Writing Benchmark Models with a Computer Program

Jeffrey A. Favorite Radiation Transport Applications Group (XTD-RTA) Los Alamos National Laboratory

Nuclear Criticality Safety Program Technical Program Review Riverhead, NY February 20–22, 2024

UNCLASSIFIED

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Introduction

- The goal is to automate as much as possible.
- The program is a *tool* for a specific evaluation.
- I am not presenting or promoting a generic computer program for all benchmark evaluations!
- I've been doing this since my first evaluation in 2012.
- There was a recent talk along similar lines:

A. Hauck, K. Stolte, et al., "Generating Models of the Flattop Critical Assembly for Benchmark Experiments with Python," *Transactions of the American Nuclear Society*, **127**, 678–681 (2022); ANS Winter Meeting, Phoenix, AZ.

- The purposes of this talk:
 - 1. Encourage efficiency!
 - 2. Find out how you do this.
- Caveat: No tool or algorithm is foolproof or solves all problems.

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Slide 2 of 12

Making a Model—Part I

 Calcula Calcula call se if (i_Mo 	<pre>ite volumes ite part mass densities ite material and cell atom densities et_dims_dwg(maxparts,maxdims,maxangs,di os_dim == 1)then set_dims_Mos(maxparts,maxdims,maxangs,</pre>		<pre>! Ring 101 (128Y1719423) dims(R101,1)=7.000d0 ! outer diameter dims(R101,2)=3.500d0 ! inner diameter dims(R101,3)=1.125d0 ! height line(D101,4)=5.00040 ! inner diameter</pre>
end if if(<mark>i_me</mark> call end if if(<mark>i_ta</mark> call end if	<pre>eas_dim == 1)then set_dims_meas(maxparts,maxdims,maxangs a18_dim == 1)then set_dims_ta18(maxparts,maxdims,maxangs maxparts,1:maxdims)=dims(1:maxparts,1:</pre>	<pre>dims(R101,4)=5.000d0 ! recess (top) diamete dims(R101,5)=0.125d0 ! recess (top) depth dims(R101,6)=0.875d0 ! hole diameter dims(R101,7)=2.625d0 ! hole location dims(R101,8)=0.875d0 ! slot width dims(R101,9)=0.156d0 ! slot depth, from OD dims(R101,10)=0.875d0 ! groove (for pads) c dims(R101,11)=0.100d0 ! groove (for pads) c dims(R101,12)=2.437d0 ! location of groove</pre>	
call ca call se call ca §	alc_volume(maxparts,maxdims,maxangs,i_m et_mass(maxparts, <mark>i_ta18_dim</mark> ,pname,mass) alc_dens(maxparts,pname,volume,mass,den	neas_dim,pname,dims,angs,volume) ns)	angs(R101,1)=64.d0 ! angle subtended by gro angs(R101,2)=28.d0 ! angle subtended by nei eets (notes for Jul-11-22)
<mark>call ca</mark>	alc_atdens(iuo,1,denmat,den_calc)	mass(R101)=8381.7d mass(R102)=8131.4d mass(R103)=8022.6d	0 0

