

SCALE Activities in FY23

W. Wieselquist, Ph.D. Director, SCALE Code System

K. Bekar, Ph.D.
Product Owner, SCALE/CSAS

Nuclear Energy and Fuel Cycle Division Oak Ridge National Laboratory

ORNL AM2 SCALE: Overview

- NCSP-facing codes
 - criticality safety (CSAS)
 - shielding (MAVRIC)
 - sensitivity/uncertainty (TSUNAMI and Sampler)
 - bias analysis (VADER)
- Maintain new/current production version (v6.3 series)
 - coordination management, SQA
 - support interact with users,
 documentation, <u>scalehelp@ornl.gov</u>
 - maintenance fix bugs
- New capabilities/features (v7.0 series)

6.3 Product Owners

AMPX Jordan McDonnell

CSAS Kursat Bekar

DATA Jesse Brown

FULCRUM Rob Lefebvre

MAVRIC Cihangir Celik

OMNIBUS Seth Johnson

ORIGAMI Steve Skutnik

ORIGEN BK Jeon

POLARIS Matt Jessee

SAMPLER Ugur Mertyurek

STDCOMP Rob Lefebvre*

TRITON Rike Bostelmann

TSUNAMI Jordan McDonnell*

VADER BJ Marshall

XSPROC Kang Seog Kim

*Interim owner

New product owner for FY23/FY24

SCALE 6.3 In a Nutshell

- Significant strides towards modernizing and centralizing Monte Carlo capabilities with Shift integration
- Improvements to uncertainty quantification and sensitivity analysis
- Performance improvements to Polaris for LWR lattice calculations
- New capabilities targeting advanced reactors

- MAVRIC radiation shielding
- 2. **CSAS** criticality safety
- **TRITON** general reactor fuel depletion
- 4. ORIGEN general depletion/decay/ activation
- 5. ORIGAMI LWR spent 11. fuel isotopics generation
- 6. **Polaris** LWR reactor fuel depletion
- 7. **TSUNAMI** sensitivity, similarity analysis, and data assimilation

- 8. Sampler general uncertainty propagation
 - AMPX nuclear data processing (transforms ENDF/B to SCALE format)
 - SCALE nuclear data libraries – curated, verified, and validated
 - ORIGEN reactor libraries – data to generate systemspecific spent fuel isotopics
 - **VADER** trendingbased validation
- 13. OMNIBUS Leadership class Monte Carlo Transport (experimental)

Updates on scale.ornl.gov

- 6.3 validation reports slated for Q2/Q3 FY24
- 6.3 online manual https://scale-manual.ornl.gov
- 6.3.2 maintenance patch will be available in Q2/Q3 FY24
- Full reference list on https://ornl.gov/scale/references
- New version info site https://scale.publicsites.ornl.gov/

2023 Publications:

Kang Seog Kim, Dorothea Wiarda, Chris Chapman, Jordan McDonnell, and William A. Wieselquist, "Improvement of the SCALE-6.3/XSProc Pointwise Slowing-Down Capability with the Bound Thermal Scattering Data Including High Forward Peaks," *Transactions of the American Nuclear Society*, **129**, 817–820 (November 2023).

Donny Hartanto, Friederike Bostelmann, Benjamin R. Betzler, Kursat B. Bekar, Shane W. Hart, and William A. Wieselquist, "**SCALE depletion capabilities for molten salt reactors and other liquid-fueled systems**," *Annals of Nuclear Energy*, **196**, 110236, 2024 (available online November 2023). DOI:10.1016/j.anucene.2023.110236

Tara Pandya, Tarek Ghaddar, Friederike Bostelmann, Matthew Jessee, and Philip Brit, <u>Modeling Enhancements and Demonstration of Shift Capabilities for PBR and MSR</u>, ORNL/TM-2023/3072, UT-Battelle, LLC, Oak Ridge National Laboratory (October 2023).

Germina Ilas and Rabab Elzohery, *Validating Actinides and Fission Products for Burnup Credit Criticality Safety Analyses – Nuclide Compositions Prediction with Extended Validation Basis*, NUREG/CR-7303(ORNL/SPR-2023/2885), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory (September 2023).

