

Whisper updates

Alexander R. Clark *Michael E. Rising*

Nuclear Criticality Safety Program Technical Program Review February 20-22, 2024 LA-UR 24-21236

Overview

- Completed
 - Compared USLs calculated using existing BLO and new ENDF/B-VIII.0 nuclear data
 - Transitioned from Makefile to CMake build system
- In progress
 - Investigating erroneous ENDF/B-VIII.0 U-235 covariance data
 - Connecting the MCNP verification and validation framework and Whisper
- Planned
 - Modularize components of Whisper
 - Implement method¹ for computing c_k 's accounting for benchmark correlations
- Conclusions

Completed

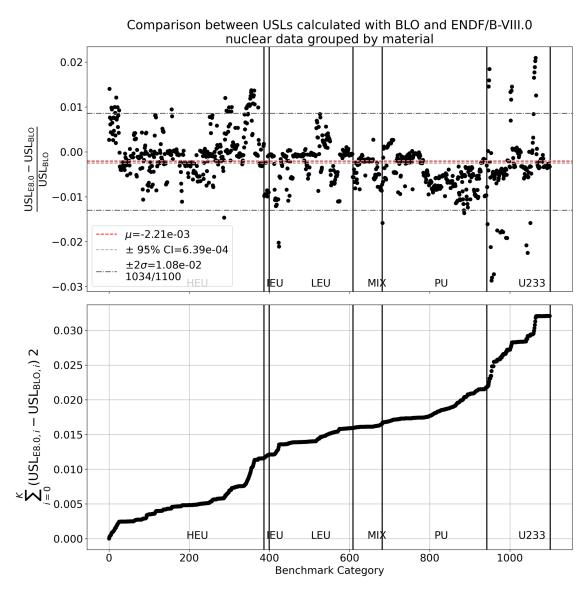
ENDF/B-VIII.0 release provided significant nuclear data improvements relevant to nuclear criticality safety

- Whisper USL calculations are an important component of nuclear criticality safety operations at LANL
- Nuclear data covariances provided with Whisper 1.1 are from the BLO project and ENDF/B-VII.0 library
- Making ENDF/B-VIII.0 nuclear data available to Whisper is long overdue
 - USL calculations will include recent advances in important reflector, moderator, and actinide nuclides
 - Providing multiple nuclear data covariance libraries will facilitate V&V for nuclear criticality safety applications

The new ENDF/B-VIII.0 library, in contrast to ENDF/B-VII.1, has major changes for neutron reactions on the major actinides and other nuclides that impact simulations of nuclear criticality. The important isotopes ¹H, ¹⁶O, ⁵⁶Fe, ^{235,238}U, and ²³⁹Pu have been the focus of the international CIELO collaboration, and the resulting advances have been incorporated into ENDF/B-VIII.0.

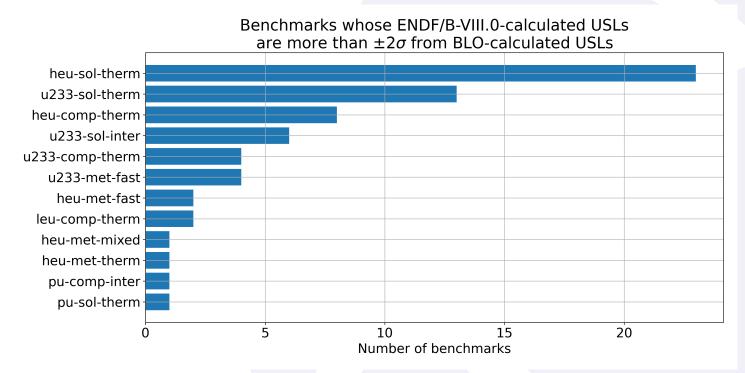
TABLE I. Overview of the ENDF/B library releases and the 15 sublibraries in ENDF/B-VIII.0. Shown in the columns are the number of materials present in each sublibrary in each release. Here Spontaneous Fission Yields is abbreviated as SFY and Neutron-induced Fission Yields as NFY.