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Making a Model—Part II

- Set surface locations and dimensions. ٠
- Write surfaces and their parameters. ٠
- For this one I made a list of parts in the stack: ٠

```
С
```

```
list_refl(1:max_refl_cells)=0
        list_core(1:max_core_cells)=0
        list_out(1:max_out_cells)=0
c parts in reflector and Planet
        n=0
        n=n+1 : list_refl(n)=Tilt_Weigh_Table
        n=n+1 : list_refl(n)=Platen_Adapter_Plate
        n=n+1 : list_refl(n)=Platen_Heat_Sink
        n=n+1 : list_refl(n)=Bottom_Reflector
        n=n+1 : list_refl(n)=SR_Base
        select case (ic)
          case (1)
            n=n+1 : list_refl(n)=SR_Middle_030_1
            n=n+1 : list_refl(n)=SR_Middle_030_2
            n=n+1 : list_refl(n)=SR_Middle_030_3
            n=n+1 : list_refl(n)=SR_Flat_Upper_030
            n=n+1 : list_refl(n)=Core_Support_Plate
            n=n+1 : list_refl(n)=SR_Flat_Lower_030
            n=n+1 : list_refl(n)=SR_Middle_030_4
            n=n+1 : list_refl(n)=SR_Middle_030_5
            n=n+1 : list_refl(n)=SR_Trans_030
            n=n+1 : list_refl(n)=TR_1000_1
            n=n+1 : list_refl(n)=TR_1000_2
            n=n+1 : list_refl(n)=TR_1000_3
            n=n+1 : list_refl(n)=RTD_slot_r
```

```
c block 2, surfaces
        else if(nb.eq.2)then
          write(iuo, (("")) ! blank
          nsurf=0
          zzz1=-zbase
c reflector surfaces
          do n=1.nrefl
            write(*.(2i6)).list_refl(n)
            if(list_refl(n).lt.0)then
              cycle
            else if(list_refl(n).eq.Tilt_Weigh_Table)then
              write(iuo, ("c ",a) ) trim(pname(list_refl(n)))
              nsurf=nsurf+1
              zzz2=zzz1+dimsp(list_refl(n),3)
              xxx=dimsp(list_refl(n),1)/2.d0
              yyy=dimsp(list_refl(n),2)/2.d0
              call write_surf(nsurf,iuo)
              write(iuo, ("rpp", 5x, 0p6f11.6) )
     1
               -xxx,xxx,-yyy,yyy,zzz1,zzz2
              if(ic.eq.1)then
                core_stack(4,1)=zzz2
                refl stack(1.1)=zzz2
              else if(ic.eq.2)then
                core_stack(10,1)=zzz2
                refl_stack(3.1)=zzz2
              end if
              call write3(1,iu3,pname(list_refl(n)),zzz1,zzz2)
              xxx=dimsp(list_refl(n),11)/2.d0
              yyy=dimsp(list_refl(n),12)/2.d0
              rrr=dimsp(list_refl(n),13)/2.d0
              do i=1.4
                nsurf=nsurf+1
                call write_surf(nsurf,iuo)
                write(iuo, ("c/z", 5x, a, 0pf9.6, a, f9.6, f11.6) ')
                 c4(1,i),xxx,c4(2,i),yyy,rrr
     1
              end do ! i
              zzz1=zzz2
```

С

.os Alamos NATIONAL LABORATORY

Slide 4 of 12

Auxiliary Files

- Need a base or "skeleton" input file. ٠
 - It is easier for a code to alter something than to create from scratch. +
 - Probably the base input should have cells defined, but the densities will be written each time. +
 - Different surface arrangements can be accommodated with if/then structures. +

•	Material files	Ex. SS 303:		gets converted to:				
		8. C Si P S Cr Mn	0.075 1.00 0.10 0.30 18.00 1.00 70.005	c SS 303 (8.0 g/cc) c begin at.dens., wt.dens c round at.dens., wt.dens m1 nlib=00c 6012 2.9752E-04 14028 1.5821E-03 14030 5.3176E-05 15021 1 5554E-04		685E-02		
		Fe Ni Mo	70.225 9.00 0.30	15031 1.5554E-04 16032 4.2830E-04 16034 1.8977E-05 24050 7.2465E-04 24053 1.5844E-03 25055 8.7693E-04 26054 3.5744E-03 26057 1.2723E-03 28058 5.0438E-03	16033 16036 24052 24054 26056 26058 28060	3.3806E-0 9.0150E-0 1.3974E-0 3.9443E-0 5.5567E-0 1.6963E-0 1.9283E-0	98 92 94 92	
(•	(• Materials can be defined within the code.)			28038 5.0438E-03 28061 8.3485E-05 28064 6.7232E-05 42092 2.2358E-05 42095 2.3985E-05 42097 1.4388E-05 42100 1.4509E-05	28060 28062 42094 42096 42098	1.3936E-0 2.6523E-0 2.5130E-0 3.6354E-0	94 95 95	

