

Assessing the Impact of Sensitivity/Uncertainty Selection Criteria on Computational Bias Prediction

K. Lisa Fassino W. J. Marshall

2024 Annual NCSP Technical Program Review February 20-24, 2024, Riverhead, NY

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Overview

- Motivation
- Scope
- Selection Criteria Description
- Method and Application
- Results
- Conclusions and Future Work

Motivation

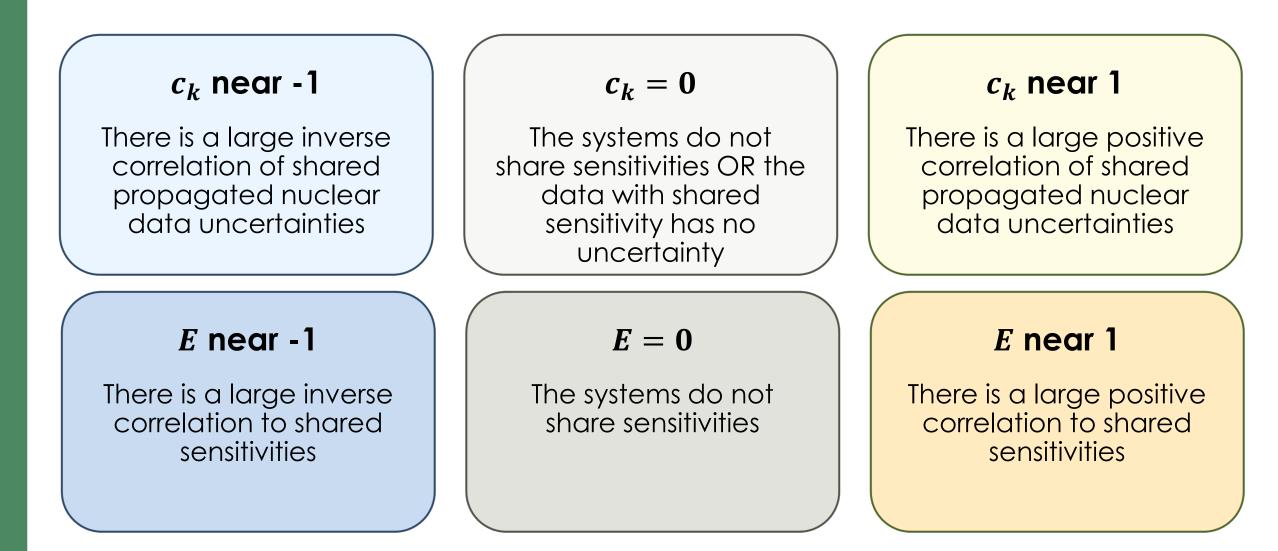
Sensitivity/Uncertainty (S/U)-based selection criteria can be used to form a validation suite of experiments similar to an application to estimate computational bias.

If using a quantitative metric, some threshold must be chosen to delineate similarity.

How is the selection criterion affecting the computational bias prediction?

- Investigate this question for c_k and E, two integral indices for similarity produced by TSUNAMI-IP
 - c_k is the correlation coefficient between data-induced uncertainties in two systems
 - E is a measure of similarity based solely on shared sensitivities to nuclear data
- Use the Verified Archived Library of Inputs and Data (VALID), a collection of reviewed critical benchmark evaluation models and sensitivity data, to assess effects of S/U criteria cutoff.

c_k and E as Integral Indices Between Two Systems



Method

- Develop a tool to calculate the predicted computational bias for a given application as a function of the chosen trending parameter
- Apply this tool to critical experiment benchmarks with <u>known</u>
 <u>computational biases</u>
 - Computational bias is defined by $\beta = C/E 1$
- Each application's bias is predicted by averaging the computational biases of similar benchmark experiments
- Then calculate the bias error
 - The difference between the predicted and actual computational bias

