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ABSTRACT

This primer provides an overview of the most common hand calculation methods used for criticality 
safety calculations. The most widely used tools available to a nuclear criticality safety (NCS) practitioner 
are probably the common Monte Carlo or deterministic criticality safety codes, which can be used to 
model very complex systems. However, use of these codes can obscure the parameters to which a 
particular fissile system may be sensitive, whereas the hand calculation methods can be used to delve into 
the ways each parameter may affect the reactivity of a fissile material system. Furthermore, practitioners 
must avoid using computer codes as devices that take inputs and simply provide outputs (i.e., a “black 
box”). Many years ago, pioneers such as Joe Thomas, David Smith, and Hugh Paxton, among others in 
the field of nuclear criticality safety, took the time before the advent of high-speed desktop computers to 
create simple hand methods for criticality safety analyses. Some of the methods can be used for single 
fissile units; others are applicable to fissile units arranged into simple array configurations. This primer 
discusses the applicability of the various methods, illustrates how they are used, and provides an 
interpretation of the various results. The NCS practitioner will need to spend time to master the methods 
that could be most useful; however, they can provide the practitioner with fast and accurate answers to 
criticality safety problems if they are used correctly and if critical data exist for the problem at hand. 
Hand calculation methods can be used as a starting point for more advanced calculations, and in many 
circumstances, they can provide sensitivity and perturbation information more quickly than using a 
criticality code. 
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1. INTRODUCTION

The nuclear criticality safety practitioner has many tools to analyze normal case and credible process 
upsets for criticality safety evaluation development. The most common tools are probably the Monte 
Carlo or the deterministic criticality safety codes, which can be used to model very complex systems. 
However, use of these codes can obscure the parameters to which a particular fissile system may be 
sensitive, and criticality safety practitioners must avoid using computer codes as devices that take inputs 
and simply provide outputs. Many years ago, pioneers such as Joe Thomas, David Smith, and Hugh 
Paxton, among others in the field of nuclear criticality safety, took the time before the advent of high-
speed desktop computers to create simple hand calculation methods for criticality safety analyses. Some 
of the methods can be used for single fissile units, whereas others can be used for fissile units arranged 
into simple array configurations. The following methods are discussed at some length in this primer.

Single Unit Methods

 One-group diffusion theory
 One-group modified diffusion theory
 Buckling conversions
 Core density conversions

Array Unit Methods

 Surface density method
 Density analog method
 Limiting surface density (NBN

2) method
 Solid angle method

This primer provides some background for each method to describe how each method is applicable and 
useful and to provide example problems so that the criticality safety practitioner can apply the methods 
quickly and accurately. These hand calculation methods can provide a first look at a simple system to 
determine whether more complex calculations are warranted. Furthermore, the hand methods can be used 
for parametric studies that identify the criticality safety parameters to which a fissile system may be 
sensitive.

1.1 PURPOSE OF HAND CALCULATION METHODS

Hand calculation methods can take some time to learn and apply, but the time investment is valuable, 
particularly in gaining insight into the physics of fissile systems. The methods covered in this primer can 
be easily adapted to scripts, programming languages, and spreadsheets. Once the user has learned the 
methods, they can easily be used to perform comprehensive parametric calculations on individual 
parameters (mass, density, volume, concentration, etc.) and perturbation analyses. Furthermore, they can 
provide a first look at simple single unit and array systems. For example, if diffusion theory is used to 
examine a worst-case process upset condition and if the infinite multiplication factor, k, for a particular 
system is much less than unity, there is no further need to perform calculations because a criticality event 
is not possible under the upset conditions. If the resulting k is close to unity or exceeds unity, then 
further calculations are necessary. 

Hand calculation methods are useful to provide the analyst with a better understanding of the basic 
physics of the problem. Computer calculations are convenient and very fast; however, it is sometimes 
difficult to relate the basic output provided by the codes to the basic physics involved. Thus, hand 
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calculations can be valuable for new practitioners in developing intuition with respect to neutron transport 
physics, whereas advanced users can employ hand calculations as a starting point for more advanced 
calculations.

1.2 CHOOSING THE APPROPRIATE METHOD

The biggest challenge in applying these hand calculation methods to physical problems is choosing the 
most appropriate or best method. The discussion that accompanies each hand method includes the 
applicability of the method and its limitations. For example, if a solid chunk of plutonium or uranium 
metal is being machined in a particular fissile material operation, then the result of the machining could 
be the generation of small chips or turnings. Assuming that no moderating material is introduced to the 
machined plutonium or uranium metal, the density of the fissile material has been significantly reduced. 
Therefore, the best method to use would be the core density method. This primer provides the following 
information for each method:

 Overview of the method
 Applicability of the method to solve certain problems
 Example problems solved step-by-step

1.3 SINGLE UNIT HAND CALCULATIONS

The methods listed in Table 1-1 are valid for single fissile units only. The methods discussed for single 
units are the one-group and modified one-group diffusion theories, buckling conversions, and core density 
conversions. These methods can be used to resolve a wide variety of criticality safety problems, as 
summarized Table 1-1.

Table 1-1. Single unit methods and applicability summary.

Single Unit Hand 
Calculation Method Applicability Summary

One-group and Modified 
One-Group Diffusion 

Theories

 Good for large, homogeneous systems with isotopes that have low neutron 
absorption. 

 Caution: Diffusion theory is not a good method to use for small systems, near 
boundaries, or in or near strong neutron-absorbing materials.

Buckling Conversions

 Useful for simple geometries such as spherical, slab, or cylindrical systems. 
 Can convert the neutron leakage characteristics for a critical simple geometry to 

another simple geometry that has equivalent leakage characteristics, as long as 
critical data exist for a particular system.

Core-Density 
Conversions

 Can be applied to homogeneous, critical systems if the volume or density of the 
system changes uniformly. 

 Applicable to bare systems or those with a close-fitting reflector, as long as the 
reflector density remains constant.

1.4 ARRAY HAND CALCULATIONS

The methods listed in Table 1-2 are valid for fissile units arranged in certain array configurations. The 
methods discussed in this section are the surface density method, density analog method, the solid angle 
method, and the limiting surface density method or the NBN

2 method. These methods can be used to 
resolve a wide variety of criticality safety problems in which fissile materials are arranged into various 
multiple-unit configurations.
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Table 1-2. Array methods and applicability summary.

Array Hand 
Calculation 

Method
Applicability Summary

Surface 
Density 
Method

 Useful for determining the subcritical center-to-center spacing for fissile materials stored or staged 
in finite array configurations where the size of the array is controlled in one direction.

 Useful for irregular shapes such as equipment stored on the floor.
 Considers 15.5 cm of water reflection on the top and bottom of the array.

Density 
Analog 
Method

 Useful for determining the subcritical center-to-center spacing for fissile materials stored or staged 
in array configurations of any shape.

 Useful for irregular shapes such as equipment stored on the floor.
 Considers 20.0 cm of water reflection on the top and bottom of the array.

Limiting 
Surface 
Density 
(NBN

2) 
Method

 Useful for determining the critical center-to-center spacing for fissile materials stored or staged in 
array configurations of any shape (>64 units).

 Useful for irregular shapes such as equipment stored on the floor.
 Data exist for powders, metals, up to an H/X of about 20 for some fissile materials.
 Data exist for arrays reflected by concrete instead of water.
 Can be used to calculate trends due to a change in unit shape or density.
 Considers 20.0 cm of water reflection on the top and bottom of the array.

Solid Angle 
Method

 Useful for small numbers of moderated fissile units because the basis for this method is 
experiments with aqueous solutions of fissile materials. 

 The multiplication factor for any individual unit cannot exceed 0.8, and the unit must be subcritical 
with a thick close-fitting water reflector. 

 The minimum separation distance between fissile units should be at least 0.3 m, and the total 
allowed solid angle should not exceed 6 steradians. 

 Reflectors that are more effective than a thick water reflector should not be considered for this method.
 Concrete reflection on three sides of the fissile material is considered bounded by this method.

1.5 CONFIDENCE IN HAND CALCULATIONS

The analyst may be interested in how useful and practical hand calculations are when there are many 
comprehensive Monte Carlo and deterministic codes available for criticality safety applications. Many of 
the example problems herein have been verified using the following code packages and data:

 MCNP5
 SCALE, KENO V.a
 DANTSYS
 Physical Dimensions

Section 9 presents the results of this verification effort. The purpose of this effort is to demonstrate the 
usefulness and accuracy of the various hand calculation methods and assist the criticality safety 
practitioner in choosing the appropriate method for a particular problem.
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2. ONE-GROUP AND MODIFIED ONE-GROUP DIFFUSION THEORIES

2.1 WHAT YOU WILL BE ABLE TO DO

 Determine how to apply one-group diffusion theory to a simple fissile material system.

 Use one-group diffusion and modified one-group diffusion theory and compare differences 
between the two methods.

 Calculate the infinite multiplication factor, k∞, and critical dimensions for simple fissile systems.

 Interpret the results provided by one-group diffusion theory.

2.2 OVERVIEW OF DIFFUSION THEORY

Diffusion theory characterizes the basic neutron physics of a system and is a mathematical statement of 
the neutron balance. The diffusion equation is derived from the Boltzmann neutron transport equation by 
applying several assumptions. Because of the assumptions, one-group and modified one-group diffusion 
theory are good for large, homogeneous systems with isotopes that have low neutron absorption. 

CAUTION: Diffusion theory is not a good method to use for small systems, near boundaries, or in or 
near strong neutron-absorbing materials.

2.2.1 One-Group Diffusion Theory

Rigorous derivations of the one-speed diffusion equation can be found in many textbooks (References 1 
and 2). The focus of the discussion in this work is on using the diffusion approximation to solve several 
example problems. The neutron flux in a critical system can be represented by the time dependent, one-
speed diffusion approximation (Reference 1).

― ―𝐷∇2ϕ ― Σ𝑎ϕ + 𝜐Σ𝑓ϕ =
1
𝑣

𝑑ϕ
𝑑𝑡 (1)

In this equation,   is the one-group or single energy neutron flux (neutrons/cm2-sec), D is the one- 
group diffusion coefficient (cm), Σa is the macroscopic absorption cross section (cm−1), Σ f is the 
macroscopic fission cross section (cm−1), nu  is the number of neutrons emitted per fission (unitless), t 
is time (sec), v is the neutron speed (cm/sec), and ∇2  is the Laplacian operating on the neutron flux.

To maintain a fission chain reaction within fissile material, the volume-to-mass ratio of fissile material 
must exceed a critical value that depends on system conditions. The determination of critical size is 
based on a consideration of the conservation or balance of neutrons in the fissile system. For a fissile 
system, neutrons are either produced (from an external source or fission reactions in the fissile 
material) or lost (either leakage from the system or absorption by the materials present in the system).

Thus, a neutron balance equation can be developed based on these production and loss effects, as 
follows.

= 
Net rate of gain of 
neutrons per unit 

volume

Rate of production of 
neutrons by fission per 

unit volume

Rate of loss of neutrons by 
leakage and absorption per unit 

volume
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Therefore, for the one-group, time-dependent diffusion equation, the neutron balance can also be 
written in the following form, where n represents the neutron density (neutrons/cm3).

1
𝑣

𝑑𝜙
𝑑𝑡

= 𝜐Σ𝑓𝜙 ― Σ𝑎𝜙 ― ―𝐷∇2𝜙
1
𝑣

𝑑𝜙
𝑑𝑡

= dn
dt

=  Production -  Absorption -  Leakage 
  (2)

The components of the one-speed, time-dependent diffusion approximation, as illustrated in the neutron 
balance equation shown above, are explained below. 

Represents the rate of change of the neutron density in the system, which is equal to the sum 
of the terms listed below or the neutron balance for the system.

Represents neutron production in the system due to fissions within the fissile material. This 
term is positive in the diffusion equation, which indicates that there is a net gain of neutrons 
in the system (neutrons/cm3-sec).

Represents the loss of neutrons from the system due to absorption in the system. The 
negative sign in front of this term in the diffusion equation indicates that there is a net loss of 
neutrons from the system (neutrons/cm3-sec).

Represents the neutron leakage from the system. The negative sign in front of this term in the 
diffusion equation indicates that there is a net loss of neutrons from the system 
(neutrons/cm3–sec).

For a steady-state fissile system in which the neutron population is constant, such as in a just-critical 
system, the rate of change of the neutron population is zero or dn/dt = 0. Thus, the neutron balance can be 
written as

- Leakage -  Absorption +  Production =  0  (3)

If the steady-state diffusion equation is rearranged slightly, then

𝜐𝛴𝑓𝜙 =  ( ― 𝐷∇2𝜙) +  𝛴𝑎𝜙

Dividing both sides of this equation by D and combining terms results in the following expression:

∇𝟐𝝓 +  
𝝊𝜮𝒇 ― 𝜮𝒂

𝑫  𝝓 =  𝟎 (4)

Note this is in the form of ∇2𝜙 + 𝐵2 𝜙 = 0, where B2 is equal to a constant.

𝑩𝟐 = constant =
𝝊𝜮𝒇 ― 𝜮𝒂

𝑫 (5)

In this form, the term B2 is a function of only the material properties of the system; there is dependency 
on geometry. Thus, changes in the material properties of the system will affect B2, whereas a change in 

1 d
v d t



f 

a

2D  
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the geometry of the system will not. For this reason, 𝐵2
𝑚, as defined above, is known as the material 

buckling. It describes the curvature of the flux and is based only on material properties. 

For a specific geometry, the steady-state diffusion equation can then be solved. However, recall from Eq. 
(4) that ∇2𝜙 + 𝐵2 𝜙 = 0, when the system is critical. Then using the form of the Laplacian appropriate to 
the geometry of the system, (i.e., for a slab, ∇2𝜙 = 𝑑2𝜙

𝑑𝑥2
, the steady-state diffusion equation can then be 

solved. Using Eq. (4) and knowing that 𝑑2ϕ
𝑑𝑥2

, the diffusion equation for a one-dimensional slab with 
thickness x, can be rewritten as:

𝒅𝟐𝝓
𝒅𝒙𝟐 + 𝑩𝟐𝝓 = 𝟎 (6)

and has a solution, f(x) = A cos Bx + C sin Bx.

A complete solution for the 1-dimensional slab can be found by considering the possible boundary 
conditions for the system:

1. The flux is finite and real,

2. The current and flux are continuous at the system boundaries,

3. 𝑑𝜙
𝑑𝑥|

𝑥= centerline 
= 0 (symmetry condition), and

(7)

4. 𝜙(𝑥)|𝑥= outside edge = 0 (8)

Boundary conditions 3 and 4 for the 1-dimensional slab are needed to obtain a complete solution to this 
problem. Figure 2-1 will assist with completing the solution to the 1D slab example.

Figure 2-1. Neutron Flux Profile for the 1-D Slab, One-Group Diffusion Theory Approximation.

Appendix A provides an in-depth discussion of the linear extrapolation distance. Based on this 
discussion of extrapolation distance and vacuum boundary conditions, the following relationship can 
be defined; it identifies the assumed pseudo-physical location (i.e., the extrapolated boundary) where the 
mathematical representation of the neutron flux is zero.
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𝑋′ = 𝑋 + 𝑑 (9)

where

X = one-half of the physical slab thickness and
d = 2D or 0.71λtr, as defined and discussed in Appendix A.

The neutron flux vanishes at the extrapolated boundary, which lies approximately 0.71λtr beyond the 
physical boundary. To take advantage of symmetry, we will consider the center of the slab to be at x = 0. 
To find the solution to the diffusion equation for a slab, we will apply the boundary conditions.

Applying boundary condition #3,  𝑑𝜙
𝑑𝑥|

𝑥 = centerline
 =  0;

𝜙(𝑥) = 𝐴 𝑐𝑜𝑠(𝐵𝑥) + 𝐶 𝑠𝑖𝑛(𝐵𝑥) ; then 
𝑑𝜙
𝑑𝑥 = ―𝐵𝐴 𝑠𝑖𝑛(𝐵𝑥) + 𝐵𝐶 𝑐𝑜𝑠(𝐵𝑥)

so at x =  0,  
𝑑𝜙
𝑑𝑥 = 0. ― 𝐵𝐴 𝑠𝑖𝑛(𝐵 × 0) + 𝐵𝐶 𝑐𝑜𝑠(𝐵 × 0) = 0

or ― 𝐵𝐴 × 0 + 𝐵𝐶 × 1 = 0. So C =  0 and 𝜙(𝑥) = 𝐴 𝑐𝑜𝑠(𝐵𝑥) .

(10)

Now, boundary condition #4 can be applied to this system to complete the solution for the 1D slab. 
This boundary condition is used to determine the value for B.

The boundary condition is expressed as 𝜙(𝑋′) =  0, so A cos(𝐵𝑋′) = 0.

Now cos(𝐵𝑋′) =  0 whenever BX′ =  
𝑛𝜋
2 .

