

Delivering science and technology to protect our nation and promote world stability

IER 479: Technical Challenges of a Low Temperature Experiment and Proposed Solutions

Geordie McKenzie (presented by Joetta Goda)

NCSP Technical Program Review February 20-22, 2024

LA-UR-24-21281

IER-479 Summary

- Investigation of critical masses of uranium-fueled systems at and below room temperatures
 - 20 °C to -40 °C
- Address criticality aspects of transporting nuclear materials (waste, etc.) in very cold temperatures and associated criticality safety concerns
 - Integral experiment will help validate low temperature nuclear data (cross sections, $S(\alpha,\beta)$ or TSL, etc.)

Very challenging experiment!

• Close collaboration between LANL and LLNL necessary to ensure experiment can be executed safely and efficiently

3

Current Status: Nuclear Design

- LLNL has modeled 5 configurations spanning different energy regimes
- LANL has been working on the experimental process including
 - approach to critical,
 - integration with DAF safety basis, and
 - ANS-1 requirements.

Current Status: Engineering Design

- LLNL has worked with commercial vendor to acquire vacuum chiller system
 - This system is currently undergoing rigorous engineering testing before being utilized for an experiment.
 - Some results presented by LLNL at this meeting.
- LANL has also been generating the overall engineering design package including drawings, component fabrication, and component management level determination.
 - All of which requires close collaboration with LLNL.
- The team has been working toward CED-3a completion in FY25

5

IER-479 Description

- Experiment designed for Comet critical assembly at NCERC
- Stacks of HEU and HDPE plates in a vacuum chamber
- Air evacuated from chamber and a cooler/chiller cools the system down to chosen temperature
- Vacuum chamber/stack is then inserted into reflector and measurement of criticality/reactivity is taken
- Repeat for various temperatures and configurations

IER-479 Technical Challenges

- Vacuum chamber and cooler/chiller design has proven complicated.
 - See LLNL talk.
- Sparse nuclear data at low temperatures means large unknowns and requires larger margins.
- Extensive modeling is needed to plan approach to critical and ensuring the design meets experimental requirements (safety basis, ANSI/ANS-1, etc.)

7

IER-479 Modeling

- Modeling in CED-2 indicates that as temperature decreases the k_{eff} of the system decreases
 - Not intuitive
 - Independently confirmed by LANL
 - Competing effects from neutron absorption in HEU (positive reactivity effect) versus neutron absorption in HDPE (negative reactivity effect)

IER-479 Modeling

- The top plot shows the neutron spectrum for both the room temperature (black) and -40 degree cases (blue).
 - Slight shift of energy for blue spectrum can be seen on lower peak from temperature change, lower peak height due to polyethylene absorption.
- The bottom plot shows the total number of fissions for both cases (same color scheme).
 - The lower peak here illustrates the same absorption that the flux spectrum above does.

Approach to Critical: Central Fuel Column

- Challenging because central column has very high mass and multiplication.
 - Most stacks model at or above k_{eff}= 0.90 which may push the limits of the 1/M approach method.
 - Worth of vacuum chamber will need to be determined or the chamber needs to be emplaced during the entire set of approach measurements.
 - Approach will either take place with the chamber for each unit or a fixture will be designed and the addition of the chamber will happen remotely using Comet

Approach to Critical: Outer Reflector Height

- Can approach on reflector thickness or height.
 - Approach to critical by height is shown in the figure,
 - Red points show reactivity with 6 in. of radial reflector and the black dots show reactivity with 3 in. of radial reflection at room temperature
- Addition of the outer reflector can be performed remotely
 - Each of the points shown would be measured at the end of an approach to critical on insertion...

Approach to Critical: Insertion in Outer Reflector

- The challenge with the upper reflector will be building a system that has a monotonic worth, meaning that the reactivity won't increase when SCRAM'd.
 - Non-monotonic worth as shown in the figure, is caused by asymmetry in the core and reflector.
 - We propose to address this issue with spacers to better center the reflector at each reflector height, with concurrence from LLNL

Approach to Critical: Temperature

- Will perform reactivity measurements at intermediate temperatures on way down to -40 °C.
 - Potential to benchmark these cases also.
 - The difference between room temperature and -40 is shown in the figure from solid circlues to open circles.
 - Suggest something along the lines of 20 °C, 0 °C, -20 °C, -40 °C, or even more frequent stops along the way.

Approach to Critical: Temperature

- The plot on the right shows the most drastic reactivity drop among the five proposed cases.
 - The reactivity drops nearly three dollars for this temperature change
 - Adding this much excess could pose a problem for emergency situations if the system were to warm up
 - Could require safety basis mod as mentioned as a possibility in CED-2 or subcritical measurements of some kind
 - With 80 cents of excess reactivity we could reasonably achieve a temperature reduction of about 15 degrees (from 20 °C to 5 °C).

Conclusions and Continuing Work

- IER 479 is a very challenging experiment!
- Continue calculations to determine the "best" (most efficient) sequence for performing the experiment.
 - 1/M prediction of fuel stack,
 - reactivity worth versus reflector thickness and height,
 - reactivity worth versus insertion,
 - temperature coefficient of reactivity calculations, etc.
- The approach to critical steps, especially cooling, will be time consuming and the experiment can become very expensive.
- Continue design work for overall design including addressing challenges

Acknowledgements

 This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