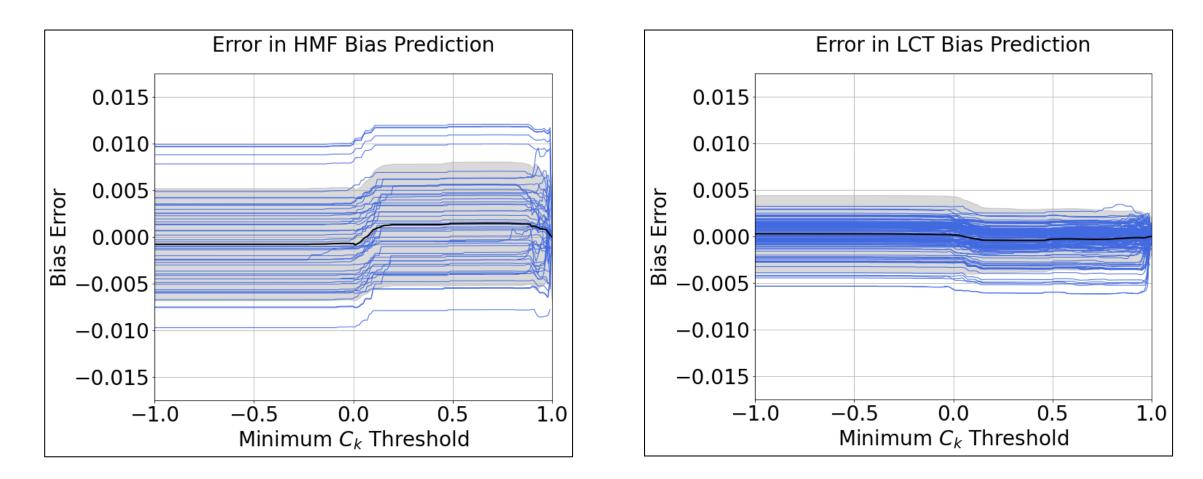
Method Application - VALID

 This method was applied to a set of benchmark experiments in VALID, with the following breakdown of benchmark case types

• Total: 616

Category	Label	Cases
HEU-COMP-INTER	HCI	1
HEU-MET-FAST	HMF	46
HEU-SOL-INTER	HIS	2
HEU-SOL-THERM	HST	52
IEU-MET-FAST	IMF	10
LEU-COMP-THERM	LCT	140
LEU-SOL-THERM	LST	19
MIX-COMP-FAST	MCF	2
MIX-COMP-THERM	MCT	49
PU-MET-FAST	MST	10
pu-sol-therm	PMF	12
U233-COMP-THERM	PST	81
U233-MET-FAST	UCT	5
U233-SOL-INTER	UMF	10
U233-SOL-MIXED	USI	29
U233-SOL-MIXED	USM	8
U233-SOL-THERM	UST	140

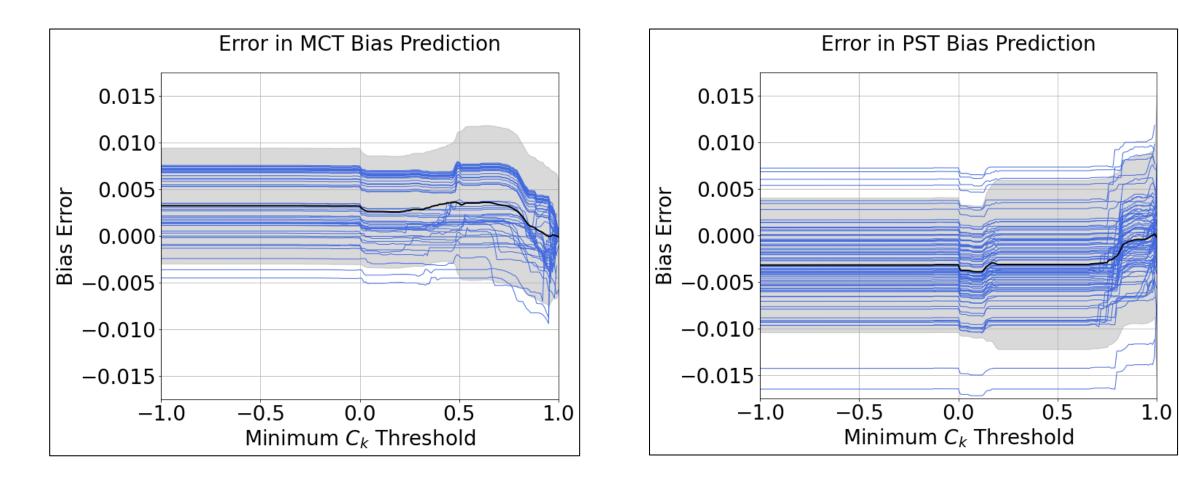
Results: HMF and LCT Bias Prediction Error with c_k