Using this to solve for B gives: B =  
𝑛𝜋
2𝑋′

.

(11)

Usually, the fundamental mode (n = 1) is the case of most interest. Thus, B can be rewritten as:

𝐵 =
𝜋

2𝑋′
 , where, from Figure 2.1, X′ =  X +  d. 

So 𝐵 =
𝜋

2(𝑋 + 𝑑)      or     𝐵 =
𝜋

(𝑑 + 2𝑋 + 𝑑) .

Thus, 𝜙(𝑥) =  A cos
𝜋𝑥
2𝑋′

.

(12)

The remaining variable to determine is the value for A, the amplitude of the flux, which depends on 
the power of the fissile system. Until the power of the system is specified or known, A remains 
undetermined. Note that B determines the flux shape or frequency for the system.

At this point, it appears that we have a problem because two different values for B2 have been 
defined.



9

𝐵2 =
𝜐𝛴𝑓 ― 𝛴𝑎

𝐷    and   𝐵2 =
𝜋

2𝑋′

2
(13)

These values for B2 are not incorrect. The first definition is known as the material buckling, 𝑩𝟐
𝒎, and is 

dependent only on the materials in the system. The second definition is known as the geometrical 
buckling, 𝐵2

𝑔, and is dependent only on the system geometry. (Note: the buckling is B2, not B, so it has 
units of cm−2.)

If the geometric buckling, 𝐵2
𝑔, is the solution to the steady-state diffusion equation, then the definition can 

only apply when the multiplication factor for the system is 1 (critical). The material buckling, 𝐵2
𝑚, is 

independent of the multiplication factor; however, if the material buckling is just equal to the geometric 
buckling, then the system must be critical. This is because the geometric buckling, as defined above, is 
applicable only to a critical system. Thus, when  𝐵2

𝑚 = 𝐵2
𝑔, the multiplication factor is equal to 1, which is 

a critical system. It is noteworthy that the relationship between the geometric buckling and the material 
buckling can be used to identify subcritical and supercritical systems as follows.

As previously stated,

𝐵2
𝑚 = 𝐵2

𝑔     then k =  1     (Critical)

𝐵2
𝑚 > 𝐵2

𝑔     then k >  1     (Supercritical)

𝐵2
𝑚 < 𝐵2

𝑔     then k <  1     (Subcritical)

(14)
In other words, within a fixed geometry containing fissile material, the geometric buckling is 
constrained. If more fissile material is present than will fill the geometry, then  the material buckling 
exceeds the geometric buckling, and the system is supercritical. If there is less fissile material than 
needed to fill the geometry, then  the system is subcritical.

It is interesting at this point to see how the effective multiplication factor changes with changes in 
neutron flux. Recall the solution to the steady-state diffusion equation. When the rate of change in the 
neutron flux is positive (dΦ/dt > 0), then the multiplication factor exceeds 1, which is indicative of a 
supercritical system. If the rate of change of the neutron flux is negative (dΦ/dt < 0), then the 
multiplication factor is less than 1, which is indicative of a subcritical system. If the rate of change of 
the neutron flux is zero (dΦ/dt = 0), then the system is at a critical condition, which indicates that the 
neutron population is constant and unchanging as a function of time.

If a change to the multiplication factor of a system is desired, then either the material or geometric 
properties of the system can be changed. Thus, the physical impacts of the material buckling, and 
geometric buckling can be reviewed.

 Material Buckling (𝐵2
𝑚) — the material buckling is primarily a function of the absorption and 

fission cross-sections of a region. Once the moderator is specified, then the diffusion coefficient 
(D) remains effectively constant even if the quantity of the moderator or fuel is changed.

 Geometric Buckling (𝐵2
𝑔) — the geometric buckling affects only the leakage of a system. 

Changing the geometrical properties of a system increases or decreases the neutron leakage.
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Thus, a change in the neutron density of a system is equal to the difference of production and losses 
(absorption and leakage) from the system. 

Change in the Neutron Density = Change in (Production – Absorption – Leakage) or

Change in the Neutron Density = Function of (𝜹𝑩𝟐
𝒎, 𝜹𝑩𝟐

𝒈)

2.2.2 Corrections for One-Group Diffusion Theory

For the discussions about diffusion theory, it is beneficial to discuss the difference between the effective 
multiplication factor (keff) and the infinite multiplication factor (k∞). The keff is the multiplication factor of 
a finite system and considers neutron leakage, neutron absorption, and neutron production. The k∞ is the 
infinite medium multiplication factor, which assumes no neutron losses caused by leakage from the 
system because a neutron cannot leave a system that is infinite in extent. Thus, the production term in the 
neutron diffusion equation, ηΣf, can be written as follows:

𝑘∞ =
Production
Absorbtion  =

𝜈𝛴𝑓

𝛴𝑎
     or     𝜈Σ𝑓 = 𝑘∞ × 𝛴𝑎 (15)

This relationship can be derived from the four-factor formula as follows:

First, define the fuel utilization factor, f, (often called the thermal utilization factor in thermal systems) as 
follows: 

𝑓  =   
𝛴𝐹𝑢𝑒𝑙

𝑎

𝛴𝑆𝑦𝑠𝑡𝑒𝑚
𝑎

     =      
Neutrons absorbed in the fuel

Neutrons absorbed in the system (16)

Now define the neutron reproduction factor, η, as follows:

𝜂 =
𝜐𝛴𝐹𝑢𝑒𝑙

𝑓

𝛴𝐹𝑢𝑒𝑙
𝑎

      =      
Neutrons produced in the fuel
Neutrons absorbed in the fuel

(17)

Then the product of the two is:

𝜂𝑓 =  
𝜐𝛴𝐹𝑢𝑒𝑙

𝑓

𝛴𝐹𝑢𝑒𝑙
𝑎

 ∗  
𝛴𝐹𝑢𝑒𝑙

𝑎

𝛴𝑆𝑦𝑠𝑡𝑒𝑚
𝑎

 =  
𝜐𝛴𝐹𝑢𝑒𝑙

𝑓

𝛴𝑆𝑦𝑠𝑡𝑒𝑚
𝑎

     =      
Neutrons produced
Neutrons absorbed      =      k∞ (18)

Equation (18) is valid for fast systems (i.e., those without moderation or significant neutron energy loss).

For other systems, corrections are required to account for slowing down and the addition of neutrons from 
fast fission. Thus, two correction terms,  and p, are included in k∞ and account for:

  the increase in the number of fissions in the system from fast fissions occurring in a thermal 
system, and
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 p the decrease in the neutrons available in the system for thermal fissions caused by absorptions in 
the resonance region while neutrons are slowing down.

Thus,  and p allow for a one-group equation to be generated with correction factors to consider two-
group effects. The production term in the one-group diffusion equation should be written with these 
terms present; however, these terms are usually assumed to be about equal to 1.0 for a fast system. 
The two terms affect the production of neutrons in a system, so Eq. (15) can be modified as follows:

𝜈𝛴𝑓𝜀𝑝 = 𝑘∞𝛴𝑎 (19)
Equation (19) can be rewritten to produce what is known as the four-factor formula for the infinite 
multiplication factor.

𝜈𝛴𝑓

𝛴𝑎
𝜀𝑝 = 𝑘∞ = 𝜂𝑓𝜀𝑝 (20)

Using Eq. (20), the “corrected” or time-dependent diffusion equation can be written as follows for a finite 
system:

1
𝑣

𝑑𝜙
𝑑𝑡 = 𝑘∞𝛴𝑎𝜙 ― 𝛴𝑎𝜙 ―  ( ― 𝐷∇2𝜙) (21)

This equation can be simplified as follows and is known as the modified steady-state diffusion 
equation. Recall that the time rate of change of the neutron flux for a steady-state system is zero (i.e., 
the neutron population in the system is constant). Therefore,

∇2𝜙 +
𝛴𝑎
𝐷 (𝑘∞ ― 1)𝜙 = 0 (22)

In this equation, Σa / D (units of cm−2) is equal to 1/L2, where L is the neutron diffusion length. The 
modified one-group diffusion theory equation can now be rewritten:

∇2𝜙 +
(𝑘∞ ― 1)

𝐿2 𝜙 = 0     or     ∇2𝜙 + 𝐵2
𝑚𝜙 = 0

where:          𝐵2
𝑚 =  

(𝑘∞ ― 1)
𝐿2      and      L   =   𝐷

𝛴𝑎

(23)

Rearranging Eq. (23), we get the following:

1 =
𝑘∞

1 + 𝐵2
𝑚𝐿2 (24)

Equations (23) and (24) represent a critical system where the multiplication factor, keff, is equal to 1. It is 
important to note that for a system to be critical, the infinite multiplication factor, k∞, must be greater than 
or equal to one. If it is equal to one, then there must be no leakage in a critical system. Thus, the fraction 
of non-leakage for a critical system is 1/k∞. For example, if k∞ = 3/2, then 2/3 of the neutrons must remain 
in the system if it is a critical system. If PNL is defined as the non-leakage probability, then for a critical 
system,
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𝑃𝑁𝐿 =
1

𝑘∞
     or     𝑘∞𝑃𝑁𝐿 = 1 (25)

Using the second of the equations in (25) gives a mathematical representation of PNL:

𝑘∞𝑃𝑁𝐿 = 1     and     1 =
𝑘∞

1 + 𝐵2
𝑚𝐿2      so     𝑘∞𝑃𝑁𝐿 =

𝑘∞

1 + 𝐵2
𝑚𝐿2      or     𝑃𝑁𝐿 =

1
1 + 𝐵2

𝑚𝐿2 (26)

The leakage fraction is PL = 1 – PNL or:

𝑃𝐿 = 1 ― 𝑃𝑁𝐿     or     1 ―
1

1 + 𝐵2
𝑚𝐿2 so𝑃𝐿 =

𝐵2
𝑚𝐿2

1 + 𝐵2
𝑚𝐿2 (27)

Remember, for a critical system, 𝑩𝟐
𝒎 = 𝐵2

𝑔, so the material buckling can be replaced with the geometric 
buckling to determine the non-leakage probability or the leakage fraction. As this is the case, the critical 
buckling, 𝑩𝟐

𝒄  = 𝑩𝟐
𝒎 = 𝐵2

𝑔 will be used where applicable.

2.2.3 Modified One-Group Diffusion Theory

Even corrected for fast fission and resonance absorption, one-group diffusion theory does not consider 
moderation as required for thermal systems. In particular, the process of moderation requires some 
distance for the neutrons to travel while slowing down. In the process of moderation, some neutrons may 
leak from the system. To account for these effects, one-group diffusion theory is modified by considering 
the neutron slowing down distance and non-thermal leakage.

The parameter typically used to account for slowing down is τ, known as the neutron age (cm2). This is 
analogous to the square of the diffusion length for one-speed neutrons, but it accounts for the range of 
neutron speeds involved in moderation. When incorporated in the non-thermal non-leakage probability, 
the neutron age accounts for both the distance required to moderate the neutrons and the leakage of 
neutrons during moderation.

Using τ, the non-thermal or fast non-leakage probability, Pf, is defined from age diffusion theory as:

𝑃𝑓 = 𝑒―𝐵2
𝑐𝜏 (28)

For large systems, 𝐵2
𝑐𝜏is small, so the fast non-leakage probability, Pf, can be approximated as:

𝑃𝑓 = 𝑒―𝐵2
𝑐𝜏 ≈ 1 ― 𝐵2

𝑐𝜏 ≈
1

1 + 𝐵2
𝑐𝜏

, (29)

which is analogous to the one-speed non-leakage probability as defined in Eq. (25). Now using the 
neutron age factor to account for moderation, the production term for a thermal system (one where most 
of the neutrons have been moderated) can be written as:

production =  𝑘∞𝛴𝑎𝑒―𝐵2
𝑐𝜏𝜙 (30)

Then the modified, steady-state diffusion equation can be written as:
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𝑘∞𝛴𝑎𝑒―𝐵2
𝑐𝜏𝜙 ― 𝛴𝑎𝜙 ―  ( ― 𝐷∇2𝜙) = 0

rearranging and using the definition of L2

∇2𝜙 +
𝑘∞𝑒―𝐵2

𝑐𝜏 ― 1
𝐿2 𝜙 = 0     or     ∇2𝜙 + 𝐵2

𝑐𝜙 = 0

so  𝐵2
𝑐 =

𝑘∞𝑒―𝐵2
𝑐𝜏 ― 1

𝐿2 = 𝐵2
𝑚     and     

𝑘∞𝑒―𝐵2
𝑐𝜏

1 + 𝐵2
𝑐𝐿2 = 1

(31)

where the last equation is known as the age-diffusion critical equation. Note that neutron age must be 
determined for the specific moderator used to create a thermal system. Using the definitions of fast and 
thermal non-leakage probabilities and the four-factor formula from Eq. (20), the age diffusion equation 
for a critical thermal system can be written in terms of six factors: 

𝑘∞
𝑒―𝐵2

𝑐𝜏

1 + 𝐵2
𝑐𝐿2 = 1 = 𝜂𝑓𝜀𝑝𝑃𝑓𝑃𝑡ℎ (32)

where 𝑃𝑡ℎ =
1

1 + 𝐵2
𝑐𝐿2 is the thermal non-leakage probability, and 𝑃𝑁𝐿 = 𝑃𝑓𝑃𝑡ℎ is the total non-leakage 

probability. 

If the approximation from Eq. (29) is used for the fast non-leakage probability, then the critical condition 
can be written as:

𝑘∞

1 + 𝐵2
𝑐𝜏 1 + 𝐵2

𝑐𝐿2
𝑡ℎ

= 1     where     𝐿2
𝑡ℎ =

𝐷𝑡ℎ
𝛴𝑎𝑡ℎ

(33)

Doing the indicated multiplication in the denominator and ignoring the fourth-order term in Bc (it was 
assumed that the buckling was very small, so the square of the buckling will be very, very small), then

𝑘∞

1 + 𝐵2
𝑐𝜏 1 + 𝐵2

𝑐𝐿2
𝑡ℎ

=
𝑘∞

1 + 𝐵2
𝑐 𝜏 + 𝐿2

𝑡ℎ
=

𝑘∞

1 + 𝐵2
𝑐𝑀2

= 1 (34)

where 𝑀2 = 𝜏 + 𝐿2
𝑡ℎ is the migration area with units of cm2. Equation (34) is the modified one-group 

expression for a critical thermal system.

2.3 CALCULATION OF PARAMETERS USED IN DIFFUSION THEORY

This section provides equations for calculating corrected cross sections, resonance escape probability, 
system diffusion length, buckling and flux shape associated with simple geometries, and discussion of 
calculations in reflected systems.

2.3.1 Corrections to 2,200 m/s Cross Sections

Most tables of thermal neutron cross sections provide values for a single energy (0.0253 eV) or its 
associated velocity (2,200 m/s). However, in most cases, we will have a distribution of neutron energies, 
so we will need cross sections for many different energies. At a more advanced level, we can apply what 
is known as the multigroup treatment to handle this problem. For hand calculations of thermal systems, 
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we will focus on neutrons that can be described by the Maxwellian distribution. We want to conserve the 
interaction rate over the range of neutron energies. We will particularly focus on the neutron absorption 
rate, so

Absorptions =  𝑛(𝐸) 𝑣(𝐸)𝛴𝑎(𝐸)𝑑𝐸 (35)

where Σa is the macroscopic absorption cross section as a function of energy, and the integral is evaluated 
in the thermal region up to about 0.1 eV.

For thermal systems, the neutron absorption cross section varies as 1/v at low energies, so we can write 
the energy variation of the cross section as follows:

𝛴𝑎(𝐸) = 𝛴𝑎(𝐸𝑜)
𝑣𝑜

𝑣(𝐸) (36)

where Eo is an energy reference point, and vo is the velocity associated with Eo. Substituting this 
expression into the integral of Eq. (35), the v(E) functions cancel out, and we are left with:

Absorptions =  Σ𝑎(𝐸𝑜)𝑣𝑜 𝑛(𝐸) 𝑑𝐸 (37)

The integral is the total thermal neutron density, n, so the number of absorptions in a thermal system 
where the cross section is 1/v dependent will be:

Absorptions =  Σ𝑎(𝐸𝑜)𝑛𝑣𝑜 = 𝛴𝑎(𝐸𝑜)𝜙𝑜 (38)
Thus, for a 1/v absorber, the absorption rate is independent of the energy distribution of the neutrons and 
is simply based on the absorption cross section at a reference energy. As most neutron cross sections are 
measured in materials at the ambient temperature, the reference energy, Eo, is taken as 0.0253 eV (20 °C) 
with a corresponding velocity, vo, of 2,200 m/s. Cross section tabulations are prepared for 2,200 m/s 
neutrons. These are often labeled thermal cross sections but are only valid for monoenergetic neutrons 
with a velocity of 2,200 m/s (thermal neutrons are described in the next section). The product, nvo, is 
called the 2,200 m/s flux, or o.

