

why not change the world?®

On-The-Fly Sampling for Inelastic Incoherent Thermal Neutron Scattering for Monte Carlo Codes

Camden Blake | Nuclear engineering Program Rensselaer Polytechnic Institute (RPI)

2024 Annual Nuclear Criticality Safety Program Technical Program Review February 20-22, 2024

- RPI Team Members
 - Camden Blake (PhD Student)
 - -Wei Ji (PI)
 - Yaron Danon (Co-PI)
- Collaborators
 - Forrest Brown (retired) LANL
 - Robert Little LANL

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

Project Motivation

 $S(\alpha, \beta)$ scattering law dominates thermal neutron scattering

$$\sigma(E \to E', \mu, T) = \frac{\sigma_b}{2kT} \sqrt{\frac{E'}{E}} e^{\left(-\frac{\beta}{2}\right)} S(\alpha, \beta, T)$$

 α : momentum transfer β : energy transfer $\alpha = \frac{E + E' - 2\mu\sqrt{EE'}}{A_0kT}$ $\beta = \frac{E' - E}{kT}$

- Current thermal libraries store inelastic incoherent scattering distributions as functions of incident energy, outgoing energy, scattering angle, and temperature (*E*, *E*', μ, *T*).
- Makes MCNP ACE thermal library very large
- Unwieldy for HPC simulations

Material	Temperature Range [K]	# Files	Total Size [MB]	T_{N_T} T_l	
be-beo	293.6 - 1200	8	339.34	$E_{1}' = E_{1}', CDF_{1} = E_{j}', CDF_{j} = E_{N_{out}}', CDF_{N_{out}}$	ut
o-beo	293.6 - 1200	8	280.24	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	μ
grph	296 - 2000	10	393.99	$E_{i} = E_{1}', CDF_{1} = E_{j}', CDF_{j} = E_{N_{out}}', CDF_{N_{out}}$	ut
grph10	296 - 2000	10	328.88	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	μ
grph30	296 - 2000	10	312.08	$E_{1}, CDF_{1} \qquad E_{j}', CDF_{j} \qquad E_{N_{out}}', CDF_{N_{out}}$	ut
h-h2o	283.6 - 800	18	536.1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ίμ

 ACE Files(ENDF80SaB2): 33 Materials for a total of 9.41 GB

Project Objective

- Create a method to generate a small thermal library
- Adaptive in temperature
- Retains sampling accuracy

 Minimizes computational burden Single file for a material Works for any temperature **Only 20-30 MB**

- 1. Evaluate the Thermal Scattering Law (TSL) for the material of interest $\rightarrow S(\alpha, \beta, T)$.
- Calculate sampling probability distributions (PDFs and CDFs) over the applicable temperature range.
- **3**. Apply a regression model to remove the temperature dependence from the data.

- Obtain input leapr data from ENDF/B-VIII.0
- Contains:
 - Material specific model parameters
 - Phonon spectrum
 - Alpha and Beta calculation grids
 - Temperature range for the material

- Use leapr to generate 'high fidelity' $S(\alpha, \beta, T)$ data
 - Investigating to see if the default alpha and beta grids are enough to linearize sampling distributions
 - A fine temperature grid is chosen, typically using 5K increments

 Creation of the sampling distributions needed for sampling.

$$\begin{aligned} & \text{PDFs} \\ g(\beta|E,T) = \frac{exp\left(-\frac{\beta}{2}\right)\int_{\alpha_{-}}^{\alpha_{+}}S(\alpha,\beta,T)d\alpha}{\int_{\beta_{-}}^{\beta_{+}}\int_{\alpha_{-}}^{\alpha_{+}}exp\left(-\frac{\beta}{2}\right)S(\alpha,\beta,T)d\alpha d\beta} & \hat{h}(\alpha|\beta,T) = \frac{S(\alpha,\beta,T)}{\int_{0}^{\infty}S(\alpha,\beta,T)d\alpha} \end{aligned}$$

$$\begin{aligned} & \text{CDFs} \\ G(\beta|E,T) = \int_{\beta_{-}}^{\beta}g(\beta'|E,T)d\beta' & \hat{H}(\alpha|\beta,T) = \int_{0}^{\alpha}\hat{h}(\alpha|\beta,T)d\alpha' \end{aligned}$$

 CDF sampling distributions are fixed to set CDF values and repeated for every temperature.

