

Exceptional service in the national interest

<u>Completion of IER 305</u>: Molybdenum Sleeve Experiments <u>Preparations for Performing IER 441</u>: Epithermal Tantalum Experiments

David Ames

Contributors: Gary Harms (SNL), Nicolas Leclaire (IRSN), Jeremy Bez (IRSN), Beth Hanson (SNL), Jason Soares (SNL), Patrick Ward (SNL), Augie Chapa (SNL), Mathieu Dupont (ORNL)

NCSP Technical Program Review February 21, 2024 Hosted by Brookhaven National Laboratory

SAND2024-01469PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

OVERVIEW

- Sandia Critical Experiments
 - 7uPCX
 - BUCCX
 - Assembly Design
- Completion of IER 305
 - CED-3b
 - CED-4a
 - CED-4b
- Preparing to Perform IER 441
 - New Hardware
 - Critical Configurations
 - Next Steps
- Acknowledgements

Sandia Critical Experiments (SCX)

The Seven Percent Critical Experiment (7uPCX)

- UO₂ fuel (6.9% ²³⁵U)
- Four sets of grid plates
 - 45x45 Square pitch array (0.8 cm)
 - 45x45 Square pitch array (0.855 cm)
 - Triangular pitch array (1.55 cm) IER 305
 - Triangular pitch array (1.02 cm) with central test region IER 441
- Fuel rod diameter 0.635 cm
- Fuel length 48.9 cm
- ° Seven Experimental Series in the ICSBEP Handbook
 - LCT-078, 080, 096, 097, 101, 102, 111, ???

The Burnup Credit Critical Experiment (BUCCX)

- UO₂ fuel (4.3 % ²³⁵U)
- Two sets of grid plates
 - Triangular pitch array (2.0 cm)
 - Triangular pitch array (2.8 cm)
- Fuel locations 397 and 271
- Fuel rod diameter 1.38 cm
- Fuel length 49.2 inch
- ° Two Experimental Series in the ICSBEP Handbook
 - LCT-079, 099

Sandia Critical Experiments: IER 305 and IER 441

The Seven Percent Critical Experiment (7uPCX)

UO₂ fuel (6.9% ²³⁵U)

- Four sets of grid plates
 - 45x45 Square pitch array (0.8 cm)
 - 45x45 Square pitch array (0.855 cm)
 - Triangular pitch array (1.55 cm) IER 305
 - Triangular pitch array (1.02 cm) IER 441
 - Central test region
- Fuel rod diameter 0.635 cm
- Fuel length 48.9 cm
- Seven Experimental Series in the ICSBEP Handbook
 - LCT-078, 080, 096, 097, 101, 102, **111**, ???

Critical Assembly Design

Notable Design Features

- Assembly tank
 - Fuel rods and grid plates
 - Elevated for gravity release of moderator to the dump tank
 - Provides full water-reflection
- Dump tank
 - Moderator resides in dump tank until operations
 - Heater maintains temperature
- Moderator Overflow Standpipe
 - Maintain water level in assembly tank
 - Water continually circulated between dump tank and assembly tank
- Control and Safety Elements
 - Cluster of four rods
 - $\,\circ\,$ B_4C absorber section followed by 4 rod fueled section
- Plant Protection System
 - Two fission chambers

Critical Assembly Design

Notable Design Features

• Assembly tank

- Fuel rods and grid plates
- Elevated for gravity release of moderator to the dump tank
- Provides full water-reflection

• Dump tank

- Moderator resides in dump tank until operations
- Heater maintains temperature
- Moderator Overflow Standpipe
 - Maintain water level in assembly tank
 - Water continually circulated between dump tank and assembly tank
- Control and Safety Elements
 - Cluster of four rods
- $\,\circ\,$ B_4C absorber section followed by 4 rod fueled section
- Plant Protection System
 - Two fission chambers

IER 305: New Equipment

Notable design features (new equipment)

- Grid Plates (Guide, Upper, and Lower)
 - Maintain spacing of fuel rods
 - Triangular pitch (1.55 cm)
- Molybdenum Sleeves
 - Placed between upper and lower grid plates
 - Centered on fuel rods
 - 400 sleeves
- Additional new equipment
 - ° Control and safety element bundle plates
 - Hydro tubes and springs