Distribution Correction

Using the Maxwellian distribution, it can be shown that the average absorption cross section for a thermal 
distribution is:

𝜎𝑡ℎ =
𝜋

2 𝜎𝑜 =
𝜎(2200 m/sec)

1.128 = 0.886 × 𝜎(2200 m/sec) (39)

Thermal Flux

If the flux is given at a temperature (thermal flux) different than 293 K (temperature corresponding to a 
velocity of 2,200 m/s), then the thermal flux must be converted to the 2,200 m/s flux. This includes the 
distribution factor shown above and a correction for temperature. The relationship between the two fluxes 
is as follows:

𝜙𝑜 = 𝜙(𝑇)
𝜋

2
𝑇𝑜
𝑇

1
2

=
𝜙𝑜

1.128
𝑇𝑜
𝑇

1
2 (40)
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where To = 293.16 K, o is the 2,200 m/s flux, and (T) is the thermal flux at absolute temperature T. 
Because the distribution correction appears in both the thermal cross section and the thermal flux, one 
needs only to correct either the cross section or the flux, but not both. The correction for thermal flux is 
often combined with the distribution correction to obtain an average thermal cross section.

𝜎𝑡ℎ(𝑇) =
𝜎(𝑇𝑜)
1.128 × 𝑇𝑜

𝑇
=

𝜎(2200 m/sec)
1.128 × 293.16 K

𝑇
(41)

This thermal cross section is then multiplied by the thermal flux to get the interaction rate (absorptions 
per second).

Absorptions =  Σ𝑎(𝐸𝑜)𝑛𝑣𝑡ℎ = 𝑁𝜎𝑡ℎ𝜙𝑡ℎ = 𝑁𝜎𝑎(𝐸𝑜)𝜙𝑜 (42)
So, one can either use the thermal flux and thermal cross section or the 2,200 m/s flux and the 2,200 m/s 
cross section to calculate the absorption reaction rate.

Departure from 1/v Dependence

For some fissile material and some commonly used absorber materials, the cross-section behavior is not 
strictly 1/v. To correct for this, an empirical relationship has been developed, and the correction is 
characterized by g(T). There are separate correction factors for absorption cross sections and for fission 
cross sections. Correction factors as a function of system temperature for some commonly used materials 
are given in Table 2-1 (based on Reference 3). These correction factors are then combined with the 
temperature and distribution correction factors to give the average microscopic thermal neutron cross 
section at a given temperature.

𝜎𝑡ℎ(𝑇) =
𝜎(𝑇𝑜)
1.128 × 𝑔(𝑇) × 𝑇𝑜

𝑇
= 0.886 × 𝜎(2200 m/sec) × 𝑔(𝑇) × 293.16 K

𝑇 (43)

This thermal cross section is then multiplied by the thermal flux and the atom density to give the reaction 
rate. These results and corrections are strictly applicable to a completely thermalized system in which 
there is a Maxwell–Boltzmann distribution of neutrons that corresponds to the temperature of the 
moderator (i.e., the neutrons are in “thermal equilibrium” with the moderator material).

Table 2-1. Non-1/v Factors*.

Cd In U-235 U-238 Pu-239T
(° C) ga ga ga gf ga ga gf

20
100
200
400
600
800
1000

1.3203
1.5990
1.9631
2.5589
2.9031
3.0455
3.0599

1.0192
1.0350
1.0558
1.1011
1.1522
1.2123
1.2915

0.9780
0.9610
0.9457
0.9294
0.9229
0.9182
0.9118

0.9759
0.9581
0.9411
0.9208
0.9108
0.9036
0.8956

1.0018
1.0031
1.0049
1.0085
1.0122
1.0159
1.0198

1.0723
1.1611
1.3388
1.8905
2.5321
3.1006
3.5353

1.0487
1.1150
1.2528
1.6904
2.2037
2.6595
3.0079

* Based on Reference 3, C.H. Wescott, Effective Cross Section Values for Well-Moderated Thermal 
Reactor Spectra, AECL-1101, January 1962.
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2.3.2 Calculation of the Resonance Escape Probability

Resonance Escape Probability

After accounting for fast as well as thermal fissions, there are ε fast neutrons. As these neutrons slow 
down by interacting with a moderator, some of them may also interact with the U-238 in a uranium 
system (or Pu-240 in a plutonium system). At energies above 1 eV, U-238 has absorption resonances that 
dramatically increase the probability of neutron absorption. These resonances have very small energy 
widths, so a neutron must have a very specific energy to be absorbed in them. The energies of the 
neutrons will be related to the moderator, its macroscopic scattering cross section, and its average 
logarithmic energy decrement. To account for absorption in resonances, a parameter called the resonance 
escape probability, p, is calculated. The resonance escape probability is the number of neutrons that make 
it to thermal energies (and are thus absorbed because there is no leakage in an infinite system) divided by 
the number produced from all fissions (effectively the number of fast neutrons in the system). 

ε =  Neutrons produced from all fissions
Neutrons produced from thermal fissions

(44)

p =  Thermal neutrons absorbed in the system
Neutrons produced from all fissions

Empirical equations have been derived to calculate resonance escape in U-238. The equation that will be 
used in this work is the following:

𝑝 = 𝑒𝑥𝑝
―3.06

𝜉
𝑁𝑈238

𝑁𝑠𝑚𝑜𝑑𝑚𝑜𝑑

0.528
(45)

where the units on atom density for U-238 and for the moderator must be the same. The units on the 
microscopic scattering cross section of the moderator must be barns, and ξ is the average logarithmic 
energy decrement for the moderator. Depending on the enrichment and fuel to moderator ratio, p will 
range from 0.3 to 1.0.1

Lethargy and “Squiggly (ξ)”

Because the neutron energy in a fissile system covers a wide range (from 10 MeV down to 0.01 eV), it is 
convenient to express the energy, E, in a logarithmic form as a dimensionless quantity called the 
lethargy, u.

1 When using a cross section for hydrogen in a resonance escape calculation or in the determination of “squiggly 
(ξ)”, a scattering cross section of 20.4 b is appropriate. This is the value of the hydrogen scattering cross section in 
the resonance energy range of 0.1 eV to 10 keV and as such is appropriate to a calculation of the resonance escape 
probability. (See R.D. O’Dell and R.D. Busch, “Validity of Hansen-Roach Cross Sections in Low-Enriched 
Systems,” LA-UR-91-2347, July 1991 as reproduced as Appendix E of Busch, R.D., “A Primer for Criticality 
Calculations with DANTSYS,” LA-13265, August 1997 (Reference 4). Some references (e.g., References 1, and 2) 
provide a thermal scattering cross section of 103 barns for water, but due to the bonding behavior of hydrogen in 
water at thermal energies, this value is higher than the actual value of 44.6 b (=20.4 * 2 + 3.8) over the resonance 
energy range.
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𝑢 ≡ 𝑙𝑛
𝐸𝑚
𝐸 (46)

where Em is an arbitrary reference point corresponding to zero lethargy. In most nuclear engineering 
applications, particularly those involving fission, Em is usually taken as 10 MeV. Thus, the lethargy of a 
neutron increases as it slows down; that is, u increases as E decreases. If u1 is the lethargy corresponding 
to E1, the energy before a collision, and u2 is the lethargy corresponding to E2, the energy after the 
collision, then the change in lethargy u2 - u1 is:

𝛥𝑢 = 𝑢2 ― 𝑢1 = 𝑙𝑛
𝐸1
𝐸2

(47)

Another useful quantity in neutron slowing down analyses is the average value of the decrease in the 
natural logarithm of the neutron energy per collision or the average logarithmic energy decrement per 
collision, denoted by ξ. 

𝜉 = 1 +
(𝐴 ― 1)2

2𝐴 𝑙𝑛
(𝐴 ― 1)
(𝐴 + 1) = 1 +

𝛼
1 ― 𝛼 𝑙𝑛 𝛼 where𝛼 =

(𝐴 ― 1)
(𝐴 + 1)

2

(48)

Note that ξ, often called “squiggly,” is independent of the initial energy of the neutron. Except for small 
values of A (A<4), squiggly is well approximated by:

𝜉 ≃
2

𝐴 + 2
3

(49)

For hydrogen, ξ = 1, and for deuterium, ξ = 0.725.

If the moderator is not a single material but a compound containing k different nuclei, then the effective 
value of ξ to be used in Eq. (45) is given by:

𝜉 =
∑𝑘

𝑖=1 𝑁𝑖𝜎𝑠𝑖𝜉𝑖

∑𝑘
𝑖=1 𝑁𝑖𝜎𝑠𝑖

=
𝑁1𝜎𝑠1𝜉1 + 𝑁2𝜎𝑠2𝜉2 + … + 𝑁𝑘𝜎𝑠𝑘𝜉𝑘

𝑁1𝜎𝑠1 + 𝑁2𝜎𝑠2 + … + 𝑁𝑘𝜎𝑠𝑘
(50)

Note that because moderation is a scattering process, the average logarithmic energy decrement is 
weighted by the macroscopic scattering cross section, Σs, for each nuclide in the system.

2.3.3 Slowing Down and Thermal Diffusion

The neutron leakage from a finite system is a function of the geometry (its size and shape). The size 
parameter has to do with the average distance traveled from birth to thermalization for a fast neutron and 
from thermalization to death for a thermal neutron in the system. The first length is called the slowing 
down length, Lf, whereas the second is known as the diffusion length, Lth. In most systems, it is the 
properties of the moderator that determine the values for the two lengths. Values of fast and thermal 
properties for typical moderators are given in Table 2-2.

Table 2-2. Values of Fast and Thermal Properties for Selected Moderators*.

Moderator Lf
(cm)

Df
(cm)

τ
(cm2)

Lth
(cm)

Dth
(cm)

H2O 5.2 1.13 ~27 2.85 0.16
D2O 11.4 1.29 130 97 0.87
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Be 10.1 0.56 102 21 0.50
Graphite 19.2 1.02 368 59 0.84

* Based on Reference 2 and Reference 5.

The D parameters in the table are fast and thermal diffusion coefficients that relate neutron flow to the 
flux gradient. The slowing down length, neutron age, and thermal diffusion length can be determined 
from the diffusion coefficients and the macroscopic absorption cross section for the system as

𝐿𝑓 =
𝐷𝑓

𝛴𝑎―𝑓𝑎𝑠𝑡
     𝜏 =

𝐷𝑓

𝛴𝑎―𝑓𝑎𝑠𝑡
𝐿𝑡ℎ = 𝐷𝑡ℎ

𝛴𝑎―𝑡ℎ𝑒𝑟𝑚𝑎𝑙
(51)

When calculating critical size, the thermal diffusion area of the system is required. This can be calculated 
from the diffusion coefficient of the system and the macroscopic absorption cross section of the system, 
or it can also be calculated based on the moderator characteristics.

𝐿2
𝑠𝑦𝑠 = 𝐿2(1―𝑓)

𝑚𝑜𝑑 (52)

The leakage probability for fast and thermal neutrons is often characterized by the migration area, M2, 
which is the sum of the fast slowing down area and the thermal diffusion area. The greater the value of 
M2, the greater the probability that a neutron will leak.

𝑀2 = 𝐿2
𝑓 + 𝐿2

𝑡ℎ     or     𝑀2 = 𝜏 + 𝐿2
𝑡ℎ (53)

2.3.4 Flux Shapes for Critical, Bare, Infinite Geometries

Solutions to the one-group diffusion equation for different geometries are based on the Laplacian for that 
geometry. For example, in a sphere, the solution to the Laplacian is a function of sine and cosine. After 
appropriate boundary conditions are applied, the flux in a sphere is as follows: 

𝜙(𝑥) =  𝐴/𝑟𝑠𝑖𝑛 𝜋𝑟/𝑅 , whereas the same approach gives the flux in an infinite cylinder as

𝜙(𝑥) =  𝐴𝐽𝑜 2.405𝑟/𝑅  and for the flux in an infinite slab as 𝜙(𝑥) =  𝐴𝑐𝑜𝑠 𝜋𝑥/𝐻 . 

In these equations, A is the maximum value of the flux, and the dimensions identified with a ~ include 
extrapolation distances.

Note that there is an inconsistency in the units between the sphere equation and the other two equations. 
The last two equations have units associated with the constant A, whereas the sphere has units of those 
associated with A but divided by units of length. This indicates a normalization problem, so the equations 
need to be reformed into a consistent set where the value of (0) = A. 

For the slab and for the cylinder, there is no need for a change in format as both have the value of A at the 
origin. However, for the sphere, it is necessary to ascertain its value at r = 0. Use of L'Hospital's Rule 
provides a (0) = A 𝜋/𝑅 . So, the equation must be normalized to A by multiplying by 𝑅/𝜋  to give 
𝜙(𝑥) =  𝐴 𝑅/𝜋𝑟 𝑠𝑖𝑛 𝜋𝑟/𝑅 . 
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Table 2-3 provides the flux shape and geometric buckling for three simple geometries: a sphere, an 
infinite cylinder, and an infinite slab. 

Table 2-3. Flux Shape and Geometric Buckling for Simple Geometries.

Configuration Flux Shape for Critical, Bare 
Reactor Geometric Buckling, Bg

2

Sphere of Radius, R 𝑅
𝜋𝑟

 sin 𝜋𝑟
𝑅 + 𝑑

 
𝜋

𝑅 + 𝑑
2

Infinite Cylinder of Radius, R 𝐽𝑜
2.405𝑟
𝑅 + 𝑑

 2.405
𝑅 + 𝑑

2

Infinite Slab of Thickness, H 𝑐𝑜𝑠 𝜋𝑥
𝐻 + 2𝑑  

𝜋
𝐻 + 2𝑑

2

Note: The variable d in each of the expressions for geometric buckling is the extrapolation distance, which is a function of 
the fissile material present in the system, the shape or geometry, and the materials surrounding the fissile material. Each of 
the flux shape equations is normalized to a value of 1.0 at the center of the geometry.

The flux shapes are shown in Figure 2-2. The fluxes in Figure 2-2 are normalized to unity at the center. 
Note that the slab flux is greater than the infinite cylinder flux, which is greater than the flux in a sphere. 

Figure 2-2. Neutron fluxes for the infinite slab, infinite cylinder, and sphere as a function of the fractional 
distance from their center to the surface. 
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2.3.5 Reflected Spheres and Slabs

Neutron economy is improved when the core of a reactor is surrounded by a reflector—that is, by a thick, 
unfueled region of moderator. The neutrons that otherwise would leak from the bare core now pass into 
the reflector, and some of these diffuse back into the core. The net result is that the critical size, and hence 
mass of the system, is reduced.

Criticality calculations for reflected reactors are now considered within the framework of the one-group 
diffusion theory. Recall that this method is applicable to calculations of fast reactors and thermal reactors, 
such as those moderated by D2O or graphite for which τT << LT

2. Reflected water reactors are treated 
separately as τT >> LT

2. 

Reflected Sphere

As an example, consider a spherical reactor consisting of a core of radius R and surrounded by an infinite 
reflector. In the following analysis, parameters that refer to the core and reflector are denoted by the 
subscripts c and r, respectively.

Solving the diffusion equation in the core gives a flux:

𝜙𝑐(𝑟) = 𝐴
𝑠𝑖𝑛 𝐵 𝑟

𝑟 + 𝐶
𝑐𝑜𝑠 𝐵 𝑟

𝑟 (54)

where A and C are constants determined from the boundary conditions. The symmetry boundary 
condition requires C = 0. As there is no fuel in the reflector, the flux in that region satisfies the one group 
diffusion equation:

∇2𝜙𝑟 ―
1

𝐿2
𝑟

𝜙𝑟 = 0     whose general solution is     𝜙𝑟(𝑟) = 𝐴′
𝑒― 𝑟

𝐿𝑟

𝑟 + 𝐶′
𝑒+ 𝑟

𝐿𝑟

𝑟 (55)

where A’ and C’ are constants determined from the boundary conditions. The boundary condition of a 
finite flux as r goes to infinity requires C’ = 0. Applying the continuity of flux and current boundary 
conditions at the interface between the core and reflector produces the following critical condition for a 
reflected spherical reactor:

𝐵𝑅 𝑐𝑜𝑡(𝐵𝑅) ― 1 = ―
𝐷𝑟
𝐷𝑐

𝑅
𝐿𝑟

𝑐𝑜𝑡ℎ
𝑇
𝐿𝑟

+ 1 (56)

where T is the thickness of the reflector plus the extrapolation distance. This transcendental equation is 
solved for R either graphically or using a Goal Seek/Solver approach in a spreadsheet. The B in Eq. (56) 
is the square root of the critical buckling for the bare system with the same fissile material. Note that the 
critical radius for a reflected system is less than the critical radius of the bare system for the same 
material. This means that the reflected system is critical with less fissile material.

