

IER-517 MOBY DICK HEU CED-2 Overview

Cole Kostelac, Nicholas Thompson, Travis Grove, Rene Sanchez, Jesson Hutchinson, Joetta Goda

2/21/24

LA-UR-24-21129

MOBY DICK

Molybdenum Optimized Benchmark System Demonstrating Integral Correlations

- LANL, Y-12, and IRSN collaboration
- New differential measurements of isotopic Molybdenum cross sections in unresolved resonance region (URR) from RPI need validation and measurements from IRSN and JAEA at J-PARC need validation
- Lack of Molybdenum sensitive benchmarks in ICSBEP Handbook
- Recent thermal molybdenum integral experiments at SNL (IER-305)

Molybdenum in Nuclear

- In Fuels: U-Mo metallic fuels are used in new space reactor designs and new research reactor fuels. MITR, MURR, and NBSR reactors plan on converting from different HEU fuels to a U-10Mo HALEU fuel within the next decade.
- In Spent Nuclear Fuel: ⁹⁵Mo is one of the 15 main absorbing fission products in irradiated LWR fuel. This makes it important for criticality safety studies in transportation and reprocessing.
- In Structural Materials: Molybdenum is found commonly in alloys that make up the structural materials of nuclear reactors such as type 316 SS.
 Molybdenum helps to improve high temperature performance and corrosion resistance.

Experiment Goals

- A total of four critical configurations of HEU that are maximally sensitive to the ⁹⁵Mo radiative capture cross section in the follow energy regions:
 - Fast (200 keV 10 MeV)
 - Unresolved Resonance Region (2 keV 200 keV)
 - Epithermal (0.625 eV 2 keV)
 - Thermal (<0.625 eV)

General Design

21" Jemima Plate			
Name	Full Plate + Ring		
Diameter	21" (53.34 cm)		
Thickness	0.118" (3 mm)		
HEU Mass/Plate	12.68 kg		
	15" 21"		

- Configurations will be built on Comet and fueled by the 21" Jemima plates similar to recent NCERC experiments (i.e. CERBERUS, CURIE, ...)
- CED-1 demonstrated a larger Beryllium reflector is most desirable to achieve high sensitivities to ⁹⁵Mo (especially in URR and epithermal regions)

	Be Reflector	Graphite Reflector
Pros	+Performed best in CED-1	+Cheap +Short lead time
Cons	-Expensive -Long lead time	 - 30% reduced nuclear data sensitivity to URR ⁹⁵Mo

Beryllium Reflector

- A 15 cm rectangular beryllium reflector can be constructed with existing NCERC inventory. Inner graphite corner pieces will be used to mate circular fuel stack with rectangular reflector.
- This design can be used in the future as an additional reflector option to the large copper bricks commonly used on Comet
- This method has been used for the Hypatia experiment and will be used for the upcoming Deimos experiment

Basic Design

Basic Design

Basic Design

53.34 cm (21")

Thermal – Maximizing ⁹⁵Mo (n,γ) Sens. <0.625 eV

Poly Mod. Be Ref.

Specifications				
Units	8			
Beryllium Reflector	15 cm			
Polyethylene Plate Thickness	3.88 cm			
Molybdenum Plate Thickness	3.27 cm			
Stack Height	97.2 cm			
H:W	1.06			
k _{eff}	0.99823 ± 33			
S _{Mo-95} (n,g), Thermal	-0.9007			

Beryllium Outer Reflector
Graphite Inner Reflector
Polyethylene Moderator
Molybdenum Plate
HEU Plate

Epithermal – Maximizing ⁹⁵Mo (n,γ) Sens. 0.625 eV -2 keV **Beryllium Outer Reflector** Poly Mod. Be Ref.

				Graphite Inner Reflector
Specifications				Polyethylene Moderator
Units	10			Molybdenum Plate HEU Plate
Beryllium Reflector	15 cm			$k_{ m eff}$ - Generation 1 53.34cm Plate 15cm Be reflected
Polyethylene Plate Thickness	1.0 cm		4.	9 - • k < 0.99 • k ≈ 1.00
Molybdenum Plate Thickness	3.91 cm		rstitial (cm	7- k > 1.01
Stack Height	87.5 cm		um Inte	
H:W	0.97		10lybden	
k _{eff}	0.99913 ± 30		2 1.	3-
S _{MO-95} (n,g), Epithermal	-0.045		0.	1 0.1 2.1 4.1 6.1 8.1 Poly Moderator (cm)
\bigotimes				

URR – Maximizing ⁹⁵Mo (n,γ) Sens. 2 keV – 200 keV

Alumina Mod. Be Ref.

Specifications			
Units	14		
Beryllium Reflector	15 cm		
Alumina Plate Thickness	2.5 cm		
Molybdenum Plate Thickness	2.13 cm		
Stack Height	104.1 cm		
H:W	1.16		
k _{eff}	0.99721 ± 30		
S _{Mo-95} (n,g), URR	-0.05104		

Fast – Maximizing ⁹⁵Mo (n,γ) Sens. >200 keV

Unmoderated, Axially Molybdenum Reflected

Specifications				
Units	14			
Molybdenum Plate Thickness	0.5 cm			
Molybdenum Axial Reflector Thickness	7.5 cm			
Stack Height	27 cm			
H:W	0.5			
k _{eff}	1.00193 ± 26			
S _{Mo-95 (n,g), Fast}	-0.00732			

Molybdenum Plate HEU Plate

Molybdenum Plates (0.5 cm Thick)

JIMO Molybdenum Plates (0.0762 cm Thick)

Procured in early 2000's for critical experiments in support of Project Prometheus

Will be used in combination with 0.5 cm plates to get exact plate thicknesses

For example, if the needed Mo plate thickness is 2.15 cm we would stack:

4x 0.5 cm plates and 2 JIMO plates

Туре	Quantity	Outer Diameter (in)	Inner Diameter (in)	Thickness (in)
Solid	.32	21.000 ± 0.010	-	0.0300 ± 0.0030
Annular	32	21.000 ± 0.010	2.510 ± 0.010	0.0300 ± 0.0030
Solid	4	21.000 ± 0.010	-	0.0600 ± 0.0060
Annular	4	21.000 ± 0.010	2.510 ± 0.010	0.0600 ± 0.0060

Table 15. Specifications for Mo Plates

THERMAL - Comparison to Existing Benchmarks

HMM-020-001 VNIITF, Russia 2012

PMF-044-001 LACEF, USA 1973

EPITHERMAL - Comparison to Existing Benchmarks

URR - Comparison to Existing Benchmarks

FAST - Comparison to Existing Benchmarks

FAST - Comparison to NCERC Benchmarks

Concluding Remarks

- A series of four HEU Molybdenum configurations were designed using the PSO algorithm developed as part of the CED-1 of this project.
- These configurations were shown to be significantly more sensitive to 95 Mo (n, γ) than existing benchmarks.
- Existing NCERC materials were leveraged to reduce costs and procurement times (JIMO Plates and Beryllium reflector).
- Beryllium reflector can be used for future experiments, including the future Plutonium configurations of this experiment

Acknowledgements

 This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

Questions?