Assessing the Impact of Sensitivity/Uncertainty Selection Criteria on Computational Bias Prediction

K. Lisa Fassino
W. J. Marshall

2024 Annual NCSP Technical Program Review
February 20-24, 2024, Riverhead, NY
Overview

- Motivation
- Scope
- Selection Criteria Description
- Method and Application
- Results
- Conclusions and Future Work
Motivation

Sensitivity/Uncertainty (S/U)-based selection criteria can be used to form a validation suite of experiments similar to an application to estimate computational bias.

If using a quantitative metric, some threshold must be chosen to delineate similarity.

How is the selection criterion affecting the computational bias prediction?
Scope

• Investigate this question for c_k and E, two integral indices for similarity produced by TSUNAMI-IP
 – c_k is the correlation coefficient between data-induced uncertainties in two systems
 – E is a measure of similarity based solely on shared sensitivities to nuclear data

• Use the Verified Archived Library of Inputs and Data (VALID), a collection of reviewed critical benchmark evaluation models and sensitivity data, to assess effects of S/U criteria cutoff.
c_k and E as Integral Indices Between Two Systems

c_k near -1
There is a large inverse correlation of shared propagated nuclear data uncertainties

$c_k = 0$
The systems do not share sensitivities OR the data with shared sensitivity has no uncertainty

c_k near 1
There is a large positive correlation of shared propagated nuclear data uncertainties

E near -1
There is a large inverse correlation to shared sensitivities

$E = 0$
The systems do not share sensitivities

E near 1
There is a large positive correlation to shared sensitivities
Method

• Develop a tool to calculate the predicted computational bias for a given application as a function of the chosen trending parameter

• Apply this tool to critical experiment benchmarks with known computational biases
 – Computational bias is defined by $\beta = C/E - 1$

• Each application’s bias is predicted by averaging the computational biases of similar benchmark experiments

• Then calculate the bias error
 – The difference between the predicted and actual computational bias
Method Application - VALID

- This method was applied to a set of benchmark experiments in VALID, with the following breakdown of benchmark case types

- Total: 616
Results: HMF and LCT Bias Prediction Error with c_k

HMF: Average bias error near 0 but large spread

LCT: Average bias error near 0 but small spread
Results: MCT and PST Bias Prediction Error with c_k

MCT: Bias error averages high but approaches 0 with c_k near 1

PST: Bias error averages low but approaches 0 with c_k near 1
Results: USI and UST Bias Prediction Error with c_k

USI: Bias error averages high but approaches 0 sharply with c_k near 1

UST: Bias error with large spread relatively unaffected with threshold
Results: LCT and USI Bias Prediction Error with E

LCT: Bias error with low spread and low E dependence for bias error - typical

USI: Bias error with large spread relatively steadily approaches 0 error average near 1
Conclusions and Future Work

• Each system type features unique behavior when assessing bias error as a function of c_k or E

• The examples presented here are just a subset on the effect of selection criteria cutoffs for predicting computational bias

• Typical E threshold dependence was low-none for bias prediction error (with exceptions), but c_k trending effects were typically more prominent

• Further analysis would be needed to support a statement on updated cutoff guidance
More Considerations

• The results of these analyses are dependent on the data available, so results will change as more experiments are incorporated into VALID.

• Generalization is still tricky for similar reasons, and the method assumes all experiments are independent of one another.
Acknowledgement

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.