IER 480: TEX-Pu Benchmark (PU-MET-THERM-004) to Test Polyethylene and Lucite Thermal Scattering Laws

Presented at the FY23 NCSP Technical Program Review

LLNL-PRES-860446

PU-MET-MIXED-002- Plutonium Baseline Evaluation

- Plutonium-fueled benchmark accepted into the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook
 - Fuel was plutonium/aluminum Zero Power Physics Reactor (ZPPR) plates
 - Pu plates arranged in 12" x 12" layers (6 plates by 4 plates)
- First Benchmark for the Thermal/ Epithermal eXperiments (TEX) Project
 - Minimum of materials
 - Designed to span multiple neutron fission energy spectra (fast through thermal) using polyethylene moderator
 - Assembly designed to be easily modified to test materials of interest

PMM-002 Results Against ICSBEP Pu Benchmarks- MCNP6.1

Region of Interest for TEX TSL Experiments

TEX TSL (PU-MET-THERM-004) Experimental Set-up

Benchmark Incorporated Modern ZPPR Plate Characterization

- One Pu plate was taken apart and sampled in the glovebox at DAF
- Isotopic and chemical composition analysis was performed at LLNL
- Plate was found to have an additional ~2000 ppm of impurities at the time of manufacture that have never been accounted for

Element/	Adjustment to 1960 Plate Mass	Adjustment to 1960 Average		
Isotope	ppm	Plate Mass of		
-	(mg/kg)	105.383 (g)		
С	+260	0.027		
0	+75	0.008		
Mg	+16	0.002		
Cr	+149	0.016		
Fe	+277	0.029		
Ni	+487	0.051		
Cu	+32	0.003		
Ga	+175	0.018		
Mo	+28	0.003		
²³⁸ Pu	+82	0.009		
²⁴¹ Pu	+354	0.037		
²³⁸ U	+30.7	0.003		
²³⁷ Np	+67.7	0.007		
Mn	+11.7			
Со	+12.8			
In	+0.26	0.007		
Та	+11	Combined		
W	+10	Combined,		
Pt	+8	modeled as void		
Pb	+13			
²³⁶ U	+3.9			
Total	2104.06	0.220		

PU-MET-THERM-004 Benchmark Results

	Fission Fraction (%)			Moderator		Benchmark	Benchmark
Case	Thermal (<0.625 eV)	Intermediate (0.625 eV - 100 keV	Fast (> 100 keV)	Thick (cm)	Mod Type	k _{eff}	Uncertainty
1	72.91	16.09	11.00	4.264	PE	0.99900	0.00155
2	74.59	14.78	10.63	5.080	PE	0.99743	0.00176
3	70.27	18.06	11.67	4.922	PMMA	0.99834	0.00149
4	71.52	17.08	11.39	5.313	PMMA	0.99790	0.00136

Results of Sample Benchmark Calculations

Large Effect of Temperature

Moderator Material	Moderator Thickness (cm)	Pu Layers	Average Temperature (°C)	Temperature Correction to 20°C, Δk _{eff}	∆k _{eff} /°C
PE	4.264	6	23.8 ± 3.0	-0.00131	0.00034
PE	5.080	9	26.4 ± 3.0	-0.00355	0.00055
PMMA	4.922	7	29.3 ± 3.0	-0.00245	0.00026
PMMA	5.313	8	29.5 ± 3.0	-0.00287	0.00030

Temperature had a large impact on reactivity of the critical configuration

- Experimental measurements showed 1 °C change produced reactivity differences of ~0.00025 in k_{eff}
- Consistent with findings from design calculations from thermal cases of temperature-dependent critical experiments
- Effect dominated by TSL temperature dependence

Conclusions

- PMT-004 has four new benchmark cases highly sensitive to PE TSL (2 cases) and PMMA TSL (2 Cases)
 - PE cases were well predicted using MCNP6.2 and ENDF/B-VIII.0
 - PMMA cases overpredicted by approximately 0.6-0.7% in k_{eff} at 20°C
 - Accepted into 2023 version of the ICSBEP Handbook
- Temperature had a large impact on reactivity of the critical configuration
 - Implications for validation work for thermal cases- need to adjust TSL data to correct temperature as it can have hundreds of pcm effects for a few °C
 - Future thermal experiments should try and measure reactivity at multiple temperatures to aid in data testing and benchmark adjustment

Acknowledgements

- This work was funded by the United States Department of Energy's Nuclear Criticality Safety Program (NA-ESH-21).
- The experiments were a joint effort by Lawrence Livermore National Laboratory and Los Alamos National Laboratory and were completed at the National Criticality Experiments Research Center (NCERC).
- Personnel from the Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Sandia National Laboratories (SNL), and the Naval Nuclear Laboratory (NNL) provided design and review assistance for the TEX experiments.