UNCLASSIFIED

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

Slide 5 of 12

part indices IISP=1 pname(IISP)="Inter. Inner Subassembly Plate" UISP=IISP+1 pname(UISP)="Upper Inner Subassembly Plate" SafetyBlock=UISP+1 pname(SafetyBlock)="Safety Block" R101=SafetuBlock+1 pname(R101)="Ring 101" R102=R101+1 pname(R102)="Ring 102" R103=R102+1 pname(R103)="Ring 103" R104=R103+1 pname(R104)="Ring 104" R105=R104+1 pname(R105)="Ring 105" R106=R105+1 pname(R106)="Ring 106" CR1=R106+1 pname(CR1)="Control Rod 1" CR2=CR1+1 pname(CR2)="Control Rod 2" BR=CR2+1 pname(BR)="Burst Rod" Spindle=BR+1 pname(Spindle)="Spindle" AlignPin=Spindle+1 pname(AlignPin)="Alignment Pin" pname(SafetyBase)="Safety Block Base" SafetyBase=AlignPin+1 Pads=SafetyBase+1 pname(Pads)="Support Pads" BRing=Pads+1 pname(BRing)="Bearing Ring" pname(SubCvrP1)="Subassembly Cover Plate" SubCvrP1=BRing+1 MountP1=SubCvrP1+1 pname(MountPl)="Mounting Plate" Leg=MountP1+1 pname(Leg)="Clamp Support (Leg)" Clamp=Leg+1 pname(Clamp)="Clamp' BellyBand=Clamp+1 pname(BellyBand)="Belly Band" NutsBolts=BellyBand+1 pname(NutsBolts)="Nuts and Bolts" CrCvr=NutsBolts+1 pname(CrCvr)="Core Cover" CntSh=CrCvr+1 pname(CntSh)="Contamination Shield" MntP12=CntSh+1 pname(MntPl2)="Mounting Plate 2" Room=MntP12+1 pname(Room)="Room" Air=Room+1 pname(Air)="Air"

UNCLASSIFIED

material indices SS303=1 SAE4340=SS303+1 Vasco=SAE4340+1 Al6061=Vasco+1 Lex=A16061+1 AISI1019=Lex+1 mR101=AISI1019+1 mR102=mR101+1 mR103=mR102+1 mR104=mR103+1 mR105=mR104+1 mR106=mR105+1 mSafetyBlock=mR106+1 mIISP=mSafetyBlock+1 mUISP=mIISP+1 mCR1=mUISP+1 mCR2=mCR1+1 mBR=mCR2+1 mRoom=98 mAir=99

mat(0:maxparts)=-1 mat(0)=0mat(IISP)=mIISP mat(UISP)=mUISP mat(SafetyBlock)=mSafetyBlock mat(R101)=mR101 mat(R102) = mR102mat(R103) = mR103mat(R104) = mR104mat(R105) = mR105mat(R106) = mR106mat(CR1)=mCR1 mat(CR2)=mCR2 mat(BR) = mBRmat(Spindle)=SS303 mat(AlignPin)=SS303 mat(SafetyBase)=SS303 mat(Pads)=SAE4340 mat(BRing)=SAE4340 mat(SubCvrP1)=SAE4340 mat(MountPl)=A16061 mat(Leg)=SS303 mat(Clamp)=Vasco mat(BellyBand)=SS303 mat(NutsBolts)=SS303 mat(CrCvr)=Al6061 mat(CntSh)=Lex mat(MntP12)=SS303 ! check this mat(Room)=mRoom mat(Air)=mAir denmat(SS303)=8.d0denmat(SAE4340)=7.85d0 denmat(Vasco)=8.d0 denmat(A16061)=2.70d0 ! m A16061T6 i if(i_Mos_den == 0)denmat(Lex)=1.20d0 denmat(AISI1019)=7.87d0 denmat(mAir)=1.052d-3

Slide 6 of 12

Geometry Perturbations

- This is where this system really pays off! •
- I have used a separate code for each type of part ٠ (e.g., fuel, reflector, structure) or evaluation subsection.

parameter(nparts=4)

data parts/ 1 "Plate_" "StudT_" "StudB_" "Spacer_"/ data ndims/ 2. 2. 1 2. 3 1

С

1

end if

С

С

С

Will go on to calculate volumes and densities using perturbed dimensions

Volumes are not always analytic.

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

do ifl=1,nparts do id=1.ndims(ifl) do ip1=1,nperts nseed=(if1+22)*100+id*10+ip1 write(sss, (i4.4))nseed c reset everything dimsp(1:maxparts,1:maxdims)=dims(1:maxparts,1:maxdims) volume_p(1:maxparts)=volume(1:maxparts) den_p(1:maxparts)=den(1:maxparts) devn=0.d01 "Plate_", "StudT_", "StudB_", "Spacer_"/ 2. 1 2. 2. 3 c make perturbations. dimensions are in cm here. select case(ifl) case (1) if(id.eq.1)then dimsc="lw_" devn=0.03d0 ! inches dr=rp(ip1)*devn*in2cm dimsp(Compression_Plate,1)=dims(Compression_Plate,1)+dr dimsp(Compression_Plate,2)=dims(Compression_Plate,2)+dr else if(id.eq.2)then dimsc="th ' devn=0.030d0 ! inches dr=rp(ip1)*devn*in2cm dimsp(Compression_Plate,3)=dims(Compression_Plate,3)+dr end if case(2) if(id.eq.1)then dimsc="ht_" devn=0.03d0 ! inches dr=rp(ip1)*devn*in2cm dimsp(Compression_Stud_Top,3)= dims(Compression_Stud_Top,3)+dr 1 else if(id.eq.2)then dimsc="dd_" devn=0.03d0 ! inches dr=rp(ip1)*devn*in2cm dimsp(Compression_Stud_Top,4)=