IER 305: New Equipment

Notable design features (new equipment)

- ° Grid Plates (Guide, Upper, and Lower)
 - Maintain spacing of fuel rods
 - Triangular pitch (1.55 cm)
- Molybdenum Sleeves
 - Placed between upper and lower grid plates
 - Centered on fuel rods
 - 400 sleeves
- Additional new equipment
 - ° Control and safety element bundle plates
 - Hydro tubes and springs

IER 305: Critical Configurations (Case 1: LCT-111)

IER 305: Critical Configurations (Case 2: LCT-111)

IER 305: Critical Configurations (Case 3: LCT-111)

IER 305: Critical Configurations (Case 4: LCT-111)

IER 305: Critical Configurations (Case 5: LCT-111)

IER 305: Case 3 (LCT-111)

IER 305: Experiment Results (LCT-111)

Case	Largest Array			Previous	Extrapolated		
	Array Size (rods)	UO ₂ Mass (g)	Fuel Column Length (cm)	Array Size (rods)	Critical Array Size (rods)	Mo- Sleeves	Temp. (°C)
1	340	37010.14	16582.8	339	340.176 ± 0.001	0	24.5
2	645	70197.84	31457.7	644	646.200 ± 0.002	208	24.2
3	867	94336.40	42293.8	866	868.147 ± 0.001	397	24.3
4	575	62568.56	27989.8	574	576.696 ± 0.005	175	24.0
5	670	72927.52	32681.9	669	671.498 ± 0.006	331	24.6

IER 305: Derived k_{eff} Results (LCT-111)

Case	Lar	gest Measured	d Array	Smaller Measured Array			
	Fuel Rods	k _{eff}	Uncertainty	Fuel Rods	k _{eff}	Uncertainty	
1	340	0.999887	0.000006	339	0.999245	0.000042	
2	645	0.999554	0.000043	644	0.999183	0.000078	
3	867	0.999690	0.000041	866	0.999419	0.000076	
4	575	0.999200	0.000060	574	0.998730	0.000095	
27	670	0.999490	0.000053	669	0.999150	0.000088	

IER 305: Benchmark-Model k_{eff} and Uncertainty Results (LCT-111)

Case	Experiment		Simplification Bias		Temperature Correction		Experiment	Benchmark Model	
	k _{eff}	Unc.	Δk_{eff}	Unc.	Δk_{eff}	Unc.	Uncertainty	k _{eff}	Unc.
1	0.999887	0.000006	-0.00011	0.00002	-0.00001	0.00000	0.00085	0.99977	0.00085
2	0.999554	0.000043	-0.00008	0.00002	0.00001	0.00000	0.00106	0.99949	0.00106
3	0.999690	0.000041	-0.00013	0.00002	0.00002	0.00000	0.00115	0.99958	0.00115
4	0.999200	0.000060	-0.00014	0.00002	0.00001	0.00000	0.00104	0.99907	0.00105
5	0.999490	0.000053	-0.00012	0.00002	0.00000	0.00000	0.00108	0.99937	0.00108

IER 305: Results – Reactivity Offset (LCT-111)

Calculated k_{eff} for the benchmark model and evaluated benchmark model k_{eff} for same configuration

IER 305: Results – Reactivity Offset (LCT-111)

Critical Assembly Design

Notable Design Features

• Assembly tank

- Fuel rods and grid plates
- Elevated for gravity release of moderator to the dump tank
- Provides full water-reflection

° Dump tank

- Moderator resides in dump tank until operations
- Heater maintains temperature
- Moderator Overflow Standpipe
 - Maintain water level in assembly tank
 - Water continually circulated between dump tank and assembly tank
- Control and Safety Elements
 - Cluster of four rods
 - $\,\circ\,$ B_4C absorber section followed by 4 rod fueled section
- Plant Protection System
 - Two fission chambers

Critical Assembly Design

Notable Design Features

• Assembly tank

- Fuel rods and grid plates
- Elevated for gravity release of moderator to the dump tank
- Provides full water-reflection