Reflected Infinite Slab

As another example, consider an infinite slab of thickness a surrounded on both sides by a reflector of 
extrapolated thickness, b. In the following analysis, parameters that refer to the core and reflector are 
denoted by the subscripts c and r respectively.

Solving the diffusion equation in the core gives a flux:
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𝜙𝑐(𝑟) = 𝐴 𝑐𝑜𝑠 𝐵 𝑥 + 𝐶 𝑠𝑖𝑛 𝐵 𝑥 (57)
where A and C are constants determined from the boundary conditions. The symmetry boundary 
condition requires C = 0. As there is no fuel in the reflector, the flux in that region satisfies the one-group 
diffusion equation:

∇2𝜙𝑟 ―
1

𝐿2
𝑟

𝜙𝑟 = 0     general solution

     𝜙𝑟(𝑟) = 𝐴′ 𝑠𝑖𝑛ℎ
(𝑎/2 + 𝑏 ― |𝑥|)

𝐿𝑟
+ 𝐶′ 𝑐𝑜𝑠ℎ

(𝑎/2 + 𝑏 ― |𝑥|)
𝐿𝑟

(58)

where A’ and C’ are constants determined from the boundary conditions. The boundary condition of flux 
= 0 at |x| = a/2 + b, requires C’ = 0. Applying the continuity of flux and current boundary conditions at 
the interface between the core and reflector produces the following critical condition for a reflected 
infinite slab system:

𝐵 𝑡𝑎𝑛
𝐵𝑎
2 =

𝐷𝑟
𝐷𝑐

1
𝐿𝑟

𝑐𝑜𝑡ℎ
𝑏
𝐿𝑟

(59)

This equation can be rearranged to solve for a using the critical buckling of the bare system, as the B in 
Eq. (59) is the square root of the critical buckling for the bare system with the same fissile material. 
Again, note that the critical thickness for a reflected system is less than the critical radius of the bare 
system for the same material. This means that the reflected system is critical with less material.

Reflected Infinite Cylinder

Calculations for a reflected infinite cylinder are more difficult, as these require Io, Jo, Ko, and Yo Bessel 
functions, which are likely unfamiliar to most of us. However, an approximation can be made by 
assuming similarity to an infinite slab. Notice in Figure 2-2, the flux shape of the infinite slab and infinite 
cylinder are very similar. As a rough estimate of the thickness of a reflected cylinder, Eq. (59) can be used 
with the reflected cylinder diameter Rcyl replacing a.

2.4 APPLICABILITY OF ONE-GROUP DIFFUSION THEORY

Because diffusion theory is derived from the Boltzmann Neutron Transport equation using several 
assumptions, there are limitations to its application. The one-group diffusion theory method is 
applicable for fissile material systems with the following characteristics and assumptions.

 All neutrons in the system must have the same energy or velocity (this approximation is more valid 
for fast, but not thermal, systems).

 It is assumed that neutrons that collide with nuclei in the system do not lose energy, and only their 
direction of movement changes.

 The medium in which the neutrons are diffusing is homogeneous.

 Neutron scattering is isotropic, meaning that neutrons that scatter will do so in all directions.

 A “close-fitting” neutron reflector does not surround the fissile material.

 The medium in which the neutrons are diffusing is weakly absorbing.
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 The neutron flux is a slowly varying function of position in the system, a characteristic which is true 
at points in the system that are at least a few mean free paths from the system boundaries.

2.5 APPLICABILITY OF MODIFIED ONE-GROUP DIFFUSION THEORY

The modified one-group diffusion approximation has the same applicability and limitations as the one-
group diffusion approximation; however, the added correction factors allow this method to be used for 
homogeneous systems that contain moderating materials.

2.6 EXAMPLE PROBLEMS

The example problems for one-group and modified one-group diffusion theories will illustrate how 
they can be applied to simple systems to determine the characteristics for the system. Each method 
will be compared with the others to show the usefulness and limitations of the methods for various 
systems.

2.6.1 Diffusion Theory Example Problem 1 – Fast System with Uranium

The Godiva critical assembly used for experiments at Los Alamos National Laboratory (LANL) was 
employed in various critical experiments (see Figure 2-3). Assume the assembly is made from 93.5%2 
enriched U-235 ( = 18.74 g/cm3) and is an unreflected or bare system. Using one-group diffusion theory, 
estimate the spherical critical radius (cm) for this system with the three fissile pieces fully assembled. 

2 Enrichments of uranium are often written in the form of U(93.5) with the value in parentheses indicating the 
weight percent of U-235.
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Figure 2-3. The Godiva I Critical Assembly at LANL (Reference 6).

Before starting any calculation of fissile material system properties, one should have an idea what the 
answer should be—that is, at least an order of magnitude estimate, as well as the expected units of the 
results. For this case, we are interested in the spherical critical radius in centimeters. There are several 
handbooks and safety guides that provide information and critical dimensions for fissile systems. For this 
problem, we are using ARH-600, Vol. II (Reference 7). On page III.B-2, it indicates that the minimum 
spherical critical mass of U-235 for a bare metal U(93.5) system is 47 kg U-235 at a density of 18.8 g 
U-235/cc. Using these data, the spherical volume would be 2,500 cc. The associated spherical radius is 
then 8.42 cm. So, our calculations should give a result around 8.5 cm.

The data relevant for this problem are listed in Table 2-4 below. Note that Godiva is an unmoderated, fast 
system. Therefore, the first step in solving this problem is to make sure that fast neutron cross section data 
are used in the calculation.
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Table 2-4. Diffusion Theory Example Problem 1 Data.

Constituent Parameter Data Value Reference
a(fast) 1.65 barns 2, Table 6-1, pg. 267
f(fast) 1.40 barns 2, Table 6.1, pg. 267
tr(fast) 6.80 barns 2, Table 6.1, pg. 267

235U

 2.60 2, Table 6.1, pg. 267
a(fast) 0.255 barns 2, Table 6.1, pg. 267
f(fast) 0.095 barns 2, Table 6.1, pg. 267
tr(fast) 6.90 barns 2, Table 6.1, pg. 267

238U

 2.60 2, Table 6.1, pg. 267

First, calculate the atom densities for the enriched uranium so that the macroscopic fission and absorption 
cross sections can be calculated. (Procedures and equations for calculating atom densities can be found in 
the Appendix of the DANTSYS3 Primer, Reference 4.)

𝑁 =
𝑤𝑡. % 𝑜𝑓 𝐶𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 × 𝜌𝑚𝑖𝑥𝑡𝑢𝑟𝑒 × 𝑁𝐴

𝐴𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡

𝑁235𝑈 =
(0.935)(18.74 𝑔/𝑐𝑚3)( 0.6022 𝑎𝑡𝑜𝑚𝑠 ― 𝑐𝑚2

𝑚𝑜𝑙–𝑏)
235.04 𝑔/𝑚𝑜𝑙 = 4.489 × 10–2 𝑎𝑡𝑜𝑚𝑠/𝑏–𝑐𝑚

𝑁238𝑈 =
(0.065)(18.74 𝑔/𝑐𝑚3)( 0.6022 𝑎𝑡𝑜𝑚𝑠 ― 𝑐𝑚2

𝑚𝑜𝑙–𝑏)
238.05 𝑔/𝑚𝑜𝑙 = 3.081 × 10―3 𝑎𝑡𝑜𝑚𝑠/𝑏–𝑐𝑚.

Now that the atom densities for U-235 and U-238 have been determined, the macroscopic absorption and 
fission cross sections can be calculated for this fast system. References 1 and 2 provide good 
background information about calculating macroscopic cross sections.

𝛴𝑈―235
𝑎 = 𝑁235𝑈 × 𝜎235𝑈

𝑎

𝛴𝑈―235
𝑎 = 4.489 × 10―2 𝑎𝑡𝑜𝑚𝑠/𝑏–𝑐𝑚 × 1.65 𝑏 = 7.407 × 10–2 𝑐𝑚–1

𝛴𝑈―238
𝑎 = 𝑁238𝑈 × 𝜎238𝑈

𝑎

𝛴𝑈―238
𝑎 = 3.081 × 10―3 𝑎𝑡𝑜𝑚𝑠/𝑏–𝑐𝑚 × 0.255 𝑏 = 7.857 × 10–4 𝑐𝑚–1

3 DANTSYS (Diffusion Accelerated Neutron Transport code SYStem) was developed at Los Alamos as a modular 
computer program package designed to solve the time-independent or time-dependent multigroup discrete ordinates 
form of the Boltzmann transport equation in simple one-, two-, and three-dimensional geometries. It has since been 
replaced by PARTISN (PARallel, TIme-Dependent SN), which handles the same geometries plus a couple more and 
has additional features that speed up the solution process. The listed reference for DANTSYS is also applicable to 
PARTISN. In this document, all further references to the computer code will be to PARTISN.
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𝛴𝑈―235
𝑓 = 𝑁235𝑈 × 𝜎235𝑈

𝑓

𝛴𝑈―235
𝑓 = 4.489 × 10–2 𝑎𝑡𝑜𝑚𝑠/𝑏–𝑐𝑚 × 1.40 𝑏 = 6.285 × 10–2 𝑐𝑚–1

𝛴𝑈―238
𝑓 = 𝑁238𝑈 × 𝜎238𝑈

𝑓

𝛴𝑈―238
𝑓 = 3.081 × 10–3 𝑎𝑡𝑜𝑚𝑠/𝑏–𝑐𝑚 × 0.095 𝑏 = 2.927 × 10–4 𝑐𝑚–1.

The infinite multiplication factor, k∞, can be determined now that the macroscopic cross sections have 
been calculated. Because it is a small system without moderation, it is dominated by fast neutrons and has 
a high neutron leakage.

𝑘∞ = 𝜂 =  
𝜈𝛴235𝑈

𝑓 + 𝜈𝛴238𝑈
𝑓

𝛴235𝑈
𝑎 + 𝛴238𝑈

𝑎
=

𝜈 𝛴235𝑈
𝑓 + 𝛴238𝑈

𝑓

𝛴235𝑈
𝑎 + 𝛴238𝑈

𝑎
,

𝑘∞ =
(2.60)[6.285 × 10―2𝑐𝑚–1 + 2.927 × 10–4𝑐𝑚–1]

(7.407 × 10―2𝑐𝑚–1) + (7.857 × 10―4𝑐𝑚–1) = 2.193.

The diffusion coefficient, D, the diffusion length, L2, and the material buckling, Bm
2, are now calculated.

𝐷 =
1

3𝛴𝑡𝑟 235𝑈+238𝑈
=

1
3 × 𝑁235𝑈 × 𝜎235𝑈

𝑡𝑟 + 𝑁238𝑈 × 𝜎238𝑈
𝑡𝑟

,

𝐷

=  
1

3 [(4.489 × 10–2 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚)(6.8 𝑏) + (3.081 × 10–3 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚)(6.9 𝑏)] = 1.021 𝑐𝑚
,

𝐿2 =
𝐷

𝛴235𝑈
𝑎 + 𝛴238𝑈

𝑎
=

1.021 𝑐𝑚
7.407 × 10―2 𝑐𝑚–1 + 7.857 × 10–4 𝑐𝑚–1 = 13.64 𝑐𝑚2.

Now, the material buckling, B2
𝑚, can be calculated using the results from above:

𝐵2
𝑚 =

𝑘∞ ― 1
𝐿2 =

2.195 ― 1
13.64 𝑐𝑚2 = 0.0876 𝑐𝑚–2.

We can use the process from the last example problem to determine the critical size for this system, 
knowing that when a system is critical, the material buckling and geometric buckling are equal.

𝐵2
𝑚 = 𝐵2

𝑔 =
𝜋
𝑅

2
,

𝑅 = 𝜋2

𝐵2
𝑚

= 𝜋2

0.0876 𝑐𝑚–2
= 10.61 𝑐𝑚,

𝑅 = 𝑅 ― 𝑑 = 𝑅 ― 2.13 × 𝐷 = 10.61 𝑐𝑚–2.13 × 1.021 𝑐𝑚 = 8.44 𝑐𝑚.
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The physical radius of Godiva is 8.6 cm. The prediction using this method is very close to the actual 
system dimensions in this case. Also, note that the predicted radius is well within our estimate from the 
handbook.

2.6.2 Diffusion Theory Example Problem 2 – Fast System with Plutonium

The Jezebel critical assembly used for experiments at LANL was used to perform various critical 
experiments (see Figure 2-4). Assume the assembly is made from -phase Pu-239 ( = 15.61 g/cm3) and 
is an unreflected or bare system. Using one-group diffusion theory, estimate the spherical critical radius 
for this system with the three fissile pieces fully assembled.

Figure 2-4. The Jezebel Critical Assembly at LANL (Reference 6).
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For an estimate of the critical radius (cm), Jarvis et al. (Reference 8), indicate that a sphere of Pu(4.5)4 has 
a critical mass of 16.28 kg with an effective density of 15.44 g/cc. Using these data, the spherical critical 
volume is 1,054 cc with an associated spherical radius of 6.31 cm. So, our one-group calculated radius 
should be around 6.3 cm. The data relevant for this problem are listed in Table 2-5 below. Note that 
Jezebel is an unmoderated, fast system. Therefore, the first step in solving this problem is to make sure 
that fast neutron cross-section data are used in the calculation.

Table 2-5. Diffusion Theory Example Problem 2 Data.

Constituent Parameter Data Value Reference
a(fast) 2.11 barns 2, Table 6.1, pg. 267
f(fast) 1.85 barns 2, Table 6.1, pg. 267
tr(fast) 6.8 barns 2, Table 6.1, pg. 267
c(fast) 0.26 barns 2, Table 6.1, pg. 267

239Pu

 2.98 2, Table 6.1, pg. 267

First, calculate the atom densities for the Pu-239.

𝑁 =
wt. % Constituent in System × 𝜌mixture × 𝑁𝐴

𝐴𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡

𝑁239𝑃𝑢 =
(15.61 𝑔/𝑐𝑚3)( 0.6022 𝑎𝑡𝑜𝑚𝑠–𝑐𝑚2

𝑚𝑜𝑙 ― 𝑏)
239.05 𝑔/𝑚𝑜𝑙 = 3.932 × 10–2 𝑎𝑡𝑜𝑚𝑠/𝑏–𝑐𝑚.

Now that the atom density for Pu-239 has been calculated, the macroscopic absorption and fission cross 
sections can be determined for this fast system:

𝛴𝑃𝑢
𝑎 = 𝑁239𝑃𝑢 × 𝜎239𝑃𝑢

𝑎

𝛴𝑃𝑢
𝑎 = 3.932 × 10–2 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 2.11 𝑏 = 8.298 × 10–2 𝑐𝑚–1

𝛴𝑃𝑢
𝑓 = 𝑁239𝑃𝑢 × 𝜎239𝑃𝑢

𝑓

𝛴𝑃𝑢
𝑓 = 3.932𝑥10–2 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 1.85 𝑏 = 7.274 × 10–2 𝑐𝑚–1.

The infinite multiplication factor, k∞, can now be calculated. Note that all fissions take place at fast 
energies and that only Pu-239 is present in the system. The neutron leakage from this kind of system is 
rather high because the neutrons do not slow down in this type of system.

4 Similar to uranium, the Pu-240 assay of a plutonium mixture is often written in the form of Pu(4.5), with the value 
in parentheses indicating the weight percent of Pu-240.
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𝑘∞ = 𝜂𝑓 =  𝜈 ×
𝛴𝑃𝑢

𝑓

𝛴𝑃𝑢
𝑎

×
𝛴𝑃𝑢

𝑎
𝛴𝑃𝑢

𝑎

𝑘∞ = 2.98 ×
7.274 × 10―2𝑐𝑚–1

8.298 × 10―2𝑐𝑚–1 × 1 = 2.612.

Now, the diffusion coefficient, D, the diffusion length, L2, and the material buckling, Bm
2, can be 

calculated based on the result of the k∞ calculation.

𝐷239𝑃𝑢 =
1

3𝛴𝑡𝑟 𝑃𝑢
=

1
3 × 𝑁239𝑃𝑢 × 𝜎239𝑃𝑢

𝑡𝑟

𝐷239𝑃𝑢 =  
1

3 × 3.932 × 10―2 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 6.8 𝑏 = 1.247 𝑐𝑚

𝐿2 =
𝐷239𝑃𝑢

𝛴𝑃𝑢
𝑎

=
1.247 𝑐𝑚

8.298 × 10–2 𝑐𝑚–1 = 15.03 𝑐𝑚2

Now calculate the material buckling, Bm
2:

𝐵2
𝑚 =

𝑘∞ ― 1
𝐿2 =

2.612 ― 1
15.03 𝑐𝑚2 = 0.1073 𝑐𝑚–2.