HMF: Average bias error near 0 but large spread

LCT: Average bias error near 0 but small spread

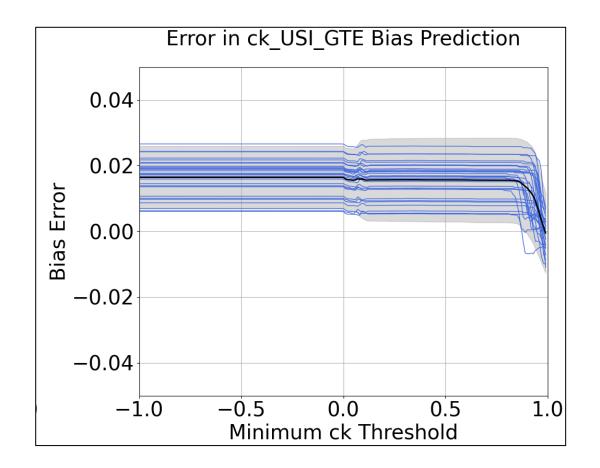
Results: MCT and PST Bias Prediction Error with c_k



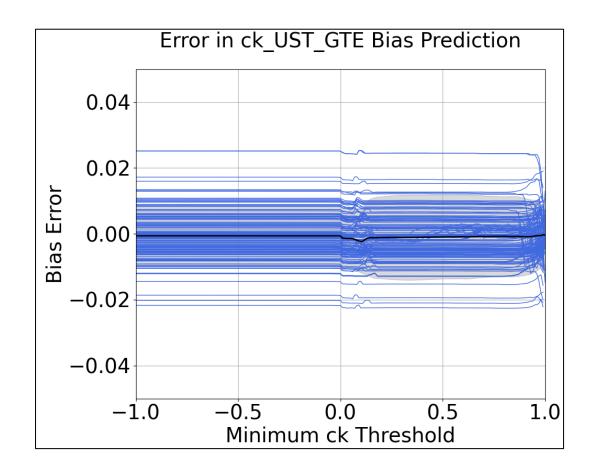
MCT: Bias error averages high but approaches 0 with c_k near 1

PST: Bias error averages low but approaches 0 with c_k near 1

Results: USI and UST Bias Prediction Error with c_k

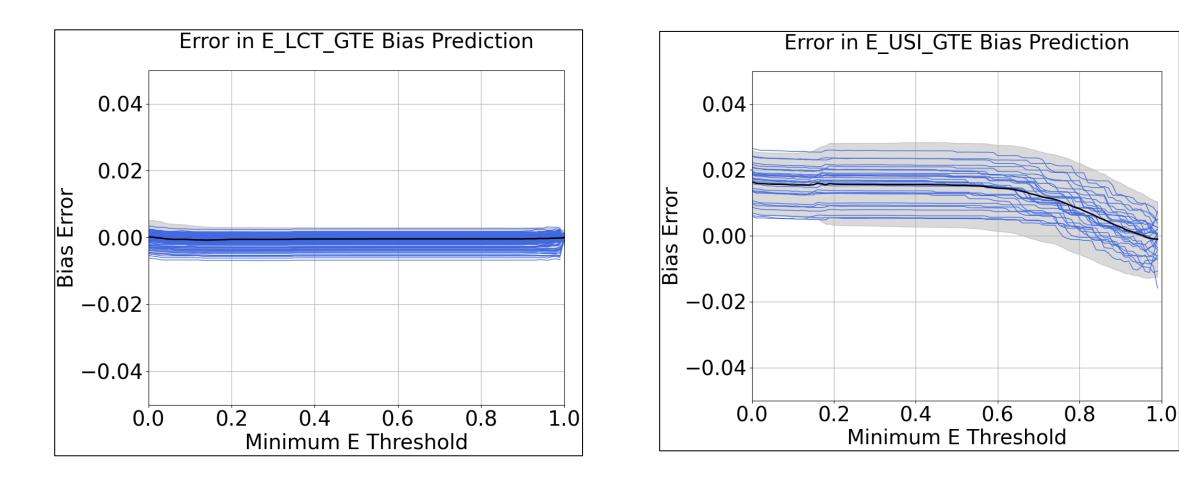


USI: Bias error averages high but approaches 0 sharply with c_k near 1



UST: Bias error with large spread relatively unaffected with threshold

Results: LCT and USI Bias Prediction Error with E



USI: Bias error with large spread relatively steadily approaches 0 error average near 1

LCT: Bias error with low spread and low *E* dependence for bias error - typical

Conclusions and Future Work

- Each system type features unique behavior when assessing bias error as a function of c_k or E
- The examples presented here are just a subset on the effect of selection criteria cutoffs for predicting computational bias
- Typical *E* threshold dependence was low-none for bias prediction error (with exceptions), but c_k trending effects were typically more prominent
- Further analysis would be needed to support a statement on updated cutoff guidance

More Considerations

- The results of these analyses are dependent on the data available, so results will change as more experiments are incorporated into VALID
- Generalization is still tricky for similar reasons, and the method assumes all experiments are independent of one another

Acknowledgement

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

