

Path to Automated Validation of ENDF/B-VIII.1

Jesse Brown, Kang Seog Kim, Rike Bostelmann, Germina Ilas

Oak Ridge National Laboratory

NCSP Technical Program Review

Feb. 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ENDF-8.1 Validation Methods

ENDF-8.1 Validation Methods

3

Validation & Verification

<u>Use many different application spaces</u>

- Criticality benchmarks (VALID-Greene)
- Reactor Criticality (BWR, PWR, Advanced Reactors, MADRE)
- Depletion RCA
- Depleted Fuel Reactivity (VERA Suite)

88

Validation: Advanced Reactor Criticality (Bostelmann)

HTR-10 Benchmark ENDF/B-VII.1 ENDF/B-VIII.0 ENDF/B-VIII.1	k _{eff} 1.00000 +/- 0.00370 1.00301 +/- 0.00019 1.00650 +/- 0.00019 1.00587 +/- 0.00019	∆k [pcm] (ref) 301 +/- 370 650 +/- 370 587 +/- 370	
HTTR Benchmark ENDF/B-VII.1 ENDF/B-VIII.0	1.00250 +/- 0.00710 1.00725 +/- 0.00019 1.01062 +/- 0.00019	(ref) 475 +/- 710 812 +/- 710	
ENDF/B-VIII.1	1.01013 +/- 0.00019	763 +/- 710	HTR-10* (pebble- HTTR* MSRE* (graphite bed HTGR) (prismatic HTGR) moderated MSR) EBR-II* (SFR)
MSRE*			
Benchmark	0.99978 +/- 0.00420	(ref)	
ENDF/B-VII.1	1.01917 +/- 0.00019	1939 +/- 420	
ENDF/B-VIII.0	1.02168 +/- 0.00019	2190 +/- 420	 Fresh fueled HTGR: similar performance of 8.1 vs. 8.0, but ~300
ENDF/B-VIII.1	1.01776 +/- 0.00019	1798 +/- 420	pcm difference to 7.1 because of ²³⁵ U and ²³⁸ U updates
EBR-II Benchmark	1.00927 +/- 0.00618	(ref)	 Fresh fueled MSRE: almost 400 pcm difference between 8.1 and 8.0 almost exclusively because of ¹⁹F updates
ENDF/B-VII.1	1.00738 +/- 0.00019	-189 +/- 618	 SFR with HEU fuel at various levels of burnup: 260 pcm difference between 8.1 and 8.0, almost exclusively because
ENDF/B-VIII.0	1.00713 +/- 0.00019	-214 +/- 618	
ENDF/B-VIII.1	1.00450 +/- 0.00019	-477 +/- 618	or sacr updates

CAK RIDGE

5

*Known discrepancy between MSRE calculation and experiment, update to specifications expected

*Benchmarks specified in the IRPhE Handbook

Validation: Depletion RCA (Ilas)

- Goesgen/MALIBU
- GKN
- Radiochemical Analysis (RCA)
- ENDF-7.0/7.1 Decay Data

¹/₄ assembly model for Gosgen GU3 sample

6

Validation: Depletion RCA vs. Experiment Goesgen Reactor, GGU1 sample Actinides ~70 GWd/t

• UO₂ fuel

Verification: Depleted Fuel Reactivity(Kim)

- Previous investigation on depletion computational benchmarks
 - SERPENT 2.1: ENDF/B-VII.1 and VIII.0 ACE format libraries
 - ENDF/B-VIII.0
 - Underestimate reactivities by ~600 pcm at high burnup (60 MWd/kgU)
 - Dominant nuclides: ²³⁹Pu, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²Pu, ²⁴⁰Pu (in order)

Additional investigation

- ENDF/B-VII.1 vs VIII.0 vs VIII.1 beta2
 - Replace cross sections of VIII.0 for 6 nuclides with ENDF/B-VIII.1 beta2
 - ²³⁹Pu, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²Pu, ²⁴⁰Pu and Capote's ²³⁹Pu
- Benchmark calculations
 - Program
 - SERPENT 2.1
 - Typical PWR single fuel pin (1C) and fuel assembly (2C)
 - 3.1 w/o ²³⁵U
 - 900 K for fuel, 600 K for cladding and moderator
 - Depletion
 - Same fission kappa values and power density