Sublibrary	VIII.0	VII.1	VII.0	VI.8
Neutron	557	423	393	328
Thermal n-scattering	33	21	20	15
Proton	49	48	48	35
Deuteron	5	5	5	2
Triton	5	3	3	1
Helium3	3	2	2	1
Alpha	1	n/a	n/a	n/a
Photonuclear	163	163	163	n/a
Atomic relaxation	100	100	100	100
Electron	100	100	100	100
Photoatomic	100	100	100	100
Decay data	3821	3817	3838	979
SFY	9	9	9	9
NFY	31	31	31	31
Standards	10	8	8	8


4

Obtaining covariances in ACE format

- Used Python-based covariance processing tool (Nathan Gibson; XCP-5) that invoked NJOY to obtain JSON-format covariances
- Used CovVal (Denise Neudecker; XCP-5) to check JSON-format covariances for errors or unrealistic values
- Used ACEtk (Wim Haeck; XCP-5) to convert JSON-format covariances into ACE-format
- Caveats
 - ENDF/B-VIII.0 provides nuclear data covariances for only half (250) of all available nuclides
 - Covariances obtained via the above tools will not be distributed until they have been SQA'd
- Used Whisper benchmark suite to recompute the adjusted nuclear data covariances
- This process demonstrates progress toward a more cohesive framework for providing nuclear data covariances to Whisper


BLO- vs ENDF/B-VIII.0-calculated USL comparison

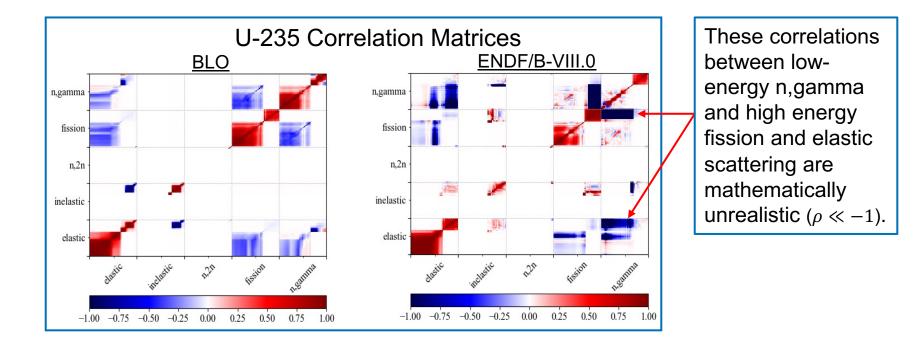
There are a statistically significant number of outliers when comparing BLO- vs ENDF/B-VIII.0-calculated USLs

• 66/1100 (6%) benchmarks are outside $\pm 2\sigma$

• ENDF/B-VIII.0 USLs tend to be lower than BLO USLs ($\mu = -2.21 \times 10^{-3}$) with high confidence (95% $CI = 6.39 \times 10^{-4}$), but the standard deviation is significant ($1\sigma = 5.04 \times 10^{-3}$)

Transitioned from Makefile to CMake build system

- Generates build files automatically and handles compiling and installation on different systems
- Provides robust framework for testing
- · Gives greater control over build and test options
- Currently reproduces previous Makefile but will make improvements easier
 - Support a greater number of compilers and operating systems
 - Easier to integrate library dependencies
 - Finer control over testing
- Promotes better consistency across the MCNP team's projects, as MCNP6 has already transitioned to a CMake build system



In progress

Non-physical correlations identified in ENDF/B-VIII.0 U-235 covariance data

- Processed ENDF/B-VIII.0 covariance matrices for Whisper
- The calculated c_k between Godiva and Krusty benchmarks
 - − $c_{k,BLO} = 0.91911 \checkmark$, $c_{k,ENDF/B-VIII.0} = 1.08511 ×$

Refactoring V&V Python tool to compute sensitivities required by Whisper

- Improving interface
 - Run via command line or JSON file
 - Generate template for doing a default run
 - Obtain machine-specific arguments
 - Option to run inputs as user-defined suite type

:~/projects/vnvstats_runs% python -m vnvstats criticality -h

The simplest way to do a run is to first generate an "arguments.template.json" file:

`python -m vnvstats criticality --generate`

```
After defining the "-suite_dir" and "-run_dir" fields and customizing any other fields, do:
```

`python -m vnvstats criticality -args_path arguments.template.json`

• Preparing VnVstats to be the engine for the MCNP runs required by Whisper

Planned

Modularizing components of Whisper

- Extract Whisper components into individual library files
- Provide Python API for running desired Whisper components
- Merge Whisper and Whisper-tk capabilities
- Allow users to
 - Run specific components of Whisper (e.g. do only the nuclear data adjustment)
 - Compute USLs with different methodologies (e.g. parametric vs non-parametric)
 - Specify nuclear data covariances from different libraries (e.g. BLO vs ENDF/B-VIII.0)

Implement method for computing c_k's that account for benchmark correlations

- Whisper currently computes c_k's for an application without considering benchmark correlations
- Benchmarks that are highly correlated provide lower information content than those that are uncorrelated
- B. Kiedrowski's patch implements¹ the Uniformly Ordered Binary Decision algorithm
 - Identify and randomly order clusters of highlycorrelated benchmarks
 - Decide if
 - A pair of benchmarks will be included together
 - If the pair of benchmarks are redundant
 - Adjust included benchmark weights to account for redundant information
- Implementing this patch into production will make available benchmark correlations immediately useful.