Notice the diffusion length, L, for this system is short—only about 3.9 cm, as most of the neutrons are 
absorbed in the Pu. The mean free path for this system is as follows:

𝜆𝑡 ≈ 𝜆𝑡𝑟 =
1

𝛴𝑡𝑟
=

1
𝑁239𝑃𝑢 × 𝜎239𝑃𝑢

𝑡𝑟
   =

1
3.932 × 10―2 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 6.8 𝑏 = 3.74 𝑐𝑚

This is a relatively short distance, so most neutrons in the system will have undergone at least one 
interaction before leaking or being absorbed. The buckling is needed to determine the critical size. Now, 
for a critical system, the material and geometric buckling values are equal. The critical dimensions for this 
system can be calculated as follows:

𝐵2
𝑚 = 𝐵2

𝑔 =
𝜋
𝑅

2

𝑅 = 𝜋2

𝐵2
𝑚

= 𝜋2

0.1073 𝑐𝑚–1
= 9.59 𝑐𝑚

𝑅 = 𝑅 ― 𝑑 = 𝑅 ― 2.13 × 𝐷 = 9.59 𝑐𝑚 - 2.13 × 1.247 𝑐𝑚 = 6.93 𝑐𝑚.

The actual Jezebel system had a density of 15.61 g/cc, was 4.5 wt. % Pu-240, and had a critical radius of 
6.385 cm. With the cross sections used and assumption of 100 wt. % Pu-239, this method slightly 
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over-predicts the critical radius for this type of system. Note also that the calculated radius is within 10% 
of our initial estimate of 6.31 cm. 

Analysis with collapsed H-R Cross Sections: Jezebel was a mixture of Pu-239 (3.7047e-2 atoms/b-cm), 
Pu-240 (1.7510e-3 atoms/b-cm), Pu-241 (1.17e-4 atoms/b-cm) and Ga (1.375-3 atoms/b-cm). To 
determine the effect of the mixture on the result, a set of six group cross sections from Reference 9 was 
collapsed with a typical fast neutron spectrum. The data are listed in Table 2-6 below. 

Table 2-6. Diffusion Theory Example Problem 2 Data Set 2.

Constituent Parameter Data Value
a(fast) 1.92 barns
f(fast) 5.62 barns239Pu
tr(fast) 6.8 barns
a(fast) 1.23 barns
f(fast) 3.79 barns240Pu
tr(fast) 6.8 barns
a(fast) 1.89 barns
f(fast) 5.76 barns241Pu
tr(fast) 6.0 barns
a(fast) 0.034 barns

Ga
tr(fast) 3.2 barns

Notice that there is much less Pu-239 absorption indicated in this set than in the set given in Table 2-6. 
The atom densities are given, so we continue to calculate the macroscopic absorption, and fission cross 
sections can be determined for this nuclear dataset:

𝛴𝑃𝑢239
𝑎 = 𝑁239𝑃𝑢 × 𝜎239𝑃𝑢

𝑎

𝛴𝑃𝑢239
𝑎 = 3.7047 × 10–2 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 1.92 𝑏 = 7.113 × 10–2 𝑐𝑚–1

𝜈𝛴𝑃𝑢239
𝑓 = 𝑁239𝑃𝑢 × 𝜈𝜎239𝑃𝑢

𝑓

𝜈𝛴𝑃𝑢239
𝑓 = 3.7047𝑥10–2 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 5.62 𝑏 = 2.0820 × 10–1 𝑐𝑚–1.

𝛴𝑃𝑢240
𝑎 = 𝑁240𝑃𝑢 × 𝜎240𝑃𝑢

𝑎

𝛴𝑃𝑢240
𝑎 = 1.751 × 10–3 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 1.229 𝑏 = 2.154 × 10–3 𝑐𝑚–1

𝜈𝛴𝑃𝑢240
𝑓 = 𝑁240𝑃𝑢 × 𝜈𝜎240𝑃𝑢

𝑓

𝜈𝛴𝑃𝑢240
𝑓 = 1.751 × 10–3 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 3.79 𝑏 = 6.636 × 10–3 𝑐𝑚–1.
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𝛴𝑃𝑢241
𝑎 = 𝑁241𝑃𝑢 × 𝜎241𝑃𝑢

𝑎

𝛴𝑃𝑢241
𝑎 = 1.17 × 10–4 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 1.891 𝑏 = 2.21 × 10–4 𝑐𝑚–1

𝜈𝛴𝑃𝑢241
𝑓 = 𝑁241𝑃𝑢 × 𝜈𝜎241𝑃𝑢

𝑓

𝜈𝛴𝑃𝑢241
𝑓 = 1.17 × 10–4 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 5.76 𝑏 = 6.74 × 10–4 𝑐𝑚–1.

𝛴𝐺𝑎
𝑎 = 𝑁𝐺𝑎 × 𝜎𝐺𝑎

𝑎

𝛴𝐺𝑎
𝑎 = 1.375 × 10–3 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 0.034 𝑏 = 4.7 × 10–5 𝑐𝑚–1

The infinite multiplication factor, k∞, can now be calculated by determining η and f. 

𝜂 =  
∑ 𝜈𝛴𝑃𝑢

𝑓

∑ 𝛴𝑃𝑢
𝑎

=
2.0820𝑥10―1 + 6.64𝑥10―3 + 6.7𝑥10―4

7.113𝑥10―2 + 2.15𝑥10―3 + 2.2𝑥10―4

𝜈𝛴𝑓𝑢𝑒𝑙
𝑓

𝛴𝑓𝑢𝑒𝑙
𝑎

=
2.1551𝑥10―1

7.350𝑥10―2 = 2.932

𝑓 =  
𝛴𝑓𝑢𝑒𝑙

𝑎

𝛴𝑓𝑢𝑒𝑙
𝑎 + 𝛴𝐺𝑎

𝑎
=

7.350𝑥10―2

7.350𝑥10―2 + 5𝑥10―5 =
7.350𝑥10―2

7.355𝑥10―2 = 0.9993

𝑘∞ = 𝜂𝑓 =  2.932 × 0.9993 = 2.930.

Now calculate the macroscopic transport cross section for the system.

𝛴𝑠𝑦𝑠
𝑡𝑟 = 𝛴𝑡𝑟 = 𝑁239𝑃𝑢 × 𝜎239𝑃𝑢

𝑡𝑟 + 𝑁240𝑃𝑢 × 𝜎240𝑃𝑢
𝑡𝑟 + 𝑁241𝑃𝑢 × 𝜎241𝑃𝑢

𝑡𝑟 + 𝑁𝐺𝑎 × 𝜎𝐺𝑎
𝑡𝑟

𝛴𝑠𝑦𝑠
𝑡𝑟 =  3.7047 × 10―2 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 6.8 𝑏 + 1.751 × 10―3 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 6.8 𝑏 +
                     1.17 × 10―4 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 6.0 𝑏 + 1.375 × 10―3 𝑎𝑡𝑜𝑚𝑠/𝑏 ― 𝑐𝑚 × 3.16

= 2.6893𝑥10―1 cm―1

Using the macroscopic system transport cross section, calculate the diffusion coefficient, D, the diffusion 
length, L2, and the material buckling, Bm

2.

𝐷𝑠𝑦𝑠 =
1

3𝛴𝑠𝑦𝑠
𝑡𝑟

=
1

3 × 2.6893𝑥10―1 cm―1 = 1.239 cm

𝐿2 =
𝐷𝑠𝑦𝑠

𝛴𝑠𝑦𝑠
𝑎

=
1.239 𝑐𝑚

7.355 × 10–2 𝑐𝑚–1 = 16.85 𝑐𝑚2

Now calculate the material buckling, Bm
2:



31

𝐵2
𝑚 =

𝑘∞ ― 1
𝐿2 =

2.930 ― 1
16.85 𝑐𝑚2 = 0.1145 𝑐𝑚–2.

Notice the diffusion length, L, for this system is a little longer than that of the previous cross sections—
about 4.5 cm, as fewer neutrons are absorbed in the Pu.

The mean free path for this system is:

𝜆𝑡 ≈ 𝜆𝑡𝑟 =
1

𝛴𝑠𝑦𝑠
𝑡𝑟

  =
1

2.6892 × 10―1 cm―1 = 3.72 𝑐𝑚

There is little change from the mean free path calculated with the first set of cross sections. This is 
because most of the material is Pu-239, and its transport cross section is very similar to the transport cross 
section for the mixture. For a critical system, the material and geometric buckling values are equal. The 
critical dimensions for this system can be calculated as follows:

𝐵2
𝑚 = 𝐵2

𝑔 =
𝜋
𝑅

2

𝑅 = 𝜋2

𝐵2
𝑚

= 𝜋2

0.1145 𝑐𝑚–1
= 9.28 𝑐𝑚

𝑅 = 𝑅 ― 𝑑 = 𝑅 ― 2.13 × 𝐷 = 9.28 cm -  2.13 × 1.239 cm =  6.64 cm.

The actual Jezebel system had a critical radius of 6.385 cm. Using the mixture cross sections, the 
predicted radius is close to the actual value. However, it should be noted that one-group calculations for 
small, fast systems are highly sensitive to the transport cross sections, so calculated values for fast 
systems should be used as guidelines or bounding estimates rather than specific physical dimensions.

Calculation of Leakage Fraction. The probability that a neutron will leak out of this material as a 
critical system can be calculated as follows. The non-leakage probability, PNL, is the probability a neutron 
will not leak out of the system. The leakage probability is simply equal to 1-PNL and provides the 
probability that a neutron will leak out of the system. References 1 and 2 provide further detail about this 
topic. The non-leakage and leakage probabilities can be determined using Eq. (25), which applies to a 
critical system:

𝑃𝑁𝐿 =
1

𝑘∞
 and P𝐿 =  1 ― 𝑃𝑁𝐿 = 1 ―

1
𝑘∞

=
𝑘∞ ― 1

𝑘∞

For the critical system of this example (the Jezebel critical assembly), the leakage probability (leakage 
fraction) and nonleakage probability (fraction of neutrons not leaking) can be calculated as:

𝑃𝐿 =
𝑘∞ ― 1

𝑘∞
=

2.930 ― 1
2.930 = 0.659     and     𝑃𝑁𝐿 =

1
𝑘∞

=
1

2.930 = 0.341.
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This provides the analyst with information regarding the probability that a neutron will leak out of the 
critical system instead of being absorbed within the system materials. Based on this calculation, we know 
that about 66% of the neutrons will leak out of the system with the remaining 34% absorbed. This 
calculation illustrates that, for a critical system, the geometry and associated system leakage must be such 
that the effective multiplication factor is reduced from 2.930 (k∞) to 1.0. 

2.6.3 Diffusion Theory Example Problem 3 – Fast System with Various Densities of Plutonium 
Oxide Powder

Using one-group diffusion theory, determine the infinite multiplication factor and the critical mass of Pu 
for a spherical, unreflected configuration of 239PuO2 with a density of 1, 3, 5, 7, 9, and 11.46 g/cm3. 
Compare these results with an infinite system of 239Pu. 

The first step in this problem is to compile the data needed to perform the calculations. As there is no 
moderator, plutonium oxide is assumed to have a fast neutron energy spectrum; so fast data from 
Reference 2 and 5 are compiled in Table 2-7. 

Table 2-7. Diffusion Theory Example Problem 3 Data.

Constituent Parameter Data Value Reference
a(fast) 2.11 barns 2, Table 6.1, pg. 267
f(fast) 1.85 barns 2, Table 6.1, pg. 267
tr(fast) 6.8 barns 2, Table 6.1, pg. 267

 2.98 2, Table 6.1, pg. 267

239Pu

 2.61 2, Table 6.1, pg. 267
a(fast) 0.022 barns 5, Table 4-30, pg. 298

16O
tr(fast) 3.09 barns 5, Table 3-39, pg. 148

First, calculate the atom densities for the mixture constituents using a bulk density of 1 g/cm3 (this makes 
it easy to calculate for the others, as you just multiply the atom density for 1 g/cm3 by the actual bulk 
density to get the new atom density):

Now that the atom densities have been calculated, the macroscopic cross sections can be determined:

 


  


   

239
2

239 239Pu
2

mixture

3 2
–3

2

–3
2 2

(1 / )(0.6022 – – )
2.222 10  molecules PuO /b-cm

(239.052 / +2 15.9994 / )

N 1 atom Pu / molecule PuO 2.222 10  molecules PuO /b-cm

A

constituent

PuO

PuO

N
N

A

g cm atoms cm mol b
N

g mol g mol

N 

     16 239O
2

–3

–3 –3
2 2

=2.222 10  atoms Pu/b-cm

N 2 2 atoms O / molecule PuO 2.222 10  molecules PuO /b-cm=4.444 10  atoms O/b-cm.
PuO

N
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The infinite multiplication factor can now be calculated. It can be assumed for this type of system that there 
is no leakage from a system with infinite size and that all fissions occur at thermal energies ( = p = 1).

𝑘∞ = 𝜂𝑓 = 𝜈
𝛴𝑓𝑢𝑒𝑙

𝑓

𝛴𝑓𝑢𝑒𝑙
𝑎

×
𝛴𝑓𝑢𝑒𝑙

𝑎
𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒

𝑎
= 𝜂 ×

𝛴𝑓𝑢𝑒𝑙
𝑎

𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝑎

= 2.61 ×
4.688𝑥10―3 cm―1

4.786𝑥10―3 cm―1 = 2.557

Now the diffusion length, L2, can be calculated based on the result of the k∞ calculation.

𝛴𝑡𝑟 = 𝛴239𝑃𝑢
𝑡𝑟 + 𝛴𝑂2

𝑡𝑟 = 𝑁239𝑃𝑢 × 𝜎𝑃𝑢
𝑡𝑟 + 𝑁𝑂2 × 𝜎𝑂2

𝑡𝑟

𝛴𝑡𝑟 = 2.222 × 10–3 atoms Pu/b–cm (6.8 𝑏) + 4.444 × 10–3 atoms O/b–cm (3.09 𝑏)

𝛴𝑡𝑟 = 2.884 × 10–2 𝑐𝑚–1

𝐷𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =
1

3𝛴𝑡𝑟
=

1
3 × 2.884 × 10–2 cm―1 = 11.56 𝑐𝑚

𝐿2 =
𝐷𝑚𝑖𝑥𝑡𝑢𝑟𝑒

𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝑎

=
11.56 cm

4.786 × 10–3 cm–1 = 2.415 x103 cm2.

Now calculate the material buckling, Bm
2:

𝐵2
𝑚 =

𝑘∞ ― 1
𝐿2 =

2.557 ― 1
2.415 x103 cm2 = 6.447 × 10―4 cm–2.

Notice the diffusion length, L2, is rather large. This indicates the fissile density is low and that there is 
very little absorption other than in plutonium; this means that neutrons in this system diffuse or travel 
farther on average between collisions before being absorbed by the materials in this system. Thus, this 
system will be much larger than a thermal system, such as a mixture of plutonium metal and water. The 
critical radius can be calculated now that the material buckling is known. Recall that the geometric and 
material buckling are equal for a critical system.

𝐵2
𝑔 =

𝜋
𝑅

2

𝑅 = 𝜋2

𝐵2
𝑔

= 𝜋2

6.447 × 10–4 𝑐𝑚–1
= 123.7 𝑐𝑚

𝑅 = 𝑅 ― 𝑑 = 𝑅 ― 2.13 × 𝐷𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 123.7 𝑐𝑚–2.13 × 11.56 𝑐𝑚 = 99.1 𝑐𝑚.

 

 

  

        

     

      

239 239
2 2

239
2

3 3

3 –1 5 –1 3 –1

2.222 10  atoms Pu/b–cm 2.11 4.444 10  atoms O/b–cm 0.022 

4.688 10  9.78 10  4.786 10  .

Pu PuO OMixture
a a a a O aPu

mixture
a

mixture
a

N N

b x b

cm cm cm
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Using the critical radius, the spherical critical volume and critical mass can be calculated.

𝑅 = 99.1 cm

𝑉 =
4𝜋
3 𝑅3 =

4𝜋
3 (99.1)3 = 4.077 × 106 cm3.

The critical mass of PuO2 can be found by multiplying the critical volume by the density of the material.

𝑚 = 𝜌 × 𝑉 = 1.0 
𝑔

cm3 × 4.077 × 106 cm3 ×
𝑘𝑔

1000 𝑔 = 4.077 × 103 kg.

These calculations can be redone by following the same methodology for the desired densities (i.e., 3, 5, 
7, 9, and 11.46 g/cm3). A spreadsheet was used to apply this calculation procedure quickly. The results of 
these calculations are presented in Table 2-8 for comparison purposes. 
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Table 2-8. Calculation Results for Diffusion Theory Example Problem 3.

Density of
Pu 

(g/cm3)

Critical Spherical 
Radius (cm)

Estimated Critical
Mass of PuO2 (kg)

PARTISN 
Estimated Critical 

Mass of PuO2 
(kg) 

SCALE 6.1.3 
Estimated Critical 

Mass of PuO2 
(kg) 

1.0 99.1 4,080 3,540 3,614
3.0 33.0 453 393 404
5.0 19.8 163 142 145
7.0 14.2 83 72.2 73.8
9.0 11.0 50 43.7 44.6

11.46 8.65 31 27.0 27.8

Because this is a fast, unmoderated system, one-group diffusion theory provides a reasonably 
conservative estimate across the entire density range for the critical dimensions of this system. A series of 
PARTISN5 and SCALE6 calculations was performed to compare the hand calculations with a transport 
calculation using the 16-group Hansen–Roach cross section set. As seen in Table 2-8, the 
computer-calculated critical mass values are about 12% less than the values from the hand calculations. 
Again, this is likely due to the excess absorption present in the fast neutron cross sections for the 
plutonium isotopes. The hand calculation values are not conservative, but they provide bounding 
estimates for moving into detailed designs and process analyses. Figure 2-5 shows a comparison between 
the PARTISN calculated critical masses and those from hand calculations indicating about a 12% 
difference for all densities considered.

5 As mentioned in footnote 3, PARTISN is a newer version of the DANTSYS deterministic neutron transport 
system. Version 5.97R with the 16-group Hansen–Roach cross section set was used for all the analyses in this 
document. See reference 4 for more details on the code package and input requirements.
6 The SCALE code, version 6.1.3 with continuous energy ENDF/B-VII cross sections was used for all the analyses 
in this document. See reference 10 for more details on the code package and input requirements.
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Figure 2-5. Critical Mass Comparison of Results for Diffusion Theory Example Problem 4.

2.6.4 Diffusion Theory Example Problem 4 – Thermal System with Plutonium

Assume a slab tank (Figure 2-6) contains a mixture of water and pure plutonium-239 (239Pu) with a 
239Pu concentration of 100 g per liter at 20 °C. Using the data in Table 2-9, determine the following for 
this system to support the design for a slab tank that will contain a pure 239Pu solution.

1. The infinite multiplication factor, k∞.
2. The critical slab thickness using one-group diffusion theory.
3. The critical slab thickness for this problem using modified one-group diffusion 

theory.
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Figure 2-6. Slab Tank Containing a 239Pu Metal-Water Mixture for Diffusion Theory Example 
Problem 4 

Part 1. Before starting any calculation of fissile material system properties, one should have an idea what 
the answer should be—that is, at least an order of magnitude estimate, and the expected units of the 
results. For this case, we are interested in the infinite multiplication factor and critical slab thickness in 
cm. For this problem, we are using ARH-600, Vol. II (Reference 7). On page III.A.10.100.4, it indicates 
that the infinite multiplication factor for a plutonium (0% Pu-240) water system is 1.78 at a concentration 
of 100 g Pu-239/liter. The previous page provides useful data on the expected material buckling, 0.0292 
cm−2, and extrapolation distance, 2.1 cm, for the system. The graph on page III.A.5-2 shows a critical slab 
thickness of 5.6 inches (14.2 cm).

Because Pu-239 is a non-1/v absorber in a thermal system, the absorption microscopic cross section must 
be adjusted using the ga and gf factors as listed in Table 2-1. The non-1/v factors are used to adjust the 
microscopic absorption cross sections for various cross sections that typically have high absorption cross 
sections. The absorption rate of thermal neutrons with Pu-239 varies as a function of the temperature of 
the system.
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Table 2-9. Diffusion Theory Example Problem 4 Data.

Constituent Parameter Data Value Reference
σa (2200 m/s) 1020 barns 2, Table II.2, pg. 738
σf (2200 m/s) 749 barns 2, Table II.2, pg. 738
𝜈 2.871 2, Table 3.4, pg. 82
ga (non-1/v factor) for 
20 C 1.0723 2, Table 3.2, pg. 75

or Table 2-1, this document

239Pu

gf (non-1/v factor) for 
20 C 1.0487 2, Table 3.2, pg. 75

or Table 2-1, this document
Hydrogen
a (2200 m/s) 0.332 b 2, Table II.3, pg. 740

Oxygen
a (2200 m/s) 0.27 mb 2, Table II.3, pg. 741

Water
a (2200 m/s) 0.6643 b = 2x0.332 b + 0.27x10-3 b

τ 27 cm2 2, Table 5.3, pg. 259
D 0.16 cm 2, Table 5.2, pg. 254

Dmixture= Dwater

Water

τmixture = τwater 

The slab tank will contain mostly 
water with small quantities of 
239Pu. Therefore, the diffusion 
coefficient and neutron age will 
be approximately that of water.

Thus, the absorption and fission microscopic cross sections in barns for Pu-239 and water are 
adjusted as follows.

For Pu-239,

𝜎𝑎 =
𝜋

2 𝑔𝑎𝜎𝑎(2200 m/sec) = 0.886 × 1.0723 × 1020𝑏  =   969𝑏

𝜎𝑓 =
𝜋

2 𝑔𝑓𝜎𝑓(2200 m/sec) = 0.886 × 1.0487 × 749𝑏  =   696𝑏

For water (H2O), the cross-section adjustment for hydrogen is expressed as:

𝜎𝑎(ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛) =
𝜋

2 𝑔𝑎𝜎𝑎(2200 m/sec) = 0.886 × 1.0 × 0.332𝑏  =   0.294𝑏

Note non-1/v factors are 1.0 for most materials found in fissile material systems other than Cd, In, 135Xe, 
149Sm, 233U, 235U, 238U, and 239Pu.

And for oxygen, the cross-section adjustment is as follows:

𝜎𝑎(𝑜𝑥𝑦𝑔𝑒𝑛) =
𝜋

2 𝑔𝑎𝜎𝑎(2200 m/sec) = 0.886 × 1.0 × 0.27𝑥10―3𝑏  =   2.4x10―4𝑏
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The total for water (H2O) is as follows:

𝜎𝑎(𝑤𝑎𝑡𝑒𝑟) = 2 × 𝜎𝑎(ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛) + 𝜎𝑎(𝑜𝑥𝑦𝑔𝑒𝑛) = 2 × 0.294𝑏 + 1 × 2.4𝑥10―4𝑏  =   0.588𝑏

To calculate the macroscopic cross sections, the next step is to calculate the atom densities for Pu-239 
and water; knowing the density of 239Pu, ρ239 , Avogadro's number, NA, and the atomic weight of 
Pu-239. Reference 4 contains further information about calculating atom densities for various 
materials and compositions.

𝑁𝑃𝑢 =
𝜌𝑃𝑢239 g/cm3 × 𝑁𝐴 atoms - cm2/mol - b

𝐴𝑃𝑢239[g/mol]
𝐴𝑃𝑢239[g/mol] = 239.05[g/mol];  𝜌 given as 100 g/liter =  0.1 g/cm3

𝑁𝑃𝑢 =
0.1 g/cm3 × 0.6022 atoms - cm2/mol - b

239.05[g/mol] = 2.519𝑥10―4atoms Pu239/b - cm

 

Now that the Pu-239 atom density is known, calculate the volume fraction for Pu-239 and water to 
determine the atom density for water.

𝑣𝑓𝑃𝑢239 =
Concentration

Theoretical Density =
0.1 gPu/cm3 - mix

19.75 gPu/cm3 - Pu = 0.00506
cm3 - Pu

cm3 - mix

𝑣𝑓𝑊𝑎𝑡𝑒𝑟 = 1 ― 𝑣𝑓𝑃𝑢239 = 1 ― 0.00506 = 0.99494
cm3 - H2𝑂
cm3 - mix

Knowing the volume fractions, we can calculate the mixture density.

𝜌𝑚𝑖𝑥 = 𝑣𝑓𝑃𝑢239 × 𝜌𝑃𝑢239 + 𝑣𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑊𝑎𝑡𝑒𝑟

𝜌𝑚𝑖𝑥 = 0.00506
cm3 - Pu

cm3 - mix × 19.75 
g - Pu239
cm3 - Pu + 0.99494

cm3 - H2𝑂
cm3 - mix × 1.0 

g - 𝐻2𝑂
cm3 - H2𝑂

𝜌𝑚𝑖𝑥 = 1.0949 g - mix/cm3 - mix

Using the mixture density, can calculate the weight fractions of its two constituents:

𝑤𝑓𝑃𝑢239 =
𝑣𝑓𝑃𝑢239 × 𝜌𝑃𝑢239

𝜌𝑚𝑖𝑥
=

0.00506 cm3 - Pu
cm3 - mix × 19.75 gPu/cm3 - Pu

1.0949 g - mix/cm3 - mix = 0.0913
gPu

g - mix

𝑤𝑓𝑊𝑎𝑡𝑒𝑟 =
𝑣𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑊𝑎𝑡𝑒𝑟

𝜌𝑚𝑖𝑥
=

0.99494 cm3 - H2𝑂
cm3 - mix × 1.0 gH2O/cm3 - H2𝑂

1.0949 g - mix/cm3 - mix = 0.9087 
gH2𝑂

g - mix

Now with the weight fraction of water, can calculate its molecular density in the mixture.
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𝜌𝑚𝑖𝑥 = 1.0949 g/cm3      A𝑊𝑎𝑡𝑒𝑟 = 2 × 1.00794 + 1 × 15.9994 = 18.015[g/mol]

𝑁𝑊𝑎𝑡𝑒𝑟 =
𝑤𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑚𝑖𝑥 g/cm3 × 𝑁𝐴 atoms - cm2/mol - b

𝐴𝑊𝑎𝑡𝑒𝑟[g/mol]

𝑁𝑊𝑎𝑡𝑒𝑟 =
0.9087 [g - H2O/g - mix] × 1.0949 g - mix/cm3 × 0.6022 molecules - cm2/mol - b

18.015[g - H2O/mol] =

                3.3258𝑥10―2molecules - H2O/b - cm
 

The macroscopic absorption and fission cross sections can now be determined for Pu-239. 

𝛴𝑃𝑢239
𝑎 = 𝑁𝑃𝑢239 × 𝜎𝑎 =

2.519𝑥10―4atoms Pu239
b - cm ×

969𝑏
atom Pu239 = 0.2441cm―1

𝛴𝑃𝑢239
𝑓 = 𝑁𝑃𝑢239 × 𝜎𝑓 =

2.519𝑥10―4atoms Pu239
b - cm ×

696𝑏
atom Pu239 = 0.1753cm―1

𝛴𝑊𝑎𝑡𝑒𝑟
𝑎 = 𝑁𝑊𝑎𝑡𝑒𝑟 × 𝜎𝑎 =

3.3258𝑥10―2molecules Water
b - cm ×

0.588𝑏
molecule Water = 0.01956cm―1

∴ 𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝑎 = 𝛴𝑃𝑢239

𝑎 + 𝛴𝑊𝑎𝑡𝑒𝑟
𝑎 = 0.2441cm―1 + 0.01956cm―1 = 0.2637cm―1

Next, η ,  the number of neutrons released in fission per neutron absorbed by a fissile nucleus and f, 
the thermal utilization factor, can be calculated.

𝜂 =
𝜈 × 𝛴𝑃𝑢239

𝑓

𝛴𝑃𝑢239
𝑎

=
2.871 × 0.1753cm―1

0.2441cm―1 = 2.062

𝑓 =
𝛴𝑃𝑢239

𝑎
𝛴𝑀𝑖𝑥𝑡𝑢𝑟𝑒

𝑎
=

0.2441cm―1

0.2637cm―1 = 0.926

Because no fertile material is present (i.e., no Pu-240 or U-238), no corrections are needed for 
resonance absorption or fast fission, so k∞ = ηf:

𝑘∞ = 𝜂 × 𝑓 = 2.062 × 0.926 = 1.909

This result for k∞ means that a criticality is possible for this Pu-239 and water system at the stated 
concentration. To check our value for k∞, we look at Figure 2-7 from Reference 7. This indicates that the 
k∞ for a pure Pu-239 plutonium–water system at a concentration of 0.1 g Pu /cm3 is about 1.78. The 
difference between the one group k∞ and that from calculations and handbooks is likely the result of the 
large Pu-239 resonance at 0.296 eV. Many of the fissile nuclides have resonances in the epithermal range, 
but the Pu-239 resonance is unusual in that it has a much higher capture to fission ratio than for other 
neutron energies in Pu-239. (For the thermal cross sections, the capture to fission ratio is 0.392, whereas 
for the energy range between 0.1 and 0.4 eV, including the resonance, the ratio is 0.494). Inclusion of the 
effect of this resonance reduces the k∞ to 1.797, which very close to that found in Figure 2-7.
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Figure 2-7. k∞ for a Pu Metal-Water Mixture. (Reference 7, Figure III.A.10-100-4)

With the information provided above, one could determine the concentration required to result in a k∞ that 
is less than 1.0, which would provide the “always safe” concentration for an infinite 239Pu–water mixture. 
Setting up this methodology in a spreadsheet and using the “goal seek” capability provides an answer of 
7.6 g Pu per liter (or 0.0076 g Pu/cm3) for an infinite critical system, k∞ = 1.

Part 2. Using one-group diffusion theory, determine the critical slab thickness for the 239Pu–water 
mixture. The first step is to determine the diffusion length, L2, and use the result to determine buckling for 
a critical slab.

𝐿2 =
𝐷

𝛴𝑀𝑖𝑥𝑡𝑢𝑟𝑒
𝑎

=
0.16cm

0.2637cm―1 = 0.607 cm2

𝐵2 =
𝑘∞ ― 1

𝐿2 =
1.909 ― 1
0.607cm2 = 1.498 cm―2

From 

Table 2-3, the buckling for an infinite slab with a thickness “a” is B2 = (π/ã)2, where ã includes the 
extrapolation distance. Now that the buckling for this problem is known, the critical slab extrapolated 
thickness can be determined.

1.78
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𝐵2 =
𝜋
𝑎

2
     so     a = 𝜋2

𝐵2
= 𝜋2

1.498 cm―2
= 2.57 cm

This dimension must be corrected by subtracting two times the extrapolation distance, d (one from each 
side of the slab). See Appendix A for an overview of extrapolation distance. For this slab and various 
materials present, d = 2.13D.

𝑎 = 𝑎 ― 2 × 𝑑 = 𝑎 ― 2 × 2.13 × 𝐷 = 2.57 cm - 2 × 2.13 × 0.16 cm = 1.89 cm

Figure 2-8 (from Reference 7, Vol. II) shows that the critical slab thickness for this system, a Pu(0) 
metal–water mixture and a concentration of 0.1 g/cm3 (100 gPu/l), is about 5.6 in. (14.2 cm). This 
result shows that simple one-group diffusion theory does not accurately estimate the critical 
dimensions for the 239Pu–water slab tank. Modified one-group diffusion theory should provide more 
accurate results.
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Figure 2-8. Critical Infinite Slab Thickness for a Pu Metal-Water Mixture. (Reference 7,
Figure III.A.5-2.)

Part 3. For modified one-group diffusion theory, the thermal migration area, M2, must be calculated by 
calculating the sum of L2 (neutron diffusion area) and τ (neutron age). Then the critical slab height can be 
determined as follows:

𝐵2 =
𝑘∞ ― 1

𝑀2 =
1.909 ― 1

0.607cm2 + 27cm2 = 0.0329 cm―2

𝐵2 =
𝜋
𝑎

2
     so     a = 𝜋2

𝐵2
= 𝜋2

0.0329 cm―2
= 17.32 cm

Based on Figure 2-8, the extrapolation distance for this type of system is about 2.1 cm.

5.6 in.
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𝑎 = 𝑎 ― 2 × 𝑑 = 𝑎 ― 2 × 2.1 = 17.32cm ― 2 × 2.1cm = 13.12cm

Note that for thermal systems (particularly those containing water), the extrapolation distance is 
usually around 2 cm, but it is best to use figures such as Figure 2-8 to determine the extrapolation 
distance for such systems. Based on this result, a 239Pu–water mixture will result in a subcritical 
configuration if the “infinite” slab tank thickness is less than about 13.12 cm. This result compares well 
with the infinite slab thickness for a Pu(0) metal–water mixture shown in Figure 2-9. 

This data shows that a Pu(0) metal–water mixture at a concentration of 0.1 g/cm3 (100 gPu/l) has a 
critical thickness of about 5.6 in. (14.2 cm), which is consistent with the answer. Note that the hand 
calculation in this case provides a conservative answer: a slab of thickness 13.12 cm has a keff of about 
0.94. Again, the effect of the 0.296 eV Pu-239 resonance would be to decrease the k∞ to 1.797, which 
gives a material buckling of 0.0290 cm−2 (compare to 0.0282 cm−2 from Figure 2-8), and a critical slab 
thickness of 14.25 cm.

Modified one-group diffusion theory can be used effectively for moderated, thermal problems. Based 
on the results presented in this example problem, it is recommended that only modified one-group 
diffusion theory be used for thermal fissile system like this example, as one-group diffusion theory does 
not consider the effects of moderation.
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Figure 2-9. Extrapolation Distances and Material Buckling for a Pu Metal-Water Mixture. (Reference 7, 
Figure III.A.10.100-3.)