dims(Compression_Stud_Top,4)+dr

Slide 7 of 12


```
dims(Mod_Inn_600_01:Mod_Inn_600_18,3:4)=
1 dims(Mod_Inn_600_01:Mod_Inn_600_18,3:4)
2 *(1.d0+alphat(CPVC_600)*devn) ! z, outer diameter
c
dims(ZPPR_Sleeve,1:4)=dims(ZPPR_Sleeve,1:4)
2 *(1.d0+alphat(Cladding)*devn) ! x, y, z, thickness
dims(ZPPR_Plug,1)=dims(ZPPR_Plug,1)
2 *(1.d0+alphat(SS304L)*devn) ! x
dims(ZPPR_Spring,1:3)=dims(ZPPR_Spring,1:3)
2 *(1.d0+alphat(Carbon_Steel)*devn) ! x, y, z
c warning. using one value for all.
dims(ZPPR_PANN_A:ZPPR_PANN_S,1:3)=
1 dims(ZPPR_PANN_A:ZPPR_PANN_S,1:3)
2 *(1.d0+alphat(PANN_A)*devn) ! x, y, z
```

С

<u>UNCLASSIFI</u>ED

Slide 8 of 12

• The change Δx in dimension x due to a change in temperature ΔT is $\Delta x = x' - x_0 = \Delta T \alpha_T x_0$ + Or $x' = x_0 (1 + \alpha_T \Delta T)$

```
dims(Mod Inn 600 01:Mod Inn 600 18.3:4)=
     1 dims(Mod_Inn_600_01:Mod_Inn_600_18.3:4)
     2 *(1.d0+alphat(CPVC_600)*devn) ! z, outer diameter
С
      dims(ZPPR Sleeve.1:4)=dims(ZPPR Sleeve.1:4)
     2 *(1.d0+alphat(Cladding)*devn) ! x, y, z, thickness
      dims(ZPPR_Plug,1)=dims(ZPPR_Plug,1)
     2 *(1.d0+alphat(SS304L)*devn) ! x
      dims(ZPPR_Spring,1:3)=dims(ZPPR_Spring,1:3)
     2 *(1.d0+alphat(Carbon_Steel)*devn) ! x, y, z
c warning. using one value for all.
      dims(ZPPR PANN A:ZPPR PANN S.1:3) = \leftarrow
     1 dims(ZPPR_PANN_A:ZPPR_PANN_S,1:3)
                                                  X_0
     2 *(1.d0+alphat(PANN_A)*devn) ! x, y, z
С
                               \Lambda T
```


Slide 9 of 12

File Naming Conventions

Perturbed input file name: •

1

fn=trim(ofile(ic))//trim(ext)

//" "//trim(parts(ifl))//trim(dimsc)//pt(ip1)

- ofile is for the case ٠ data ofile/"c1", "c2", "c3"/
- ext is an "extension" for a version number ٠
- parts is the part names ٠ data parts/ 1 "Plate_" "StudT_" "StudB_" "Spacer_"/
- dimsc is the perturbed dimension ٠
- pt is m for negative perturbations and p for positive perturbations ٠

