

Exceptional service in the national interest

UPDATES ON UO₂-BeO EXPERIMENT (IER-523)

Mac Cook, Elijah Lutz, Andrés Morell-Pacheco, David Ames, John Miller, and James Cole

2024 DOE Nuclear Criticality Safety Program Technical Program Review

February 20-22, 2024

Hosted by Brookhaven National Laboratory

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2024-01393PE

OUTLINE

- Experiment Status
- Experiment Motivation
- CED-1 Summary
- Current Efforts (CED-2)
- Concluding Summary

EXPERIMENT STATUS

- Previously completed feasibility studies
 - Simple Designs
 - Parameter Sensitivities Included
- Completed CED-1 at end of FY23
 - Several Design Alternatives
- Currently performing CED-2
 - Maturation of Design

MOTIVATION

MOTIVATION

MOTIVATION - BACKGROUND

Sandia Critical Experiments

MOTIVATION - BACKGROUND

Outer Fuel Pellet (Crescent Moon)

Inner Fuel Pellet (Half-Disk)

CED-1 SUMMARY

EXPERIMENT DESIGN – ELEMENT MODELS

7uPCX

Element Models

- Central test region containing 7 or 19 BeO fuel elements
- Driver region = 7uPCX fuel rods
 - Tight-packed (hex pitch = 0.86 cm)
 - Loose-packed (hex pitch = 1.72 cm)
- Fully reflected and water moderated
- Additional moderator/reflector configurations
 - Be metal rods
 - BeO rods

Side Cross Section View

EXPERIMENT DESIGN – 19 BeO ELEMENT CONFIGURATIONS

Radial Cross Section View

EXPERIMENT DESIGN - 7 BeO ELEMENT CONFIGURATIONS

Radial Cross Section View

EXPERIMENT DESIGN – ELEMENT MODELS SUMMARY

Config.						EANLF (MeV)	3-Group Fission Fractions			
#	# of 7uPCX	7uPCX Pitch (cm)	# of BeO Fuel	Ref. Rods	Mod. Rods					
							<0.625 eV	0.625 eV - 100 keV	>100 keV	
1	1129	0.86	19	None	None	3.64E-07	78%	17%	5%	
2	264	1.72	19	None	None	9.03E-08	91%	8%	2%	
3	1368	0.86	7	None	None	4.37E-07	77%	17%	6%	
4	313	1.72	7	None	None	7.48E-08	93%	6%	2%	
5	925	0.86	19	Be	None	3.52E-07	79%	17%	5%	
6	284	1.72	19	Be	Be	1.13E-07	88%	10%	2%	
7	1154	0.86	7	Be	None	4.31E-07	77%	17%	6%	
8	347	1.72	7	Be	Be	9.46E-08	90%	8%	2%	
9	900	0.86	19	BeO	None	3.51E-07	79%	17%	5%	
10	288	1.72	19	BeO	BeO	1.14E-07	88%	10%	2%	
11	1134	0.86	7	BeO	None	4.33E-07	77%	17%	6%	
12	357	1.72	7	BeO	BeO	9.58E-08	90%	8%	2%	

REACTIVITY EFFECTS ANALYSIS

	Void	Replace UO ₂ -BeO Fuel Elements with						
EC#	Central Region	Void Al		Water	7uPCX Rods			
1	-156	-115	-133	-194	13			
2	-321	-262	-298	-362	28			
3	-46	-33	-36	-46	8			
4	-97	-75	-85	-106	8			
5	-172	-123	-149	-208	15			
6	-334	-260	-306	-375	16			
7	-48	-35	-36	-43	9			
8	-96	-72	-83	-103	5			
9	-177	-128	-151	-213	15			
10	-335	-264	-309	-382	1			
11	-49	-36	-38	-45	9			
12	-95	-73	-83	-104	3			

*Values in 100's of pcm

ALTERNATIVE DESIGN – LOOSE PELLETS

Elements Design

Simpler Operations More Representative of Sandia Conditions

Easier Logistically

Closer to Existing Processes, Analyses, and Capabilities

Overall Uncertainties May be Lower Pellets Design

Greater Homogeneity Easier to Add Interstitial Materials

Easier to Sample, Measure, and Assay Fuel and Uncertainties

 UO_{2}^{-}

BeO

Fuel

Greater Fuel Availability

Easier to Harden Neutron Spectrum

Demonstrate Rodlets Fabrication

ALTERNATIVE DESIGN – LOOSE PELLET MODELS

- Central test region containing pellets in stacked cassettes
 - Each cassette is 5x5 array of cells
 - Cells are filled by sets of pellet pieces
- Many designs considered
 - Four presented in following slides

≥ 1289 available

≥ 3795 available

EXPERIMENT DESIGN – UO₂BEO PELLET VARIATIONS

AlBeMet Tray Model

EXPERIMENT DESIGN – UO₂BEO PELLET VARIATIONS

Poly-Al-X Model

EXPERIMENT DESIGN – PELLET MODELS SUMMARY

Pellet Model	# of 7uPCX Rods	Number of HD/CM		k _{eff}	3-Group Fission Percentages			k _{off} without
			Averaged Enrichment		<0.625 eV	0.625 eV- 100 keV	>100 keV	7uPCX Driver Fuel
BaselineP	1280	1750/1750	7.60%	1.002	80.10%	15.22%	4.68%	0.510
AlBeMet	1280	1750/1750	7.60%	0.998	80.14%	15.14%	4.72%	0.488
Offset	1280	2350/750	7.47%	1.002	80.33%	14.98%	4.70%	0.496
Poly-Al-X	298	3000/1000	9.80%	1.004	92.59%	5.77%	1.64%	0.891

EXAMPLE RESULTS & ANALYSIS – TSL WORTH

EXAMPLE RESULTS & ANALYSIS

Configuration

CURRENT EFFORTS

CURRENT EFFORTS

- New Configurations and Arrangements
 - Maximize ACRR rod worth and Be sensitivity
- Consideration of BeO Rod
 Procurement
 - Impurities, Uncertainties, Cost, Availability
- Analysis of Sample of Available Loose
 Pellets

CURRENT EFFORTS – DESIGN OPTIMIZATION

Total BeO Rod Water Replaced Reactivity Worth BeO Rod Reactivity Worth (\$) Water Replaced -1 -2

Rings

CONCLUDING SUMMARY

CONCLUSIONS

- CED-1 completed in October 2023
 - Similar behavior of fuel element and loose pellet designs
 - Fuel element designs carried into CED-2
- Current efforts focused on optimization
- Future efforts include further design maturation
 - For example, control rod design and analysis

Making History, Shaping the Future

Thanks to the many contributors of this study

NUCLEAR CRITICALITY SAFETY PROGRAM U.S. DEPARTMENT OF ENERGY

QUESTIONS?

Images Courtesy Sandia National Laboratories