Verification: ENDF/B-VII.1 vs. VIII.0 vs. VIII.1 beta2

Reactivity underestimation

- VERA Depletion Benchmark Problems
 - PWR single pins and assemblies: SERPENT2 Monte Carlo
- ENDF/B-VIII.0 reactivities are much lower

• Influencing nuclides: ²³⁹Pu, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²Pu, ²⁴⁰Pu (in order)

CAK RIDGE

Conclusions

- We need to expand the variety of applications to rigorously test libraries
- Automated library validation provides quick feedback to improve ENDF/B libraries
- Advanced reactors:
 - Decreasing reactivity for 8.1b2 compared to 8.0, some unexpected nuclides causing major differences (F-19, Cr), no clear performance difference when compared to experiment
- Depletion RCA:
 - High impact isotopes closer to 7.1
 - Small improvement on average (U-5, Pu-9, BC FPs), worse for Am and Cm
- Fuel reactivity:
 - 8.1b2 is higher reactivity at high burnups than 8.0, but likely under-predicting k_{eff} for PWRs at high burnups
- Stational Laboratory

Acknowledgements

- This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
- This work was supported by the Nuclear Regulatory Commission Office of Research.
- The entire Nuclear Energy and Fuel Cycle Division at ORNL

Additional Slides

Verification: MADRE Suite

- Suite of simple unit cell and assembly based on various reactor concepts developed for SCALE library testing: LWR, HTGR, SFR, MSR
- k_{eff} results with ENDF/B-VIII.1 compared to ENDF/B-VIII.0

- Fresh fueled $\ensuremath{\text{LWR}}$: small $\ensuremath{\mathsf{k}_{\text{eff}}}$ differences of less than 150 pcm
- + U/TRU fueled ${\rm SFR}$: $k_{\rm eff}$ larger by up to 800 pcm
- HTGR models: $k_{\rm eff}$ differences between -220 and 800 pcm depending on temperature and burnup
- MSR models: k_{eff} differences between -220 and 300 pcm depending on burnup, temperature, spectrum (moderation)

Validation: Depletion RCA vs ENDF-7.1

- Goesgen Reactor, GGU1 sample
- Actinides
- ~70 GWd/t

15

Validation: Depletion RCA vs. Experiment

- Goesgen Reactor, GGM sample
- Actinides
- ~67 GWd/t
- MOX fuel

Validation: Depletion RCA vs. Experiment

Verification : ENDF/B-VII.1 vs. ENDF/B-VIII.0

Reactivity underestimation

National Laboratory

- VERA Depletion Benchmark Problems
 - PWR single pins and assemblies: SERPENT2 Monte Carlo
- ENDF/B-VIII.0 reactivities are much lower
 - Influencing nuclides: ²³⁹Pu, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²Pu, ²⁴⁰Pu (in order)

Watts Bar, Unit 1

Verification: ENDF/B-VIII.0 vs. VIII.1 beta2 (I)

VERA 1C problem (PWR single fuel pin)

- ENDF/B-VIII.0 library + 6 nuclides with ENDF/B-VIII.1 beta2 data
 - ²³⁹PU, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²PU, ²⁴⁰PU

DAK RIDGE

National Laboratory

18

Overall (+100 pcm), ²³⁹Pu (-50 pcm), ²³⁹Pu (Capote, -100 pcm), ²³⁵U (0 pcm), ¹⁶O (0 pcm), ²³⁸U (+100 pcm)
 300

Verification: ENDF/B-VIII.0 vs. VIII.1 beta2 (II)

VERA 2C problem (PWR single fuel assembly)

- ENDF/B-VIII.0 library + 6 nuclides with ENDF/B-VIII.1 beta2 data
 - ²³⁹PU, ²³⁵U, ¹⁶O, ²³⁸U, ²⁴²PU, ²⁴⁰PU

AK RIDGE

National Laboratory

19

Overall (+100 pcm), ²³⁹Pu (-50 pcm), ²³⁹Pu (Capote, -100 pcm), ²³⁵U (0 pcm), ¹⁶O (0 pcm), ²³⁸U (+100 pcm) ₃₀₀

