank

Detectors within dry wells inside the tank

Computational Model

Modeled by Eric Hudec (OSU) with the LCT-078 Benchmark Model from SNL

Experimental Measurements

Case*	Number of Fuel Rods	Estimated k _{eff}	Estimated Multiplication	Measurement Time (s)
1	1058	0.99892	925.9	3600
2	1056	0.99849	662.3	3600
3	1048	0.99684	316.5	3600
4	1032	0.99388	163.4	3600
5	1004	0.98776	81.7	3600
6	948	0.97610	41.8	3600
Background	-	-	-	14400
Efficiency	-	-	-	3600

Background and efficiency measurements were performed to characterize the detector system configuration

Experimental Measurements

Comparison to MCNP Simulation

lational Laboratory

LLNL-PRES-860625

- The experimental measurements produced time-tagged neutron count rate data
- This count rate data can be simulated and analyzed to determine a benchmark quantity for comparison to simulation

Data Analysis

Reduced Factorial Moments

Data Analysis

Reduced Factorial Moments

Data Analysis

Reduced Factorial Moments

Conclusion

- Computational models of the six IER-518 experimental configurations are complete
 - List mode simulations of the benchmark models and uncertainty perturbations are also complete
 - Performed by Eric Hudec (OSU) with aid of LCT-078 Benchmark Model provided by SNL
- Discrepancies when applying the accepted method used in determining the benchmark quantity in the ISSA Benchmark Evaluation (FUND-LLNL-ALPHAN-HE3-MULT-001)
 - There are a variety of other methods now being explored, as well as work applying these methods to the ISSA Benchmark Measurements

Acknowledgements

- This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy
- Thanks to the Sandia National Laboratory SCX operators for their support of the experiment
- Thanks to Gary Harms (SNL) for the photographs of the experiment setup and configurations
- Thanks to IRSN for funding their participation and involvement in this experiment

Acknowledgements

 The planning, execution, and analysis of these measurements involved a collaboration between four laboratories, supported by the DOE's Nuclear Criticality Safety Program

Laboratory	Participants		
LLNL	Jesse Norris, Samuel Varghese, Daniel Siefman, Eric Hudec, William Zywiec, Catherine Percher, David Heinrichs		
LANL	Nicholas Whitman, Jesson Hutchinson, Geordie McKenzie, Jessie Walker, Joetta Goda		
SNL	Gary Harms, David Ames, Rafe Campbell, Beth Hanson, Jason Soares, Patrick Ward, and John Hall		
IRSN	Wilfried Monange, Jean Baptiste Clavel, Aurelie Bardelay		

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC