IER-479/547: Low-Temperature TEX

Surrogate Testing and Reflector Design

Eric Aboud, Jake Glesmann, Jesse Norris, Catherine Percher, Nick Killingsworth, Paul Yap-Chiongco Lawrence Livermore National Laboratory Venkata Ravindra, Steve Graham, Alfie O'Neill, Deborah Hill National Nuclear Laboratory, United Kingdom

Technical Program Review 2024 February 21,2024

Low-Temperature **TEX**

Epit

hermal

0

Temperatur

-WO

ents

Experim

ermal

Eoit

hermal

lemperature

NO.

-xperiments

Epithermal

hermal

emperature

Experiments

rmal

Epither

ermal

lemperature

-W0_

Experiments

Epit

Thermal

lemperature

<u>NO</u>

Experiments

ermal

hermal

lembel

-WO

cperiments

<u>-</u>pitherma

<u>nerma</u>

erature

em

-WO

ABBESS INSTRUMENTS[®]

<u>∧</u>

eriments

Exp

Epithermal

herma

emperature

NO

hermal

lemperature

MO.

nents

Experin

oithermal

hermal

emperature

Experiments

Epithermal

ermal

berature

lem

-WO

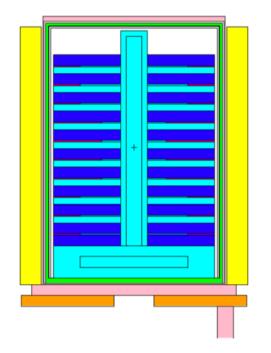
Experiments

Experimental Configurations

- What goes inside of the chamber?
- 6 proposed configurations spanning from predominantly thermal to fast neutron fission energies
 - 5 require the spindle heatsink
 - 1 requires the non-spindle heatsink

	Number		Moderator	Spacer	Annular	Cold	Multip	lication Fact	or (k _{eff})	Fission Fractions			
Case	HEU Plates	HEU Mass (g)	Thickness (in)	Thickness (in)	Reflector Thickness (in)	Critical Temp. (°C)	Reflected, Cold	Reflected, 20°C ^(a)	Handstack, 20°C ^(b)	Thermal (<0.625 eV)	Intermediate	Fast (>100 keV)	
1	26	134,488	-	1/4			1.00409	1.00360	0.88858	15%	21%	64%	
2	19	93,074	1/8	3/8	2.25		1.00284	1.00313	0.87854	21%	48%	31%	
3	14	68,650	1/4	1/2	2.25	-40	1.00236	1.00329	0.88467	30%	48%	22%	
4	12	50,610	1/2	1/2			1.00057	1.00629	0.88856	47%	38%	15%	
5a	10	43,421	1	5/8	2.00		1.00292	1.01752	0.92108	600/	200/	120/	
5b	10	45,290	1	7/8	2.50	-30 ^(c)	1.00156	1.01265	0.89957	60%	28%	12%	

(a) Represents the critical configuration reflected at 20°C using the same annular reflector, corresponding to the 80¢ excess reactivity requirement.


(b) Represents the critical configuration unreflected at 20°C using the model described in Section 3.5, corresponding to the handstack limit requirement.

(c) Case 5 is subcritical at less than -30°C, creating a more reactive configuration by increasing the HEU mass would violate the handstack limit.

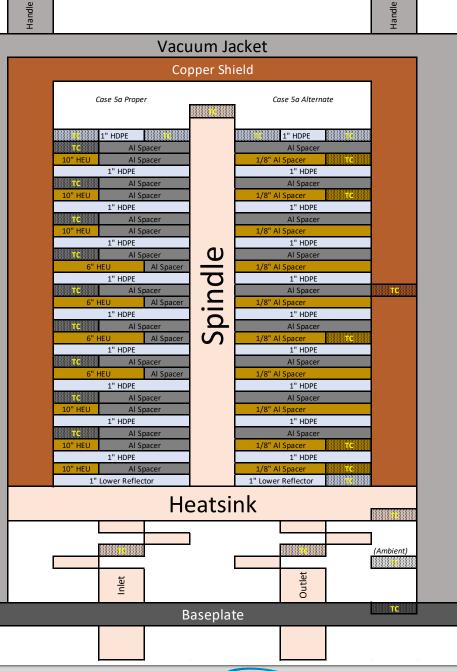
Experimental Configurations

Case 5a

- 10 Fuel Plates
 - 6x 10" HEU
 - 4x 6" HEU
- 5/8" Aluminum Spacers
- 1" Poly Moderators
- 1" Poly Top and Bottom Reflectors

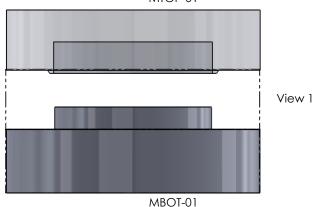
	Number		Moderator	Spacer	Annular	Cold	Multip	lication Fact	or (k _{eff})	Fission Fractions			
Case	HEU Plates	HEU Mass (g)	Thickness (in)	Thickness (in)	Reflector Thickness (in)	Critical Temp. (°C)	Reflected, Cold	Reflected, 20°C ^(a)	Handstack, 20°C ^(b)	Thermal (<0.625 eV)	Intermediate	Fast (>100 keV)	
5a	10	43,421	1	5/8	2.00	-40	1.00292	1.01752	0.92108	600/	28%	120/	
5b	10	45,290	1	7/8	2.50 -30 ^(c)		1.00156	1.01265	0.89957	0.89957 60%		12%	

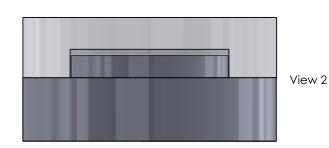

Thermal Performance Measurements


- In order to read the temperatures in the chamber we have 38 thermocouples
- Diagnostic TC's are placed strategically to monitor the temp of the system

Lawrence Livermore National Laboratory

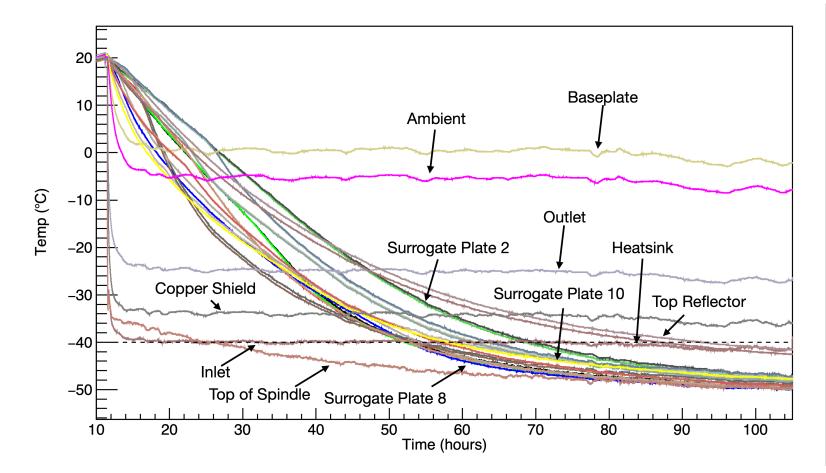
LLNL-PRES-860395




Thermal Considerations

Case 5 – Aluminum Wire

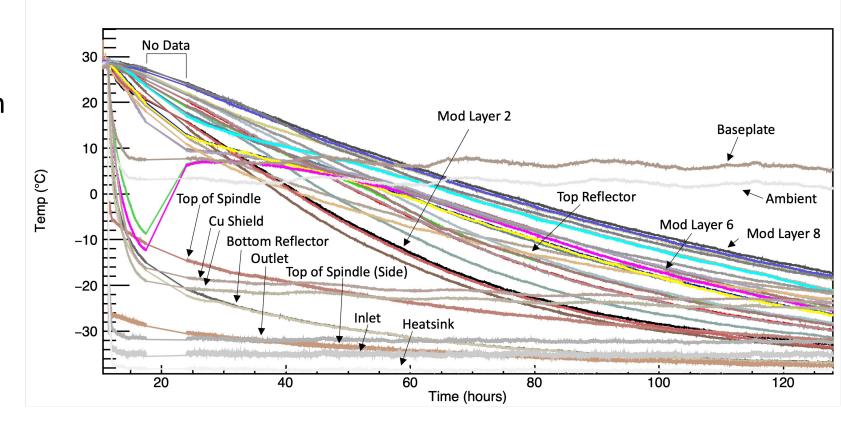
- To improve the thermal contact between the stack and the spindle, aluminum wire was
 pressed into the gaps
- Since testing, the spacer plates have been redesigned to allow for an aluminum gasket to fit into the gap