The code also writes the job submission scripts. ٠

Operated by Triad National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

ro.compile% ls *.o c1_15j_Plate_lw_m.o c3_15j_Plate_lw_m.o c1_15j_Plate_lw_p.o c3_15j_Plate_lw_p.o c3_15_jPlate_th_m.o c1_15j_Plate_th_m.o c1_15j_Plate_th_p.o c3_15j_Plate_th_p.o c1_15j_Spacer_ht_m.o c3_15j_Spacer_ht_m.o c3_15j_Spacer_ht_p.o c1_15j_Spacer_ht_p.o c1_15j_Spacer_id_m.o c3_15j_Spacer_id_m.o c1_15j_Spacer_id_p.o c3_15j_Spacer_id_p.o c1_15j_Spacer_od_m.o c3_15j_Spacer_od_m.o c1_15j_Spacer_od_p.o c3_15j_Spacer_od_p.o c1_15j_StudB_dd_m.o c3_15j_StudB_dd_m.o c1_15j_StudB_dd_p.o c3_15j_StudB_dd_p.o c1_15j_StudB_ht_m.o c3_15j_StudB_ht_m.o c1_15j_StudB_ht_p.o c3_15j_StudB_ht_p.o c1_15j_StudT_dd_m.o c3_15j_StudT_dd_m.o c3_15_i_StudT_dd_p.o c1_15_j_StudT_dd_p.o c1_15j_StudT_ht_m.o c3_15j_StudT_ht_m.o c1_15j_StudT_ht_p.o c3_15j_StudT_ht_p.o c2_15j_Plate_lw_m.o c3_15k_Plate_lw_m.o c2_15j_Plate_lw_p.o c3_15k_Plate_lw_p.o c2_15j_Plate_th_m.o c3_15k_Plate_th_m.o c3_15k_Plate_th_p.o c2_15j_Plate_th_p.o c2_15j_Spacer_ht_m.o c3_15k_Spacer_ht_m.o c2_15j_Spacer_ht_p.o c3_15k_Spacer_ht_p.o c2_15j_Spacer_id_m.o c3_15k_Spacer_id_m.o c2_15j_Spacer_id_p.o c3_15k_Spacer_id_p.o c3_15k_Spacer_od_m.o c2_15j_Spacer_od_m.o c3_15k_Spacer_od_p.o c2_15j_Spacer_od_p.o c2_15j_StudB_dd_m.o c3_15k_StudB_dd_m.o c2_15j_StudB_dd_p.o c3_15k_StudB_dd_p.o c2_15j_StudB_ht_m.o c3_15k_StudB_ht_m.o c2_15j_StudB_ht_p.o c3_15k_StudB_ht_p.o c2_15j_StudT_dd_m.o c3_15k_StudT_dd_m.o c2_15j_StudT_dd_p.o c3_15k_StudT_dd_p.o c2_15j_StudT_ht_m.o c3_15k_StudT_ht_m.o c2_15j_StudT_ht_p.o c3_15k_StudT_ht_p.o

Slide 10 of 12

Going Further...

- Simplifying the model takes a long time, and I end up doing it more than once.
- So I use a program for that too:

```
exclude(1:99,1:maxnucl)=0 ! default is keep all nuclides
avgmatdens(1:ncases,1:99)=-1.d0
dens_BR=1.2622d=01 ! Bottom Reflector unpert. density
dens_SRB=1.2632d=01 ! Side Reflector, Base unpert. density
dens_TR(1:ncases)=0.d0
```

```
С
```

nsimp=<mark>22</mark>

- c 1. Remove air.
- c 2. Remove fill gas.
- c 3. Center fuel, moderators, and absorbers.
- c 4. Remove nylon screws and holes: preserve density.
- c 5. Remove thermocouple probes, fill slots; preserve density.
- c 6. Restore tray mass; combine trays and frames; use average density.

```
if(nsimp.ge.6)then
```

```
avgmatdens(1,23)=5.9692d-02
avgmatdens(1,24)=avgmatdens(1,23)
avgmatdens(2,23)=5.9711d-02
avgmatdens(2,25)=avgmatdens(2,23)
avgmatdens(3,23)=5.9788d-02
avgmatdens(3,24)=avgmatdens(3,23)
```

```
end if
```

- c 7. Remove protruding part of RTD plugs: preserve density.
- c 8. Remove slip nuts and compression studs, top, above compression spacer; preserve density.
- c 9. Remove holes from tilt-weigh table and top plate; preserve density.
- c 10. Remove knobs from compression studs, fill holes in platen adapter plate and core support plate: preserve density.
- c 11. Eliminate hex nuts and washers.
- c 12. Square rounded corners in upper adapter plate and top plate; preserve density.
- c 13. Square rounded corners platen heat sink, bottom reflector, and side reflector, base; preserve density.
- c 14. Restore mass of platen heat sink, bottom reflector, and side reflector, base.
 - if(nsimp.ge.14)then

avgmatdens(1:3,26)=5.9894d-02 dens_BR=1.2619d-01 dens_SRB=1.2630d-01

end if

NATIONAL LABORATORY

Conclusions

- I recommend that we all stop cutting and pasting from spreadsheets.
 - + Automate the things you do repeatedly.
- I believe that because of my system, the model is less likely to have errors than Section 3.
 - + Our institutional bias against the model in favor of Section 3 is outdated.
 - + For my evaluations, I give you permission to use the model instead of Section 3.
- How do *you* automate?
 - + Talk to me; email me: <u>favorite@lanl.gov</u>

• Acknowledgment:

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

UNCLASSIFIED