• Dump tank

- Moderator resides in dump tank until operations
- Heater maintains temperature
- Moderator Overflow Standpipe
 - Maintain water level in assembly tank
 - Water continually circulated between dump tank and assembly tank
- Control and Safety Elements
 - Cluster of four rods
- $\circ\,\,B_4C$ absorber section followed by 4 rod fueled section
- Plant Protection System
 - Two fission chambers

- Control and Safety Element bundle plates
 - Maintain spacing of the 4 rod clusters
- Grid Plates (Guide, Upper, and Lower)
 - Maintain spacing of fuel rods
 - Triangular pitch (1.02 cm)
- Hydro Tubes and Springs
 - Gravity drop of control and safety elements
- Central test region
 - Outer Diameter 9.5 cm
 - Length 78 cm
 - Dry cavity

- Lined with cadmium
- Maintain spacing of test rods
- 85 test rod locations
- Triangular pitch (0.81 cm)
- Tantalum rods
 - Pure tantalum (> 99.95%)
 - Dimensions match fuel rods (about 1 cm longer)

- Control and Safety Element bundle plates
 - Maintain spacing of the 4 rod clusters
- Grid Plates (Guide, Upper, and Lower)
 - Maintain spacing of fuel rods
 - Triangular pitch (1.02 cm)
- Hydro Tubes and Springs
 - Gravity drop of control and safety elements
- Central test region
 - Outer Diameter 9.5 cm
 - Length 78 cm
 - Dry cavity

- Lined with cadmium
- Maintain spacing of test rods
- 85 test rod locations
- Triangular pitch (0.81 cm)
- Tantalum rods
 - Pure tantalum (> 99.95%)
 - Dimensions match fuel rods (about 1 cm longer)

- Control and Safety Element bundle plates
 - Maintain spacing of the 4 rod clusters

• Grid Plates (Guide, Upper, and Lower)

• Dimensions match fuel rods (about 1 cm longer)

- Control and Safety Element bundle plates
 - Maintain spacing of the 4 rod clusters

• Grid Plates (Guide, Upper, and Lower)

- Maintain spacing of fuel rods
- Triangular pitch (1.02 cm)
- Hydro Tubes and Springs
- Gravity drop of control and safety elements
- Central test region
 - Outer Diameter 9.5 cm
 - Length 78 cm
 - Dry cavity

- Lined with cadmium
- Maintain spacing of test rods
- 85 test rod locations
- Triangular pitch (0.81 cm)
- Tantalum rods
 - Pure tantalum (> 99.95%)
 - Dimensions match fuel rods (about 1 cm longer)

IER 441: New Hardware – Guide and Grid Plates

- Grid Plates (Guide, Upper, and Lower)
 - Maintain spacing of fuel rods
 - Triangular pitch (1.02 cm)
- Control and Safety Element bundle plates
 - Maintain spacing of the 4 rod clusters

• Hydro Tubes and Springs

- Gravity drop of control and safety elements
- Central test region
 - Outer Diameter 9.5 cm
 - Length 78 cm
 - Dry cavity

- Lined with cadmium
- Maintain spacing of test rods
- 85 test rod locations
- Triangular pitch (0.81 cm)
- Tantalum rods
 - Pure tantalum (> 99.95%)
 - Dimensions match fuel rods (about 1 cm longer)

- Grid Plates (Guide, Upper, and Lower)
 - Maintain spacing of fuel rods
 - Triangular pitch (1.02 cm)
- Control and Safety Element bundle plates
 - Maintain spacing of the 4 rod clusters
- Hydro Tubes and Springs
 - Gravity drop of control and safety elements
- Central test region
 - Outer Diameter 9.5 cm
 - Length 78 cm
 - Dry cavity

- Lined with cadmium
- Maintain spacing of test rods
- 85 test rod locations
- Triangular pitch (0.81 cm)
- Tantalum rods
 - Pure tantalum (> 99.95%)
 - Dimensions match fuel rods (about 1 cm longer)

- Grid Plates (Guide, Upper, and Lower)
 - Maintain spacing of fuel rods
 - Triangular pitch (1.02 cm)
- Control and Safety Element bundle plates
- Maintain spacing of the 4 rod clusters
- Hydro Tubes and Springs
 - Gravity drop of control and safety elements