Polynomial regression is then performed on the $\beta_{i,j}$ and $\alpha_{i,j}$ as functions of temperature.

 This yields a set of coefficients that can be used to recover the alpha and beta value at any temperature OTF.

Approach - Result

- Single file for each material
- Small size
- Used for any temperature
- Maintains accuracy
- Not computationally expensive*

 A_1

 A_1

 A_1

 A_{N_C}

 A_{N_C}

 A_{N_C}

 A_1

 A_1

 A_1

 A_{N_C}

 A_{N_C}

 A_{N_C}

 $A_{N_{C}}$

 A_{N_C}

 A_{N_C}

$$\alpha = \sum_{l}^{N_{C}} A_{l} * X_{\alpha}(T)$$

 $B_l * X_\beta(T)$

 A_1

 A_1

 A_1

 β_1

 β_i

 β_{N_F}

- Currently have 24 materials being treated in this manner
- 9 materials are not being treated
 - Materials with only one temperature:
 - L-CH4, S-CH4, and HinC5O2H8
 - Materials with problems in leapr input
 - Ortho/Para H and D, SiO2-alpha, and SiO2-beta

Results – Small Size

Material	OTF Storage [MB]	Material	OTF Storage [MB]	
013-AI-027	5.5	Hinlcelh	17.6	
026-Fe-056	5.7	Oinlcelh	12.6	
crystalline-graphite	12.7	OinD2O	12.6	
reactor-graphite-10P	12.7	DinD2O	12.6	
reactor-graphite-30P	12.7	OinUO2	7.1	
Be-metal	7.1	UinUO2	7.1	
OinBeO	9.9	NinUN	12.7	
BeinBeO	9.9	UinUN	12.7	
HinH2O	10.4	HinYH2	12.7	
HinCH2	12.7	YinYH2	7.6	
CinSiC	9.9	HinZrH	7.1	
SiinSiC	9.9	ZrinZrH	4.8	

Sampled β PDF and CDF distributions and associated errors for Be in BeO at 751K and with an incident energy of 0.1 eV.

nsselaer

Sampled α PDF and CDF distributions and associated errors for Be in BeO at 751K and with an incident energy of 0.1 eV and scattering energy of 0.09 eV.

2024 Annual NCSP TPR Meeting

with an incident energy of 0.05 eV.

Sampled α PDF and CDF distributions and associated errors for graphite at 1146K and with an incident energy of 0.05 eV and scattering energy of 0.09 eV.

Results – Sampling Times

Material	<i>S</i> (<i>α</i> , <i>β</i>) [s]	OTF [s]	Ratio	Material	<i>S</i> (<i>α</i> , <i>β</i>) [s]	OTF [s]	Ratio
013-AI-027	0.119	0.446	3.758	Hinlcelh	0.127	0.305	2.403
026-Fe-056	0.114	0.362	3.168	Oinlcelh	0.120	0.420	3.484
graphite	0.127	0.533	4.182	OinD2O	0.126	0.471	3.730
graphite-10P	0.125	0.472	3.766	DinD2O	0.131	0.334	2.555
graphite-30P	0.135	0.590	4.382	OinUO2	0.126	0.479	3.805
Be-metal	0.124	0.485	3.898	UinUO2	0.126	0.561	4.608
OinBeO	0.127	0.499	3.930	NinUN	0.120	0.486	4.067
BeinBeO	0.124	0.485	3.917	UinUN	0.122	0.475	4.065
HinH2O	0.132	0.488	3.704	HinYH2	0.151	0.525	3.485
HinCH2	0.127	0.462	3.649	YinYH2	0.117	0.494	4.239
CinSiC	0.123	0.492	3.988	HinZrH	0.125	0.370	2.968
SiinSiC	0.120	0.530	4.397	ZrinZrH	0.116	0.468	4.016

- OTF sampling treatment has been applied to 24 materials in the ENDF/B-VIII.0 library.
- A Fortran based sampling paradigm has been developed
- Updating to ENDF/B-VIII.1 when released
- Implementation into MCNP
- Linearization optimization of the OTF treatment

why not change the world?®