Thermal Performance

Case 5 – Aluminum Wire

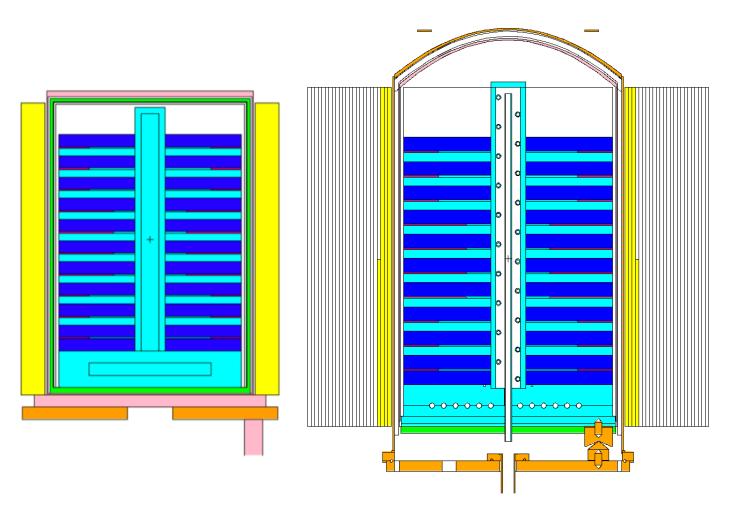
- Cooling to 40°C +/- 2.5°C within 49 hours
- Cooling overshot (issue with chiller has been fixed)



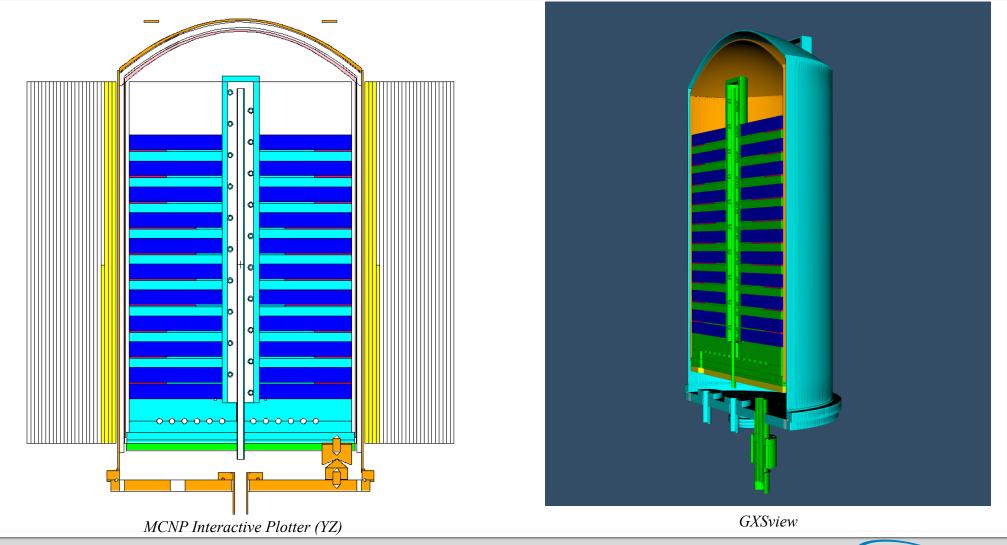
Thermal Performance

Case 5 – Copper Wire

- Similarly, copper wire was tested
- Cooling to 40°C +/- 2.5°C in more than 100 hours
- Aluminum/Copper interfaces form intermetallic compounds that deteriorate conductivity [1]


LLNL-PRES-860395

Reflector Design: The Approach

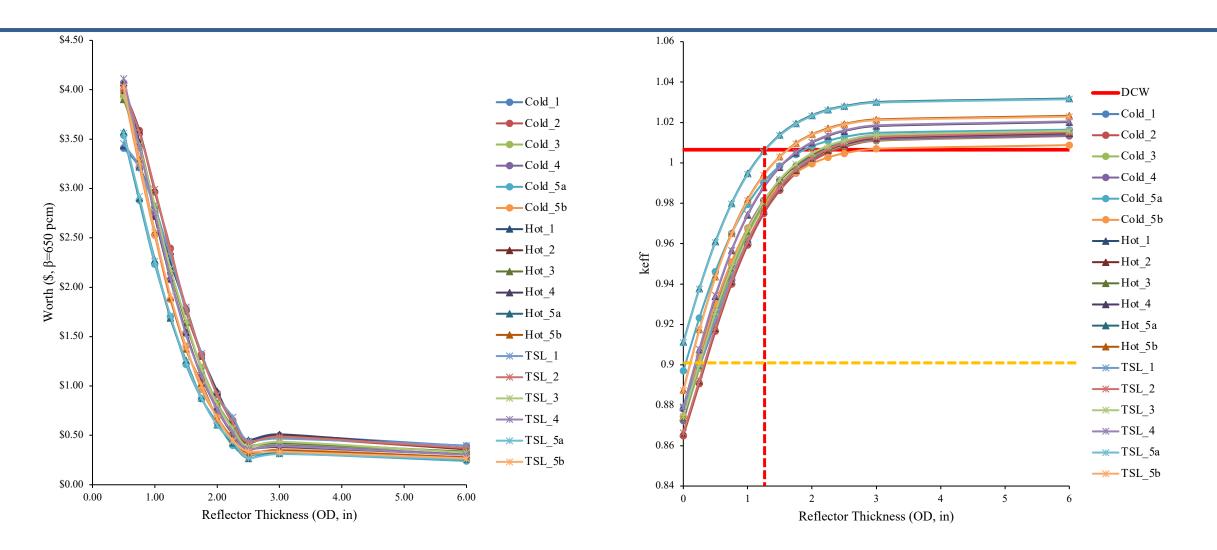

- High fidelity model
- Incrementally map k_{eff} to show reactivity worth for each segment of reflector added (both axially and annularly).

Detailed Assembly Model

Lawrence Livermore National Laboratory

Reflector Design: Approach

														Т						
	CASE 5a SUMMARY												CASE 5a SUMMARY							
Outer Reflector Height [in]	IP YZ Cross-Section	Total Reflector Thickness (Outer Reflector Thickness) [in] 0.25 0.50 0.75 1.00 1.25 1.75 2.00 2.25 2.50 3.00 6.00								tor Thickness) 2.25	[in] 2.50	3.00	6.00	Outer Reflector Total Reflector Thickness (Outer Reflector Thickness) [in]						
Abs Rel	IF TE Cross-Section	1	2	3	4	5	6	7	8	9	10	12	24	Height [in] Abs Rel	IP YZ Cross-Section	0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00 6.00 1 2 3 4 5 6 7 8 9 10 12 24				
24 21.001		. 0.9378	0.96108	0.97995	0.99475	1.00573	1.01390	1.01961	1.02356	1.02633	1.02807	1.03015	1.03184	24 21.001		-7.1 14.0 6.3 -12.2 6.1 -4.3 -11.8 7.8 6.4 0.1 13.9 15.3				
23 20.001		0.9378	5 0.96097	0.98002	0.99475	1.00579	1.01381	1.01953	1.02347	1.02620	1.02813	1.03009	1.03184	23 20.001		8.8 -15.5 5.2 -1.4 9.1 0.3 1.7 -2.1 -8.4 4.4 11.6 15.3				
22 19.001	o <mark>l</mark>	0.9376	0.96093	0.98001	0.99475	1.00579	1.01391	1.01961	1.02354	1.02627	1.02819	1.03007	1.03187	22 19.001	Q	2.4 4.3 -6.3 7.6 -13.4 -4.9 15.3 5.0 0.0 7.2 -9.7 0.8				
21 18.001		0.9376	0.96100	0.97990	0.99475	1.00572	1.01380	1.01964	1.02358	1.02620	1.02823	1.03018	1.03171	21 18.001		<u>15.9</u> <u>13.6</u> <u>10.5</u> <u>19.4</u> <u>14.5</u> <u>7.5</u> <u>-19.7</u> <u>1.3</u> <u>-10.4</u> <u>-4.2</u> <u>5.2</u> <u>14.9</u>				
20 17.001	o <mark>l</mark>	0.9376	0.96082	0.97980	0.99452	1.00566	1.01388	1.01941	1.02357	1.02630	1.02821	1.03011	1.03177	20 17.001	۰	14.5 9.3 23.0 6.3 5.7 17.7 15.1 -2.0 14.8 6.7 -1.9 -22.9				
19 16.001		0.9373	0.96056	0.97964	0.99438	1.00563	1.01377	1.01952	1.02347	1.02627	1.02817	1.03019	1.03180	19 16.001		67.6 57.1 35.8 24.4 22.3 19.4 14.1 10.4 7.9 10.9 6.4 2.5				
18 15.001	o	0.9366	0.96006	0.97917	0.99412	1.00538	1.01353	1.01934	1.02348	1.02629	1.02802	1.03016	1.03181	18 15.001		73.9 72.9 56.7 48.8 44.4 16.4 12.3 13.9 1.3 2.6 -10.0 -4.9				
17 14.001		0.9360	0.95938	0.97849	0.99367	1.00500	1.01324	1.01916	1.02337	1.02616	1.02805	1.03012	1.03182	17 14.001		121.0 115.1 83.5 72.9 51.3 36.0 32.8 18.7 18.4 3.4 11.4 4.4 187.5 134.6 127.3 93.5 57.9 69.6 44.8 22.8 13.7 10.7 -2.2 12.2				
16 13.001	o	0.9347	0.95823	0.97765	0.99289	1.00442	1.01287	1.01871	1.02296	1.02592	1.02790	1.03014	1.03172	16 13.001		187.5 134.6 127.3 93.5 57.9 69.6 44.8 22.8 13.7 10.7 -2.2 12.2 215.9 212.2 148.6 121.1 94.5 51.3 40.1 39.0 28.5 28.5 11.5 -17.6				
15 12.001		0.9329	0.95674	0.97650	0.99194	1.00369	1.01225	1.01852	1.02282	1.02578	1.02777	1.03003	1.03181	15 12.001		21.9 21.2 148.0 12.11 94.3 51.3 40.1 59.0 28.3 28.3 11.3 -17.0 251.0 206.0 183.2 137.9 114.7 73.4 54.2 34.5 23.6 18.5 10.9 8.2				
14 11.001	o	0.9308	0.95482	0.97491	0.99082	1.00285	1.01163	1.01820	1.02250	1.02553	1.02762	1.03000	1.03182	14 11.001		297.3 248.3 197.8 166.6 102.0 81.8 67.1 41.9 23.1 1.9 5.5 -7.1				
13 10.001		0.9281	0.95269	0.97304	0.98941	1.00181	1.01093	1.01748	1.02207	1.02533	1.02743	1.02989	1.03179		o	287.1 270.1 216.2 148.7 125.7 97.5 40.1 41.7 30.8 15.5 5.9 2.7				
12 9.001		0.9251	0.95019	0.97102	0.98775	1.00060	1.00996	1.01681	1.02171	1.02503	1.02736	1.02975	1.03178	11 8.001	+	289.2 243.8 187.3 159.4 109.4 63.6 72.0 31.4 33.5 35.0 11.1 -7.6				