D. Hartanto, G. Redulescu, R. Elzohery, F. Bostelmann, W. Wieselquist, K.C. Wagner, and D. Luxat, "SCALE & MELCOR non-LWR Fuel Cycle Demonstration Project – Sodium-Cooled Fast Reactor," NRC Public Workshop, presented virtually from Oak Ridge, Tennesse September 20, 2023.

Ugur Mertyurek and William A. Wieselquist, *Assessment of Core Physics Characteristics of Extended Enrichment and Higher Burnup LWR Fuels using the Polaris/PARCS Two-Step Approach Vol. 2: BWR Fuel*, ORNL/TM-2022/2444, UT-Battelle, LLC, Oak Ridge Nationa Laboratory (August 2023). [supporting files]

Steve E. Skutnik, Ugur Mertyurek, Muhammad Rizki Oktavian, and William A. Wieselquist, *Transition Core Modeling for Extended Enrichment & Accident-Tolerant Fuels Using Polaris/PARCS*, ORNL/TM-2023/2834, UT-Battelle, LLC, Oak Ridge National Laboratory (July 2023). [supporting files]

Alex Shaw, Friederike Bostelmann, Donny Hartanto, Erik Walker, and William A. Wieselquist, *SCALE Modeling of the Sodium Cooled Fast-Spectrum Advanced Burner Test Reactor*, ORNL/TM-2022/2758, UT-Battelle, LLC, Oak Ridge National Laboratory (July 2023).

Code updates

Fulcrum GUI

Fission point visualization with 2-D version
 (SCALE 6.3.2)

Criticality Accident Alarm System (CAAS) modeling with Shift sequences

- CSAS-Shift saves meshbased fission source in HDF5 (7.0 beta)
- MAVRIC-Shift reads meshbased fission source from HDF5 for detector modeling with automated CADIS variance reduction (7.0 beta)

2-D views of fission neutrons starting points overlayed on Castor Cask model

Improvements to S/U capabilities

- External F*(r) read capability for CLUTCH method enables straightforward F* sensitivity studies and uncertainty reduction (7.0 beta)
- Ability to calculate F*(r) from deterministic adjoint fluxes and birth spectrum (Denovo and KENO, respectively) on the same mesh (7.0 beta)

```
read tallies
read sensitivity
method=CLUTCH
read fstar
file=external.3dmap
end fstar
end sensitivity
end tallies
```

New input data block named sensitivity in tallies data block

Improvements to UQ with Sampler

 Allow specification of userdefined distributions for input quantities, such as density, temperature, geometry

- Improvements to parametric capability to find target values (see figure on right)
- Ability to calculate correlation coefficient of any two output quantities basically c_k equivalent for anything

response(interp)	radius(interp)	target_response	response
		0.95	Case cl:response lambda
9.50124e-01	5.39323e-01		-
9.50000e-01	2.12211e+00		i
		1.3	Case cl:response lambda
1.30000e+00	6.77949e-01		
1.30000e+00	1.37785e+00		i

In-progress efforts for 7.0 betas

- Capability to apply user defined perturbation to the CE cross sections within the defined energy range
- MG version of CLUTCH method
- Enhancements in c_k output edits; uncertainty and c_k per nuclide and uncertainty plots vs. energy
- New k-eff estimators in CSAS-Shift and TSUNAMI-Shift sequences
- Particle track visualization

read perturbation
 nuc=SCALE_ID MT=reaction_mt
 mul=multiplier
 emin=min_energy emax=max_energy
end perturbation

Summary

- SCALE 6.3 available from RSICC
 - New features
 - New ENDF/B-VIII.0 data including covariances
 - Updated parallel infrastructure enables parallel capability on Windows
 - Production release with maintenance until 2026 at minimum addressing
 - Code or data bugs
 - Performance
 - Ease of installation
- New Government Use Agreement (GUA) for SCALE 7.0 beta access
 - Site licenses available for non-commercial testing and feedback, handled through ORNL technology transfer
 - Inquire by sending an email about the "GUA" to scalehelp@ornl.gov

https://www.osti.gov/biblio/1760121

Approved for public release

in 6.3.

https://code.ornl.gov/scale/primers/kenovi

https://www.osti.gov/biblio/1760129

https://code.ornl.gov/scale/primers/kenova

