

Liberté Égalité Fraternité



## **IRSN WORK IN SUPPORT TO NCSP: FY2023**

### **Sophie PIGNET** Head of Neutronics and Criticality Safety Department , IRSN sophie.pignet@irsn.fr







#### Content

- 1. Highlights on FY2023 IRSN work :
  - 1. Integral experiments
  - 2. Analytical method & Nuclear data
- 2. Main challenges for FY2024
- **3.** Conclusion



## **Highlights on FY2023 work**



#### Integral Experiment in 2023 : TEX-MOX detailed design, CED2 report

CED1 officially published in 2022.

- Fuel : ZPPR plates PUMN (Pu/Pu+U weight ratio of 28.8%, <sup>240</sup>Pu content of 11.6%)et PUMH (Pu/Pu+U weight ratio of 34.9%, <sup>240</sup>Pu content of 26.4%)
- Moderator: Polyethylene
  - $\rightarrow$  Thermal issue to warrant safe behavior of CH<sub>2</sub> and accuracy of experiments due to decay heat: up to 500W
- Collaborative work between LANL and IRSN on thermal behaviour and cooling system
- It has been shown that an active cooling system is efficient to warrant temperature below 40°C (313K) during the experiment
- If the fan is off, passive cooling is sufficient to maintain CH<sub>2</sub> temperature below 60°C (333K)



Temperature increase (to room temp.) in CH<sub>2</sub> with passive cooling

#### TEX-MOX - IER 96

IRSN worked on designs able to match with industrial configurations (application cases) from Orano (operator of main French fuel cycle facilities)

- Orano provided 9 applications cases corresponding to different steps of the fuel cycle
- MOX and/or PuO<sub>2</sub> powder
- Moderation by water, water+CH<sub>2</sub>, water+ additives, fire extinguishing powder
- Reflection by water, concrete, water+Zr
- Different energy ranges (some are in thermal energy range, some are in fast energy range)

Matching our three configurations and their relevant application cases:

by assessing Ck (objective is to be as close to 1 as possible, the more cases match each other, a threshold of 0.8 is generally considered as good)

For THERM configuration :  $C_k$  around 0.8 - 0.9 For INTER1 &2 configuration :  $C_k$  around 0.7 - 0.9



#### **TEX-MOX - IER 96 – Final configurations**





#### **IRSN contribution to AFRRI's TRIGA reactor characterization**

- Feb. 2023: meeting at AFRRI (experimental design) and premilinary measurements (F. Trompier)
- Aug. 2023: measurements campaign (F. Trompier and Y. Ristic)
- Dosimetry techniques: silicon diode, activation foils, RPL gamma dosimeter, neutron alanine dosimeter, activation neutron spectrometer, activation belt











#### **Benchmark reviews for ICSBEP**

#### **3** external reviews

- HEU-MET-FAST-104: MUSIC (Measurements of Uranium Subcritical and Critical) (LANL)
- PU-MET-THERM-004: TEX-Pu Experiments for Thermal Scattering Law Validation of Polyethylene and Polymethylmethacrylate (LLNL)
- LEU-COMP-THERM-111 : Molybdenum Sleeve Experiments in Fully-reflected Water-Moderated Triangular-Pitched (SANDIA), last work with our dear late colleague Gary









2 cases : critical configurations

External review with MORET code and 3 nuclear data libraries » Consistent results



| Case |                  | Simplified model with MORET 5D (Continuous<br>Energy) |                      |                      | Simplified Model<br>with MCNP 6.2 | Benchmark                           |
|------|------------------|-------------------------------------------------------|----------------------|----------------------|-----------------------------------|-------------------------------------|
|      |                  | ENDF/B-VIII.0                                         | JEFF 3.2             | JEFF 3.3             | ENDF/B-VIII.0                     |                                     |
| 1    | k <sub>eff</sub> | 1.00017 ±<br>0.00003                                  | 1.00141 ±<br>0.00003 | 1.00152 ±<br>0.00003 | $1.00104 \pm 0.00001$             | 1,00146 -<br>0,00121 / +<br>0,00122 |
|      | C-E              | -129                                                  | -5                   | 6                    | -51                               | -                                   |
| 2    | k <sub>eff</sub> | 1.00007 ±<br>0.00003                                  | 1.00133 ±<br>0.00003 | 1.00143 ±<br>0.00003 | 1.00092 ± 0.00001                 | 1,00164 -<br>0,00102 / +<br>0,00103 |
|      | C-E<br>(pcm)     | -157                                                  | -31                  | -21                  | - 65                              | -                                   |



#### Analytical Methods & Nuclear Data

Slide rule : Update of 2019 IRSN report including all the computations performed by IRSN, ORNL and LLNL. => See dedicated talk on behalf of Johann HERTH

- Draft reviewed by participants
- To be published in Q2 2024

#### Benchmark intercomparison (phase 2)

- K<sub>eff</sub>
  - Completion of the action in 2023
  - Report reviewed by participants, published.
- $\beta_{eff}$ 
  - Computations completed => See Romain Vuiart's talk
  - Report to be written in FY2024

#### LFE Database

- participation to LFE database meetings with ORNL, LLNL and NNL
- IRSN plans to organize a seminar with French operators (Orano, CEA and Framatome) in 2024 to discuss
  lessons learned from NCS events and to identify the relevant events for the LFE database



# FY 2024 challenges



#### Main FY2024 challenges

#### IER 296 TEX-MOX CED3a :

- Milestone of the NCSP FY 2022 "Make it happened" list
- Objective is to perform the experiments in FY2025

#### IER 484 : Dosimetry on AFFRI reactor

International exercice (24<sup>th</sup>-28<sup>th</sup> June 2024)

#### CED 0 : Explore possible needs for experiments with LANL ARIES rods (MOX)

#### IRSN-AM13/ORNL-AM10/LLNL-AM5/LANL-AM5/Y12-AM1 : Benchmark intercomparison study

• After  $\beta_{eff}$ , intercomparison on shielding benchmarks launched for FY2024





# LICORNE: Free and user-friendly access to extensive criticality standards data base



Web application that will be freely available online on the internet

- Standard Data Base produced with the CRISTAL French package
  - Criticality reference values for 1D geometries
     Sphere, cylinder, slab
  - Multiple parameters
    - Fissile type, enrichment, poison, reflector type and thickness, etc.
  - Data Base contains more that 2 millions of calculations
  - Data Base can be easily extended (new reference values, new parameters, etc.)

Multiples outputs values

- Masses, size, volume, surface, concentration, thickness, etc.
- Several k<sub>eff</sub> criteria : 1, 0.98, 0.97, 0.95





#### **CONCLUSION**

#### **Integral Experiments**

- TEX-MOX : still lots of work to do but we are on track for a challenging TEX MOX experiment in FY2025 ! Many thanks to LLNL and LANL colleagues involved in this aventure.
- **Dosimetry** : AFFRI TRIGA reactor appears to be a nice frame to upgrade the ambitions of exercises. Towards a full exercise with organ doses estimation ?
- New perspectives on MOX with ARIES rods (CED0 in 2024)

#### **Analytical Methods**

- Slide Rule
  - Important step completed with multiple doses computations, final report to be published soon
  - Complex calculations, first results was very different among participants
    - » Useful work to conclude on reference values.
- Benchmarks Intercomparisons
  - Scope of computation intercomparisons widens, new people in charge : Jeremy and Romain
  - Efficient task to enhance reliability of benchmarks used for validation



Thank you !