Table I. HEU-SOL-THERM-001 Correlation Matrix

	HST-001-001	HST-001-002	HST-001-003	HST-001-004	HST-001-005	HST-001-006	HST-001-007	HST-001-008
HST-001-001	1.00	0.47	0.46	0.44	0.42	0.42	0.46	0.57
HST-001-002	0.47	1.00	0.42	0.58	0.42	0.42	0.41	0.44
HST-001-003	0.46	0.42	1.00	0.46	0.43	0.43	0.46	0.46
HST-001-004	0.44	0.58	0.46	1.00	0.44	0.42	0.42	0.44
HST-001-005	0.42	0.42	0.43	0.44	1.00	0.54	0.48	0.47
HST-001-006	0.42	0.42	0.43	0.42	0.54	1.00	0.48	0.47
HST-001-007	0.46	0.41	0.46	0.42	0.48	0.48	1.00	0.51
HST-001-008	0.57	0.44	0.46	0.44	0.47	0.47	0.51	1.00

Table II.	Results for HEU	Solution Application Cases
-----------	-----------------	----------------------------

Application	# (orig.)	# (corr.)	$\sum w_i$	Δm
HST-001-001	55	68	34.5	0.0022
HST-001-002	52	62	31.0	0.0002
HST-001-003	49	69	34.7	0.0023
HST-001-004	53	66	31.2	0.0002
HST-001-005	41	72	34.1	0.0040
HST-001-006	43	73	34.0	0.0040
HST-001-007	49	69	34.6	0.0024
HST-001-008	51	69	34.6	0.0020
HST-001-009	53	66	31.4	0.0002
HST-001-010	41	72	34.2	0.0049

Conclusions

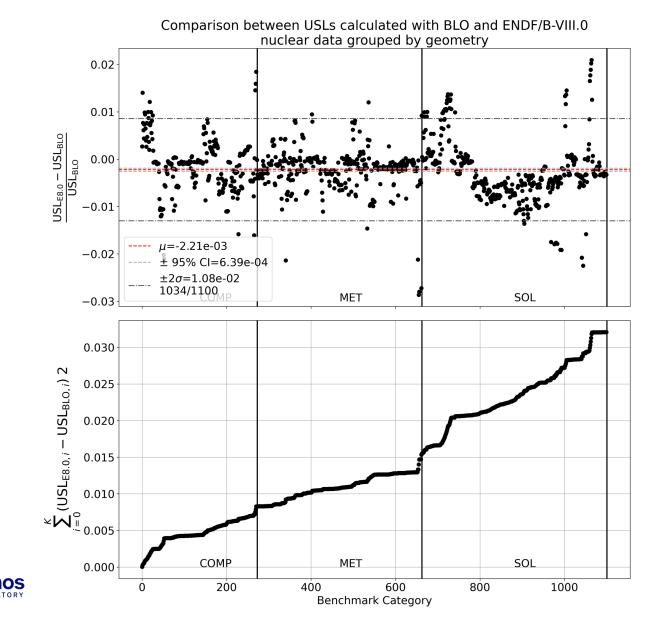
- USLs calculated with ENDF/B-VIII.0 have significant deviations with respect to those computed with BLO, which warrants further investigation
- Moving to a CMake build system allows for greater flexibility in build and testing options
- Non-physical correlations in the ENDF/B-VIII.0 U-235 covariances have had a significant impact in recent Whisper c_k's calculations for LANL internal studies
- Letting VnVstats compute sensitivities for Whisper improves interconnectivity between our tools
- Modularizing components of Whisper will make it easier to change what method gets used or only run specific capabilities
- Implementing the Uniformly Ordered Binary Decision algorithm will allow for USL calculations that account for benchmark correlations