11 8.001	+	0.9222	0.94746	0.96897	0.98611	0.99933	1.00917	1.01633	1.02140	1.02475	1.02712	1.02974	1.03178	10 7.001	0	240.2 209.9 181.2 129.8 103.2 78.3 41.4 38.7 19.5 1.8 13.9 16.1				
10 7.001	0	0.9193	0.94513	0.96701	0.98453	0.99829	1.00838	1.01570	1.02093	1.02457	1.02686	1.02960	1.03190	9 6.001		200.4 187.7 150.3 116.7 73.7 61.3 54.6 24.1 22.7 13.9 -6.0 5.8				
9 6.001	~	0.9170	0.94309	0.96524	0.98342	0.99718	1.00774	1.01521	1.02052	1.02421	1.02671	1.02954	1.03179	8 5.001	o	144.2 122.4 102.4 79.9 76.5 50.4 31.6 45.7 17.8 5.3 -1.4 -17.4				
8 5.001	~	0.9150	0.94110	0.96381	0.98226	0.99633	1.00713	1.01475	1.02016	1.02405	1.02652	1.02948	1.03189	7 4.001		<u>105.4</u> 82.5 79.3 59.6 41.4 31.7 28.6 5.5 11.2 19.3 12.3 6.6				
7 4.001	o	0.9136	0.93992	0.96278	0.98124	0.99575	1.00654	1.01438	1.01998	1.02387	1.02637	1.02954	1.03185	6 3.001	o	52.7 57.8 39.4 30.9 23.2 27.5 12.3 11.6 -0.8 -9.3 2.9 -0.7				
6 3.001		0.9125	0.93898	0.96185	0.98069	0.99518	1.00628	1.01418	1.01974	1.02370	1.02637	1.02945	1.03168	5 2.001		<u>26.3</u> 28.1 14.0 39.7 28.5 8.2 18.3 1.8 12.4 18.8 -2.0 -8.7				
5 2.001		0.9118	0.93835	0.96157	0.98025	0.99492	1.00595	1.01408	1.01961	1.02368	1.02637	1.02932	1.03184	4 1.001	ô	11.5 20.5 17.4 4.2 -4.4 11.9 -24.7 7.9 0.8 3.2 3.9 13.1				
4 1.001		0.9115	0.93799	0.96125	0.98013	0.99487	1.00599	1.01411	1.01961	1.02353	1.02633	1.02941	1.03180	3 0.001		-0.6 -8.9 10.0 -3.2 10.2 -1.3 29.1 -1.0 2.2 -15.6 1.7 -7.7 17.0 10.2 3.7 14.0 6.5 6.5 -11.3 9.6 -5.0 2.7 1.8 8.5				
3 0.001	ð	0.9114	5 0.93790	0.96096	0.97992	0.99473	1.00588	1.01373	1.01961	1.02355	1.02617	1.02938	1.03173	2 -0.999	• • • • • • • • • • • • • • • • • • •	1/.0 10.2 3.7 14.0 6.5 6.5 -11.3 9.6 -3.0 2.7 1.8 8.5 -4.5 3.7 -0.4 -12.4 6.0 4.7 9.0 0.1 -5.2 13.1 8.8 8.5				
2 -0.999		0.9114	0.93787	0.96117	0.97985	0.99480	1.00580	1.01380	1.01964	1.02345	1.02619	1.02942	1.03180	1 -1.999	a fair a start					
1 -1.999	• • • • • •	0.9113	0.93766	0.96098	0.97995	0.99473	1.00577	1.01395	1.01961	1.02353	1.02632	1.02925	1.03180	0 -2.999	Cumulative Worth	2617.6 2299.7 1872.4 1452.2 1109.0 792.3 567.0 408.3 258.8 194.4 105.5 16.5				
0 -2,999		0.9113	0.93787	0.96108	0.97995	0.99475	1.00573	1.01390	1.01961	1.02356	1.02633	1.02931	#N/A	┫ └────	Total Keff	0.87272 0.90114 0.92759 0.94997 0.96763 0.98135 0.99125 0.99846 1.00336 1.006743 1.010579 1.013687				
-2.777	Total Keff	0.9378	7 0.961076	0.979952	0.994746	1.005725	1.013897	1.019606	1.023556	1.026331	1.028069	1.030149	1.03184	1						
		Worth (p	m) 2320.9	1887.6	1479.4	1097.9	817.2	570.9	395	277.5	173.8	208	169.4							
		Worth	(\$) \$3.57	\$2.90	\$2.28	\$1.69	\$1.26	\$0.88	\$0.61	\$0.43	\$0.27	\$0.32	\$0.26							



Reflector Calculation Design

Lawrence Livermore National Laboratory

LLNL-PRES-860395

Conclusions

- Progress in surrogate testing
 - A new chiller has been fabricated and testing has resumed
 - Additional tests are being conducted, including:
 - Using formed aluminum gaskets
 - Extended testing with natural uranium
 - Testing with pseudo-spindle
 - Testing with no vacuum
- Reflector Design
 - Results for detailed model are consistent with results presented in CED-2.
 - Calculations provide flexibility in the physical design of the reflectors (e.g. reflector segment widths and heights).
 - Provided initial CAD models of reflector components.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National Laboratory