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Motivation

Sensitivity/Uncertainty (S/U)-based selection criteria can be used 
to form a validation suite of experiments similar to an application 

to estimate computational bias.

If using a quantitative metric, some threshold must be chosen to 
delineate similarity.

How is the selection criterion affecting the computational bias 
prediction?
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Scope

•  Investigate this question for 𝑐𝑐𝑘𝑘 and 𝐸𝐸, two integral indices for 
similarity produced by TSUNAMI-IP
– 𝑐𝑐𝑘𝑘 is the correlation coefficient between data-induced uncertainties in 

two systems
– 𝐸𝐸 is a measure of similarity based solely on shared sensitivities to nuclear 

data

• Use the Verified Archived Library of Inputs and Data (VALID), a 
collection of reviewed critical benchmark evaluation models 
and sensitivity data, to assess effects of S/U criteria cutoff.
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𝑐𝑐𝑘𝑘 and 𝐸𝐸 as Integral Indices Between Two Systems

𝑬𝑬 = 𝟎𝟎
 

The systems do not 
share sensitivities

𝑬𝑬 near 1
 

There is a large positive 
correlation to shared 

sensitivities

𝑬𝑬 near -1
 

There is a large inverse 
correlation to shared 

sensitivities

𝒄𝒄𝒌𝒌 = 𝟎𝟎
 

The systems do not 
share sensitivities OR the 

data with shared 
sensitivity has no 

uncertainty

𝒄𝒄𝒌𝒌 near 1
 

There is a large positive 
correlation of shared 
propagated nuclear 

data uncertainties

𝒄𝒄𝒌𝒌 near -1
 

There is a large inverse 
correlation of shared 
propagated nuclear 

data uncertainties
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Method

• Develop a tool to calculate the predicted computational bias 
for a given application as a function of the chosen trending 
parameter

• Apply this tool to critical experiment benchmarks with known 
computational biases 
– Computational bias is defined by 𝛽𝛽 = 𝐶𝐶/𝐸𝐸 − 1

• Each application’s bias is predicted by averaging the 
computational biases of similar benchmark experiments

• Then calculate the bias error
– The difference between the predicted and actual computational bias
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Method Application - VALID

• This method was applied 
to a set of benchmark 
experiments in VALID, with 
the following breakdown 
of benchmark case types

• Total: 616

Category Label Cases
HEU-COMP-INTER HCI 1

HEU-MET-FAST HMF 46
HEU-SOL-INTER HIS 2

HEU-SOL-THERM HST 52
IEU-MET-FAST IMF 10

LEU-COMP-THERM LCT 140
LEU-SOL-THERM LST 19
MIX-COMP-FAST MCF 2

MIX-COMP-THERM MCT 49
PU-MET-FAST MST 10

PU-SOL-THERM PMF 12
U233-COMP-THERM PST 81

U233-MET-FAST UCT 5
U233-SOL-INTER UMF 10
U233-SOL-MIXED USI 29
U233-SOL-MIXED USM 8
U233-SOL-THERM UST 140



88 FY23 NCSP TPR

Results: HMF and LCT Bias Prediction Error with 𝑐𝑐𝑘𝑘

HMF: Average bias error near 0 but large spread LCT: Average bias error near 0 but small spread 
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Results: MCT and PST Bias Prediction Error with 𝑐𝑐𝑘𝑘

MCT: Bias error averages high but approaches 
          0 with 𝑐𝑐𝑘𝑘 near 1

PST: Bias error averages low but approaches 
        0 with 𝑐𝑐𝑘𝑘 near 1
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Results: USI and UST Bias Prediction Error with 𝑐𝑐𝑘𝑘

USI: Bias error averages high but approaches 
          0 sharply with 𝑐𝑐𝑘𝑘 near 1

UST: Bias error with large spread relatively
           unaffected with threshold
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Results: LCT and USI Bias Prediction Error with 𝐸𝐸

LCT: Bias error with low spread and low 𝐸𝐸 
          dependence for bias error - typical

USI: Bias error with large spread relatively
           steadily approaches 0 error average near 1
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Conclusions and Future Work

• Each system type features unique behavior when assessing bias 
error as a function of 𝑐𝑐𝑘𝑘 or 𝐸𝐸

• The examples presented here are just a subset on the effect of 
selection criteria cutoffs for predicting computational bias

• Typical 𝐸𝐸 threshold dependence was low-none for bias 
prediction error (with exceptions), but 𝑐𝑐𝑘𝑘 trending effects were 
typically more prominent

• Further analysis would be needed to support a statement on 
updated cutoff guidance



1313 FY23 NCSP TPR

More Considerations

• The results of these analyses are dependent on the data 
available, so results will change as more experiments are 
incorporated into VALID

• Generalization is still tricky for similar reasons, and the method 
assumes all experiments are independent of one another
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