Future work and outlook

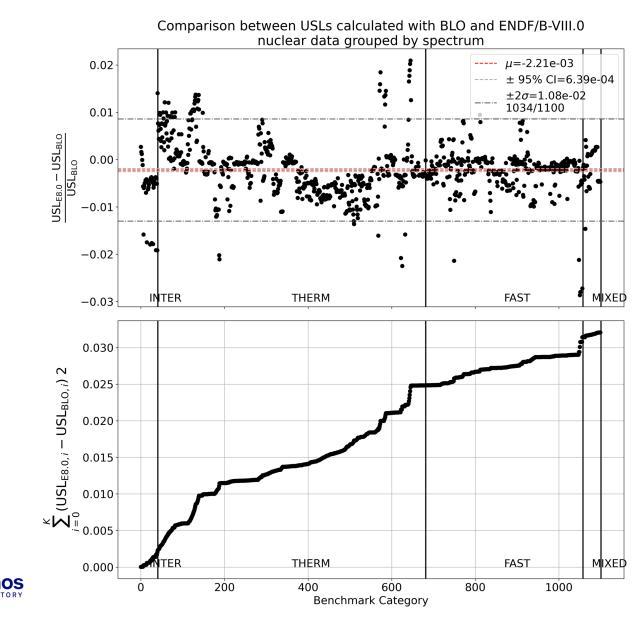
- Provide new nuclear data covariances in future Whisper release after appropriate SQA process
- Look for other opportunities to connect Whisper to other tools that the MCNP team provides
- Benchmark and nuclear data inputs to Whisper need to be connected to databases that are subject to review and version control
 - Benchmark inputs pulled from ICSBEP and/or LABS databases
 - Nuclear data covariances that are in ACE format with appropriate SQA procedures
- The LABS project is already subject to these constraints and provides an example for what other databases can do

Acknowledgements

 This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.



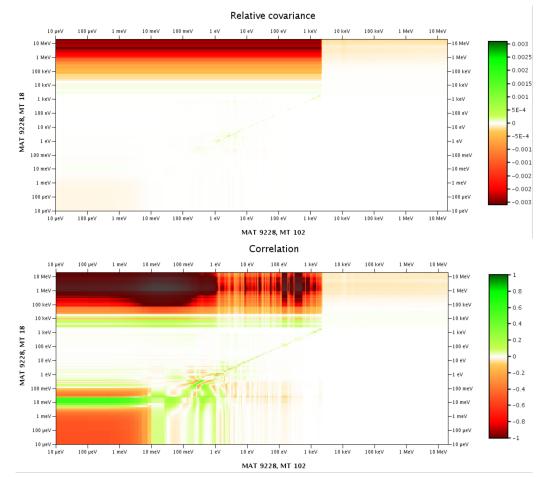
Backup slides



BLO- vs ENDF/B-VIII.0-calculated USL comparison

BLO- vs ENDF/B-VIII.0-calculated USL comparison

Simulations of keff have improved in more recent versions of ENDF/B-VIII Mean Absolute Bias = $\frac{\sum_{i}^{N} |c_i - E_i|}{\sum_{i}^{N} |c_i - E_i|}$


Library: ENDF/B-VIII.0, Mean Abs. Bias: 379 pcm • $1b1 \rightarrow \beta 1$ Files + 8.0 S(α, β) Library: ENDF/B-VIII.1b1, Mean Abs. Bias: 371 pcm Δ 1b2 $\rightarrow \beta$ 2 Files + β 2 S(α, β) Library: ENDF/B-VIII.1b2, Mean Abs. Bias: 356 pcm 1.03 C/E Neutron Multiplication Factor (k_{eff}) 1.02 1.01 1.00 0.99 0.98 **HEU Suite** Pu Suite **LEU Suite** 8 0.97 Legacy Suite 1000 200 400 600 800 ²³³U Suite **Benchmark Number Modern Suite Mixed Suite**

N. Kleedtke and A. C. Kahler, "Validation of ENDF/B-VIII.1β2 Files", presentation at the 2023 Cross Section Evaluation Working Group Meeting, LA-UR-23-32912

ENDF/B-VIII.0 U-235 non-physical correlations present in evaluation, before NJOY processing

- In this case, the correlations between the high-energy fission and low-energy capture should be 0
- To incorporate into Whisper, this will need to be manually corrected until it's fixed in the ENDF/B library

Plots from JANIS of the relative covariance (top) and correlation (bottom) between ²³⁵U ENDF/B-VIII.0 MT 102 (radiative capture) and MT 18 (neutron-induced fission).