2.6.5 Diffusion Theory Example Problem 5 – Thermal System with Uranium

It is proposed to store water solutions of uranyl sulfate (UO2SO4•3H2O) with a concentration of 30 g 
235U/l (0.03 g/cm3) of the sulfate. Assume the temperature of the solution is 20 °C, and the uranium 
is fully enriched (i.e., no U-238 is present). Table 2-10 lists the relevant data for this problem.

1. Is this configuration safe when using a tank of unspecified size and shape?
2. If not, calculate the critical cylindrical tank radius using modified one-group diffusion 

theory.
3. Repeat (2) as if the enrichment were 14.7 wt % U-235 instead of fully enriched U-23.

Before starting any calculation of fissile material system properties, one should have an idea what the 
answer should be—that is, at least an order of magnitude estimate and the expected units of the results. 
For this case, we are interested in the infinite multiplication factor and critical infinite cylinder radius in 
centimeters. We will start with LA-10860, Reference 11. In most cases, the handbooks will have data for 
uranium–water systems and sometimes for uranium nitrate systems. As we are dealing with a uranyl 
sulfate solution, we will use the uranium–water data as more conservative (this does not account for the 
absorption in sulfur). Figure 12 (page 26, reference 11) gives the infinite cylinder diameter of about 
34 cm for a U(93.2) water moderated system at a 0.03 g 235U/cm3 density. This means we should get an 
infinite cylinder radius of about 17 cm for part 2.

2.1 cm

0.029 cm-2
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Additional information is obtained from ARH-600, Vol. II (Reference 7). On page III.B.10(100)-2, it 
indicates that the infinite multiplication factor for a U(100) water system is 1.433 at a concentration of 
0.03 g U235/cc. The figure also provides a value of 29.2 cm2 for the migration area. The previous page, 
III.B.10(100)-1, provides useful data on the expected material buckling, 0.0147 cm−2, and extrapolation 
distance, 2.1 cm for the system.

Table 2-10. Diffusion Theory Example Problem 5 Data.

Constituent Parameter Data Value Reference
a (2200 m/s) 687 barns 2, Table II.2, pg. 738
f (2200 m/s) 587 barns 2, Table II.2, pg. 738
𝜈 2.418 2, Table 3.4, pg. 82
ga (non-1/v factor) for 
20 C 0.9780 2, Table 3.2, pg. 75

or Table 2-1, this document

235U

gf (non-1/v factor) for 
20 C 0.9759 2, Table 3.2, pg. 75

or Table 2-1, this document
O in UO2SO4 a (2200 m/s) 0.27 mb 2, Table II.3, pg. 741
S in UO2SO4 a (2200 m/s) 0.52 b 2, Table II.3, pg. 741

Hydrogen
a (2200 m/s) 0.332 b 2, Table II.3, pg. 740

Oxygen
a (2200 m/s) 0.27 mb 2, Table II.3, pg. 741

Water
a (2200 m/s) 0.6643 b = 2 x 0.332 b + 0.27x10-3 b

τ 27 cm2 2, Table 5.3, pg. 259
D 0.16 cm 2, Table 5.2, pg. 254

Dmixture= Dwater

Water

τmixture = τwater

The tank will contain mostly water 
with small quantities of U-235. 
Therefore, the diffusion coefficient 
and neutron age will be 
approximately that of water.

Part 1. Because the tank dimensions are not specified in the problem, one must assume that it is 
effectively infinite in size. Therefore, we must calculate the infinite multiplication factor, k∞. If the k∞ 
has a value less than 1.0, then the system will remain subcritical at the assumed concentration.

As stated in Section 2.3.1, because 235U is a non-1/v absorber, the absorption microscopic cross 
section must also be adjusted using the ga and gf factors as listed in Table 2-1. Thus, the absorption 
and fission microscopic cross sections in barns for 235U are adjusted as follows.

𝜎𝑎 =
𝜋

2 𝑔𝑎𝜎𝑎(2200 m/sec) = 0.886 × 0.9780 × 687𝑏  =   595𝑏

𝜎𝑓 =
𝜋

2 𝑔𝑓𝜎𝑓(2200 m/sec) = 0.886 × 0.9759 × 587𝑏  =   508𝑏
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For sulfur, 

𝜎𝑎 =
𝜋

2 𝑔𝑎𝜎𝑎(2200 m/sec) = 0.886 × 1.0 × 0.52𝑏  =   0.461𝑏

For water (H2O), the cross-section adjustment is expressed as follows:

𝜎𝑎(𝐻2𝑂) =
𝜋

2 𝑔𝑎𝜎𝑎(𝐻2𝑂)(2200 m/sec) = 0.886 × 1.0 × 0.6643𝑏  =   0.589𝑏

And for Oxygen in uranyl sulfate, it is expressed as follows:

𝜎𝑎(𝑜𝑥𝑦) =
𝜋

2 𝑔𝑎𝜎𝑎(𝑜𝑥𝑦)(2200 m/sec) = 0.886 × 1.0 × 0.28𝑥10―3𝑏  =   0.248x10―3𝑏

The next step is to calculate the atom densities for U-235 and water, so the macroscopic cross sections 
can be determined. Note that the uranium in solution is fully enriched (100 % U-235) and does not 
contain any U-238.

𝑁𝑈235 =
𝜌𝑈235 g/cm3 × 𝑁𝐴 atoms - cm2/mol - b

𝐴𝑈235[g/mol]

𝐴𝑈235[g/mol] = 235.04[g/mol];  𝜌 given as 30 g/liter =  0.03 g/cm3

𝑁𝑈235 =
0.03 g/cm3 × 0.6022 atoms - cm2/mol - b

235.04[g/mol] =
7.686𝑥10―5atoms U235

b - cm

𝑁𝑈235 = 𝑁𝑈 = 𝑁𝑈𝑂2𝑆𝑂4 = 7.686𝑥10―5molecules UO2SO4/b - cm
 Now there are six atoms of oxygen per 

atom of uranium, so

𝑁𝑂 = 6 × 𝑁𝑈235 = 6 × 7.686𝑥10―5atoms/b - cm = 4.612𝑥10―4atoms O/b - cm

and one atom of sulfur per atom of uranium:

𝑁𝑆 = 𝑁𝑈235 = 7.686𝑥10―5atoms S/b - cm

Now that the U-235 atom density is known, calculate the volume fractions for U-235 and water to 
determine the molecular density of water. Note the mixture is uranyl sulfate (U(100)O2SO4 •3 H2O 
(molecular weight is 417.1 g/mol and density of 3.28 g/cm3 from ARH-600, Vol I, page II.D.2-1, 
Reference 7) and additional water. First, start by determining the concentration of the uranyl sulfate based 
on the uranium concentration.
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𝜌𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 =
𝜌𝑈235

wf𝑈235
=

0.03 g U(100)
cm3 - mix ×

417.1 g UO2SO4 ∙ 3𝐻2𝑂
235.04 g U(100) = 0.0532 

g UO2SO4 ∙ 3𝐻2𝑂
cm3 - mix

𝑣𝑓𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 =
𝜌𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂

Theoretical Density

=
0.0532  g UO2SO4 ∙ 3𝐻2𝑂

cm3 - mix ×
cm3 - UO2SO4 ∙ 3𝐻2𝑂
3.28 g UO2SO4 ∙ 3𝐻2𝑂 = 0.01622 

cm3 - UO2SO4 ∙ 3𝐻2𝑂
cm3 - mix

𝑣𝑓𝑊𝑎𝑡𝑒𝑟 = 1 ― 𝑣𝑓𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 = 1 ― 0.01622 = 0.98378 
cm3 ― 𝐻2𝑂
cm3 - mix

Knowing the volume fractions, we can calculate the mixture density.

𝜌𝑚𝑖𝑥 = 𝑣𝑓𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 × 𝜌𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 + 𝑣𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑊𝑎𝑡𝑒𝑟

𝜌𝑚𝑖𝑥 = 0.01622 
cm3 - UO2SO4 ∙ 3𝐻2𝑂

cm3 - mix × 3.28 
g UO2SO4 ∙ 3𝐻2𝑂

cm3 - UO2SO4 ∙ 3𝐻2𝑂  

        + 0.98378 
cm3 ― 𝐻2𝑂
cm3 - mix × 1.0 

g - Water
cm3 - mix   =   1.037 

g - mix
cm3 - mix

Using the mixture density, can calculate the weight fractions of its two constituents:

𝑤𝑓𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 =
𝑣𝑓𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 × 𝜌𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂

𝜌𝑚𝑖𝑥
=

0.01622 
cm3 - UO2SO4 ∙ 3𝐻2𝑂

cm3 - mix × 3.28 
g UO2SO4 ∙ 3𝐻2𝑂

cm3 - UO2SO4 ∙ 3𝐻2𝑂  ×
1 cm3 - mix

1.037 g - mix

              = 0.0513 
g UO2SO4 ∙ 3𝐻2𝑂

g - mix

𝑤𝑓𝑊𝑎𝑡𝑒𝑟 =
𝑣𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑊𝑎𝑡𝑒𝑟

𝜌𝑚𝑖𝑥
= 0.98378 

cm3 ― 𝐻2𝑂
cm3 - mix ×

1 g 𝐻2𝑂
cm3 ― 𝐻2𝑂 ×

1 cm3 - mix
1.037 g - mix

             = 0.9487 
g H2𝑂
g - mix

Now with the weight fraction of water, we can calculate its molecular density in the mixture.
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𝜌𝑊𝑎𝑡𝑒𝑟 = 1.0 g/cm3      A𝑊𝑎𝑡𝑒𝑟 = 2 × 1.00794 + 1 × 15.9994 = 18.015[g/mol]

𝑁𝑊𝑎𝑡𝑒𝑟 =
𝑤𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑚𝑖𝑥 g/cm3 × 𝑁𝐴 atoms - cm2/mol - b

𝐴𝑊𝑎𝑡𝑒𝑟[g/mol]

𝑁𝑊𝑎𝑡𝑒𝑟 =
0.9487 g H2𝑂

g - mix  × 1.037 g - mix
 cm3 - mix × 0.6022 molecules - cm2

mol - b

18.015 g H2𝑂
mol

               =  3.289𝑥10―2molecules Water/b - cm as the solvent

𝑁𝐻2𝑂 in UO2𝑆𝑂4∙3 H2𝑂 = 3 × 𝑁𝑈235 = 3 × 7.686𝑥10―5atoms/b - cm

          =
2.3058𝑥10―4molecules H2𝑂

b - cm     : calculate total Molecules

𝑁𝐻2𝑂 =   3.289𝑥10―2molecules Water
b - cm +

2.3058𝑥10―4molecules H2𝑂
b - cm =

        =   3.312𝑥10―2molecules Water/b - cm

 

To calculate the macroscopic cross sections, use the atom densities of the constituents as calculated. For 
U-235:

𝛴𝑈235
𝑎 = 𝑁𝑈235 × 𝜎𝑎 =

7.686𝑥10―5atoms U235
b - cm ×

595𝑏
atom U235 = 0.0457cm―1

𝛴𝑈235
𝑓 = 𝑁𝑈235 × 𝜎𝑓 =

7.686𝑥10―5atoms U235
b - cm ×

508𝑏
atom U235 = 0.0390cm―1

𝛴𝑆 in UO2𝑆𝑂43 H2𝑂
𝑎 = 𝑁𝑆 × 𝜎𝑎 =

7.686𝑥10―5atoms S
b - cm ×

0.461𝑏
atom S = 0.000035cm―1

𝛴O in UO2𝑆𝑂43 H2𝑂
𝑎 = 𝑁𝑂 × 𝜎𝑎 =

4.612𝑥10―4atoms O
b - cm ×

0.248𝑥10―3𝑏
atom O = 1.1𝑥10―7 cm―1

𝛴𝑊𝑎𝑡𝑒𝑟
𝑎 = 𝑁𝑤𝑎𝑡𝑒𝑟 × 𝜎𝑎 =

3.312𝑥10―2molecules H2𝑂
b - cm ×

0.589𝑏
molecule H2𝑂 = 0.0195cm―1

∴ 𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝑎 = 𝛴𝑈235

𝑎 + 𝛴𝑆
𝑎 +  Σ𝑂

𝑎 + 𝛴𝑊𝑎𝑡𝑒𝑟
𝑎

           = 0.0457cm―1 + 0.000035cm―1 + 0.00000011cm―1 + 0.0195cm―1
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           = 0.0652cm―1

Next, η ,  the number of neutrons released in fission per neutron absorbed by a fissile nucleus and f, 
the thermal utilization factor, can be calculated.

𝜂 =
𝜈 × 𝛴𝑈235

𝑓

𝛴𝑈235
𝑎

=
2.418 × 0.0390cm―1

0.0457cm―1 = 2.064

𝑓 =
𝛴𝑈235

𝑎
𝛴𝑀𝑖𝑥𝑡𝑢𝑟𝑒

𝑎
=

0.0457cm―1

0.0652cm―1 = 0.701

Because no U-238 is present, the fast fission factor, ε, is equal to 1. In addition, it can be assumed that the 
resonance escape probability is equal to 1 because the only resonance material is U-235, and neutron 
absorption and fission in the resonance region essentially cancel each other out. Thus, the infinite 
multiplication factor is then k∞ = ηf, which is equal to the following:

𝑘∞ = 𝜂 × 𝑓 = 2.064 × 0.701 = 1.447

Based on the result of this calculation, a tank with infinite dimensions at this concentration of uranyl 
sulfate solution would not be safe. Again, a concentration search could be done in Microsoft Excel to 
determine the concentration that would result in k∞ = 1. Note that the calculated value of 1.447 compares 
favorably to our estimated value of 1.443.

Part 2. As this is a thermal system, a one-group analysis is not appropriate, so a modified one-group 
analysis is done. For modified one-group diffusion theory, the following results can be obtained. For this 
part the thermal migration area, M2, needs to be calculated as the sum of L2 (neutron diffusion length) and 
 (neutron age). Then the critical infinite cylinder radius can be determined as follows.

𝐿2
𝑡ℎ =

𝐷
𝛴𝑠𝑦𝑠

𝑎
=

0.16 cm
0.0652 cm―1 = 2.454 cm2

𝐵2
𝑚 =

(𝑘∞ ― 1)
𝑀2 =

(𝑘∞ ― 1)
𝐿2

𝑡ℎ + 𝜏
=

(1.447 ― 1)
(2.454 cm2 + 27 cm2) = 0.01518 cm―2

𝑅 = 2.4052

𝐵2
𝑚

= 2.4052

0.01518 cm―2
= 19.52 cm

The extrapolation distance for a cylinder is slightly different than that of a sphere and depends on its 
height-to-diameter (h/d) ratio. Figure 2-10 (Figure 6 from LA-10860, reference 11) shows the relationship 
between extrapolation distances for sphere, slabs, and cylinders as a function of (h/d) / (1 + h/d). For an 
infinite cylinder, this ratio is one. The figure indicates that the extrapolation distance for an infinite 
cylinder is about 1.03 times the extrapolation distance for a sphere. Using this,

𝑅 = 𝑅 ― 𝑑 = 19.52 cm ― 2.1 cm × 1.03 = 17.36 cm
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a SCALE calculation was performed to determine the radius for a critical, infinite cylinder of this 
material, which resulted in a cylinder radius of approximately 17.52 cm. Modified one-group diffusion 
theory provides a reasonable estimate of the critical dimensions for this moderated, thermal system. Note 
that the calculated values of migration area, material buckling, and critical radius (29.454 cm2, 0.01518 
cm−2 and 17.36 cm) compare favorably with our estimates (29.2 cm2, 0.0147 cm−2, and 17 cm) from the 
handbooks.

NOTE: As demonstrated in the last example problem, one-group diffusion theory significantly 
underestimates the critical dimensions of moderated systems and should only be used for fast, 
unmoderated systems. 

 
Figure 2-10. Relationship Between Extrapolation Distances of Sphere, Slabs, and Cylinders. (Reference 11, 

page 17, Figure 6).

1.03
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Part 3. Significantly reducing the enrichment from fully enriched U-235 (i.e., 100% 235U) to 14.7 wt. % 
U-235 involves a corresponding increase in the quantity of U-238 in the system. The increased quantity of 
U-238 in the system (100 – 14.7 = 85.3 wt. %) will reduce the reactivity of the system compared with Part 
2, because there is significant resonance absorption occurring in the U-238. Thus, fewer fissile atoms are 
present, and the quantity of neutron absorbing nuclides in the system is larger. 

First, the atom densities must be modified to reflect the presence of U-238. Data for the new enrichment 
in this part of the problem are provided in Table 2-11.
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Table 2-11. Diffusion Theory Example Problem 5 Additional Data for Part 3.