• Central test region

- Outer Diameter 9.5 cm
- Length 78 cm
- Dry cavity

- Lined with cadmium
- Maintain spacing of test rods
- 85 test rod locations
- Triangular pitch (0.81 cm)
- Tantalum rods
 - Pure tantalum (> 99.95%)
 - Dimensions match fuel rods (about 1 cm longer)

Central Test Region (Top Cut-Away Zoomed)

Cadmium Sheet (0.04 in)

IER 441: New Hardware – Central Test Region

IER 441: New Hardware – Central Test Region

View from above Guide Plate

Between Guide Plate and Upper Grid Plate **Above Lower Grid Plate**

- Grid Plates (Guide, Upper, and Lower)
 - Maintain spacing of fuel rods
 - Triangular pitch (1.02 cm)
- Control and Safety Element bundle plates
- Maintain spacing of the 4 rod clusters
- Hydro Tubes and Springs
 - Gravity drop of control and safety elements
- Central test region
 - Outer Diameter 9.5 cm
 - Length 78 cm
 - Dry cavity

- Lined with cadmium
- Maintain spacing of test rods
- 85 test rod locations
- Triangular pitch (0.81 cm)

• Tantalum rods

- Pure tantalum (> 99.95%)
- Dimensions match fuel rods (about 1 cm longer)

IER 441: New Hardware – Tantalum Rods

Approach-to-Critical Experiments

• Number of fuel rods is the free parameter

- Loaded from center towards outside of the array
- Maintain a roughly cylindrical cross section of the array
- · Loading order identical for each experiment
- Each fuel rod in the same array location in every configuration
- ° Control and Safety Elements fully withdrawn
- Initial configuration

- $\circ\,$ Calculated $k_{eff} \sim 0.90$ (786 fuel rods)
- $\circ~$ Calculated $k_{eff} \sim 0.95~(954~fuel~rods)$
- Inverse count rate at successive fuel configurations
 - Extrapolated to zero to obtain estimate of critical array size

IER 441: Critical Configurations

Cara	Ta-rods	Fuel	Ta Worth	Three group energy-dependent Ta absorption rates			
Case		Rods	$(\Delta \mathbf{k}/\mathbf{k} \pm \mathbf{\sigma})$	<0.625 eV	0.625 eV–100 keV	>100 keV	
1	0	1044	-	-	-	-	
2	7	1068	0.460 ± 0.006 %	1.40 %	93.89 %	4.72 %	
3	18	1086	1.078 ± 0.006 %	1.30 %	93.75 %	4.95 %	
4	19	1084	0.944 ± 0.006 %	1.52 %	92.52 %	5.97 %	
5	30	1110	1.656 ± 0.006 %	1.11 %	93.55 %	5.34 %	
6	37	1108	1.499 ± 0.006 %	1.47 %	91.46 %	7.07 %	
7	61	1136	2.081 ± 0.006 %	1.38 %	90.43 %	8.19 %	
8	85	1158	2.546 ± 0.004 %	1.27 %	89.59 %	9.15 %	
No Cd	85	1134	5.725 ± 0.004 %	30.96 %	62.87 %	6.17 %	

IER 441: Critical Configuration Case 8 (85 Ta rods)

IER 441: Next Steps

• Complete CED-3a by FY24Q2

• Final fit and form test

- Finalize experiment schedule
- Complete CED-3b by FY24Q4
 - Begin experiments in March
 - ORNL visit for experiments
 - Mathieu Dupont
 - BJ Marshall
- Evaluation and Publication (ICSBEP)
 - ICSBEP TRG Spring 2025
 - CED-4a by FY25Q2
 - CED-4b by FY25Q4

Acknowledgements

Thank you

- Sandia: Gary Harms, Augie Chapa, Beth Hanson, Jason Soares, Patrick Ward, Elijah Lutz, Cassandra Wilson
- IRSN: Jeremy Bez, Nicolas Leclaire (IE305)
- ONRL: Mathieu Dupont, Justin Clarity, Doug Bowen, BJ Marshall (IER 441)
- DOE NCSP: The critical experiments at Sandia are supported by the DOE Nuclear Criticality Safety Program (NCSP), funded and managed by the National Nuclear Security Administration for the Department of Energy.

Questions?