Constituent Parameter Data Value Reference
a (2200 m/s) 2.73 barns 2, Table II.2, pg. 738
s (2200 m/s) 9.2 barns nndc.bnl.gov, ENDF-VIII.0238U
ga (non-1/v factor) for 
20 C 0.9780 2, Table 3.2, pg. 75

or Table 2-3, this document
235U s (2200 m/s) 14.1 barns nndc.bnl.gov, ENDF-VIII.0

O in UO2SO4 s (2200 m/s) 3.76 b 2, Table II.3, pg. 741
S in UO2SO4 s (2200 m/s) 0.975 b 2, Table II.3, pg. 741
H in Water s (2200 m/s) 49.6 b =(103 – 3.76)/2

a (2200 m/s) 0.664 b 2, Table II.3, pg. 741
s (2200 m/s) 103 b 2, Table II.3, pg. 741
s (slowing down) 44.6 b =2*20.4+3.8 (Dant app E)
tτ 27 cm2 2, Table 5.3, pg. 259
D 0.16 cm 2, Table 5.2, pg. 254

Dmixture= Dwater

Water

τmixture = τwater

The tank will contain mostly water 
with small quantities of U. 
Therefore, the diffusion coefficient 
and neutron age will be 
approximately that of water.

Now, as in the last part of this problem, the atom densities need to be calculated to consider the effects of 
the U-238 in the system. First, the absorption cross section must be adjusted for U-238 because U-238 is a 
non-1/v absorber:

𝜎𝑎(𝑈―238) =
𝜋

2 𝑔𝑎𝜎𝑎(2200) = 0.886 × 1.0017 × 2.7 = 2.40 𝑏

The atom density for U-235 remains unchanged as the concentration of U-235 remains the same. 

𝑁𝑈235 = 7.686𝑥10―5atoms U235/b - cm

Knowing the weight fraction of U-235 (14.7 wt %), we can calculate the effective atomic weight of 
U(14.7).

𝐴 =
𝑤𝑓1

𝐴1
+

𝑤𝑓2

𝐴2

―1

=
0.147

235.04 +
(1 ― 0.147)

238.05

―1

= 237.60g - U(14.7)/mole

To determine the uranium concentration in solution, the concentration of U-235 can be adjusted by 
dividing by the enrichment, which is equal to 14.7 wt % U-235 in U:

𝐶𝑈 =
𝐶𝑈235

0.147 =
0.03 g - U235

cm3
g - U

0.147 g - U235 = 0.204g - U /cm3
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With the density of U(14.7) in the solution, we can determine the atom density of U(14.7) and then the 
atom densities of the constituents.

𝑁𝑈(14.7) =
𝐶𝑈(14.7) g/cm3 × 0.6022 atoms - cm2/mol - b

𝐴𝑈(14.7)[g/mol]

𝑁𝑈(14.7) =
0.204 g/cm3 × 0.6022 atoms - cm2/mol - b

237.6[g/mol] = 5.170𝑥10―4atoms U(14.7)/b - cm

𝑁𝑈238 = 𝑁𝑈(14.7) ― 𝑁𝑈235 = 5.170𝑥10―4atoms U(14.7)/b - cm ― 7.686𝑥10―5atoms U235/b - cm

𝑁𝑈238 = 4.401𝑥10―4atoms U238/b - cm

𝑁𝑂 = 6 × 𝑁𝑈(14.7) = 6 × 5.170𝑥10―4atoms U(14.7)/b - cm = 3.102𝑥10―3atoms O/b - cm

𝑁𝑆 = 𝑁𝑈(14.7) = 5.170𝑥10―4atoms S/b - cm

𝑁𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑈𝑆𝑢𝑙𝑓 = 3 × 𝑁𝑈(14.7) = 3 × 5.170𝑥10―4atoms U(14.7)/b - cm

                   = 1.551𝑥10―3molecules water in USulf/b - cm

The atom densities have changed significantly compared with Part 2 of the problem because of the 
addition of U-238 to the system. Thus, because the macroscopic cross sections are dependent on the atom 
densities, they must be recalculated. Recall that the concentration needed for the following calculations 
must allow for the total uranium content in the system, not only the U-235 content.

The molecular density for water is calculated as follows.

𝜌𝑈(14.7)𝑂2𝑆𝑂4∙3𝐻2𝑂 =
𝜌𝑈235

wf𝑈235
=

0.204 g U(14.7)
cm3 - mix ×

419.7 g U(14.7)𝑂2SO4 ∙ 3𝐻2𝑂
237.60 g U(14.7)

                  = 0.3603 
g U(14.7)𝑂2SO4 ∙ 3𝐻2𝑂

cm3 - mix

𝑣𝑓𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 =
𝜌𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂

Theoretical Density

                   =
0.3603  g U(14.7)𝑂2SO4 ∙ 3𝐻2𝑂

cm3 - mix ×
cm3 - U(14.7)𝑂2SO4 ∙ 3𝐻2𝑂
3.28 g U(14.7)𝑂2SO4 ∙ 3𝐻2𝑂
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                = 0.1098 
cm3 - U(14.7)𝑂2SO4 ∙ 3𝐻2𝑂

cm3 - mix

𝑣𝑓𝑊𝑎𝑡𝑒𝑟 = 1 ― 𝑣𝑓𝑈𝑂2𝑆𝑂4∙3𝐻2𝑂 = 1 ― 0.1098 = 0.8902 
cm3 ― 𝐻2𝑂
cm3 - mix

𝑁𝑊𝑎𝑡𝑒𝑟 =
𝑣𝑓𝑊𝑎𝑡𝑒𝑟

cm3 - H2𝑂
cm3 - mix × 𝜌𝑤𝑎𝑡𝑒𝑟

g - H2𝑂
cm3 - H2𝑂 × 𝑁𝐴 atoms - cm2/mol - b

𝐴𝑊𝑎𝑡𝑒𝑟[g - H2O/mol]

𝑁𝑊𝑎𝑡𝑒𝑟

=
0.8902 cm3 - H2O/cm3 - mix × 1.0 g - H2O/cm3 - H2𝑂 × 0.6022 molecules - cm2/mol - b

18.015[g - H2O/mol]
=

𝑁𝑊𝑎𝑡𝑒𝑟 =  2.976𝑥10―2molecules - H2O/b - cm

𝑁𝑡𝑜𝑡𝑎𝑙
𝑊𝑎𝑡𝑒𝑟 =  1.551𝑥10―3 + 2.976𝑥10―2 = 3.131𝑥10―2molecules - H2O/b - cm

                in both U(14.7)𝑂2SO4•3H2O and Water

𝑁𝑡𝑜𝑡𝑎𝑙
𝑂 =    3.102𝑥10―3 + 3.131𝑥10―2 = 3.441𝑥10―2atoms - O/b - cm

                in both U(14.7)𝑂2SO4•3H2O and Water
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Now calculate the macroscopic cross sections for the mixture constituents.

𝛴𝑈235
𝑎 = 𝑁𝑈235 × 𝜎𝑎 =

7.686𝑥10―5atoms U235
b - cm ×

595𝑏
atom U235 = 0.0457cm―1

𝛴𝑈235
𝑓 = 𝑁𝑈235 × 𝜎𝑓 =

7.686𝑥10―5atoms U235
b - cm ×

508𝑏
atom U235 = 0.0390cm―1

𝛴𝑈238
𝑎 = 𝑁𝑈238 × 𝜎𝑎 =

4.401𝑥10―4atoms U238
b - cm ×

2.40𝑏
atom U238 = 0.0011cm―1

𝛴𝑆 in UO2𝑆𝑂43 H2𝑂
𝑎 = 𝑁𝑆 × 𝜎𝑎 =

5.170𝑥10―4atoms S
b - cm ×

0.461𝑏
atom S = 0.0002cm―1

𝛴O in UO2𝑆𝑂43 H2𝑂
𝑎 = 𝑁𝑂 × 𝜎𝑎 =

3.102𝑥10―3atoms O
b - cm ×

0.248𝑥10―3𝑏
atom O = 7.7𝑥10―7 cm―1 ≈ 0cm―1

𝛴𝑤𝑎𝑡𝑒𝑟 in Usulf
𝑎 = 𝑁𝑊𝑎𝑡𝑒𝑟𝑈 × 𝜎𝑎 =

1.551𝑥10―3molecule water
b - cm ×

0.589𝑏
molecule water =

𝛴𝑤𝑎𝑡𝑒𝑟 in Usulf
𝑎 = 0.0009cm―1

𝛴𝑊𝑎𝑡𝑒𝑟
𝑎 = 𝑁𝑤𝑎𝑡𝑒𝑟 × 𝜎𝑎 =

2.970𝑥10―2molecules H2𝑂
b - cm ×

0.589𝑏
molecule H2𝑂 = 0.0175cm―1

∴ 𝛴𝑈𝑂2𝑆𝑂4
𝑎 = 𝛴𝑈235

𝑎 + 𝛴𝑈238
𝑎 + 𝛴𝑆

𝑎 +  Σ𝑂
𝑎 +  Σ𝑤𝑎𝑡𝑒𝑟𝑖𝑛𝑈𝑠𝑢𝑙𝑓

𝑎

= 0.0457cm―1 + 0.0011cm―1 + 0.0002cm―1 + 0 + 0.0009cm―1

= 0.0479cm―1

∴ 𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝑎 = 𝛴𝑈𝑂2𝑆𝑂4

𝑎 + 𝛴𝑊𝑎𝑡𝑒𝑟
𝑎

= 0.0479cm―1 + 0.0175cm―1

= 0.0654cm―1
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Next, η, the number of neutrons released in fission per neutron absorbed by a fissile nucleus and f, the 
thermal utilization factor, can be calculated for this system. The macroscopic fission cross section for U-
238 is very small and can be neglected in this calculation:

𝜂 =
𝜈 × 𝛴235𝑈

𝑓 + 𝜈 × 𝛴238𝑈
𝑓

𝛴𝑈𝑂2𝑆𝑂4
𝑎

=  
2.418 × 0.0390 + 0

0.0479 = 1.969

 

𝑓 =
𝛴𝑈𝑂2𝑆𝑂4

𝑎
𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒

𝑎
=  

0.0479
0.0654 = 0.732.

Because this system with lower enrichment contains significant quantities of U-238, the resonance escape 
probability must be calculated. The resonance escape probability is the probability that a neutron will 
escape being captured by the material resonances as it slows down from fast to thermal energies. In this 
case, the resonances in the absorption cross-section for U-238 will make fewer neutrons available for 
subsequent fissions and reduce the system reactivity.

First, calculate the mean lethargy gain per neutron collision, , for the moderator and fuel mixture present 
in this system.

𝜉 = 1 ―
(𝐴 ― 1)2

2𝐴 𝑙𝑛
𝐴 + 1
𝐴 ― 1

For an atomic weight, A, greater than 10 (A>10), the following approximation can be used:

𝜉 ≈
2

𝐴 + 2
3

       for A >  10.

We need to calculate  for each component of the mixture.

For hydrogen (A=1): 𝜉𝐻 = 1 ― (𝐴 ― 1)2

2𝐴 𝑙𝑛 𝐴 + 1
𝐴 ― 1

= 1 ― 0 = 1     (Reference 2, Table 8 - 1). 

For oxygen (A=16): 𝜉𝑂 ≈
2

16 + 2
3
  =  0.12 . 

For sulfur (A=32): 𝜉𝑆 ≈
2

32 + 2
3
  =  0.061 . 

For U-235 (A=235): 𝜉𝑈235 ≈
2

235 + 2
3
  =  0.0085 . 

For U-238 (A=238): 𝜉𝑈238 ≈
2

238 + 2
3
  =  0.0084 . 

Then the value for the mixture is each individual  weighted by the component macroscopic scattering 
cross section. Note that for this calculation, we use the hydrogen scattering cross section of 20.4 b as 
appropriate to the slowing down energies of the resonance region.
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𝜉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =
𝑁𝐻𝜎𝑠𝐻𝜉𝐻 + 𝑁𝑂𝜎𝑠𝑂𝜉𝑂 + 𝑁𝑆𝜎𝑠𝑆𝜉𝑆 + 𝑁𝑈235𝜎𝑠𝑈235𝜉𝑈235 + 𝑁𝑈238𝜎𝑠𝑈238𝜉𝑈238

𝑁𝐻𝜎𝑠𝐻 + 𝑁𝑜𝜎𝑠𝑂 + 𝑁𝑆𝜎𝑠𝑆 + 𝑁𝑈235𝜎𝑠𝑈235 + 𝑁𝑈238𝜎𝑠𝑈238

𝜉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =
(2 × 3.131𝑥10―2 × 20.4 × 1) + (3.440𝑥10―2 × 3.76 × 0.12) + (5.2𝑥10―4 × 0.975 × 0.061)

(2 × 3.131𝑥10―2 × 20.4) + (3.440𝑥10―2 × 3.76) + (5.2𝑥10―4 × 0.975) + (8𝑥10―5 × 14.1) + (4.4𝑥10―4 × 9.2)

             +
(8𝑥10―5 × 14.1 × 0.0085) + (4.4𝑥10―4 × 9.2 × 0.0084)

(2 × 3.131𝑥10―2 × 20.4) + (3.440𝑥10―2 × 3.76) + (5.2𝑥10―4 × 0.975) + (8𝑥10―5 × 14.1) + (4.4𝑥10―4 × 9.2)

𝜉𝑚𝑖𝑥𝑡𝑢𝑟𝑒    =  
1.2930
1.4125 = 0.915.

Note that 𝛴moderator
𝑠  =  (2 × 3.131𝑥10―2 × 20.4) + (3.440𝑥10―2 × 3.76) = 1.407𝑐𝑚―1 

Now the resonance escape probability can be calculated from equation 45:

𝑝 = 𝑒𝑥𝑝
―3.06

𝜉
𝑁𝑈238

𝑁𝑠𝑚𝑜𝑑𝑚𝑜𝑑

0.528

= 𝑒𝑥𝑝
―3.06
0.915

4.40𝑥10―4

1.407

0.528

= 0.954

The fast fission factor, , is assumed to be equal to 1.0 for this case to emphasize the importance of the 
resonance escape probability to this kind of system. Thus, the infinite multiplication factor is then k = 
ηfp.

𝑘∞ = 𝜂 𝑓𝜀𝑝 =  1.969 × 0.732 × 1.0 × 0.954 = 1.375 (𝐴𝑛𝑠𝑤𝑒𝑟 𝑡𝑜 𝑃𝑎𝑟𝑡 3)

When analyzed in PARTISN7, the k∞ was 1.37—quite good agreement considering the difference in cross 
sections and methods. Based on the result of this calculation, a tank with infinite dimensions at this 
concentration of uranyl sulfate solution would still not be safe at the lower uranium enrichment, even 
with the increased probability for neutron absorption in this kind of fissile system.

Note that even with 85.3% U-238 in the system, the resonance escape probability is close to one. This 
indicates that only for low-enriched (less than 10%) uranium systems does the resonance escape 
probability become more than about a 5% correction to the infinite multiplication factor.

Now the critical dimensions for this system can be determined:

7 PARTISN is an upgraded version of the DANTSYS code package and is designed to solve the discrete ordinates 
form of the Boltzmann transport equation in several different geometries using multigroup cross sections. See 
Reference 4 for additional information on using PARTISN in nuclear criticality safety calculations.
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𝐿2
𝑡ℎ =

𝐷
𝛴𝑎

=
0.16 cm

0.0654 cm-1 = 2.45 cm2

𝐵2
𝑚 =

𝑘∞ ― 1
𝑀2 =

𝑘∞ ― 1
𝐿2 + 𝜏 =

1.375 ― 1
2.45 + 27 = 0.01273 cm-2 

𝑅 = 2.4052

𝐵2
𝑚

= 2.4052

0.01273 𝑐𝑚–2
= 21.32 𝑐𝑚

𝑅 = 𝑅 ― 𝑑 = 21.32 𝑐𝑚–2.1 𝑐𝑚 × 1.03 = 19.16 𝑐𝑚.

The critical dimensions increased by about 10% compared with the fully enriched case. A larger system 
than the previous case makes sense because this system has a significantly lower enrichment and more 
parasitic neutron absorption with the large quantity of U-238 present. When analyzed in PARTISN,, the 
critical radius of an infinite cylinder with 14.7 wt. % U-235 in uranyl sulfate was 19.61 cm.

NOTE on problem complexity and detailed calculation: as indicated, the modified one-group calculations 
compared quite well with the values from the computer codes. However, in most applications of hand 
calculations, the detail presented in Part 3 is probably not necessary particularly if one is doing bounding 
calculations. Let’s look at the Part 3 problem and estimate values as appropriate.

We will need to calculate atom densities but will look at only U-235, U-238, and water. We follow the 
same procedure as above obtaining 7.686×10−5 atoms U-235/b-cm, 4.401×10−4 atoms 238U/b-cm, and 
assuming water at nominal density (1.0 g/cm3): 

𝑁𝑊𝑎𝑡𝑒𝑟 =
1.0 g - H2O/cm3 - H2𝑂 × 0.6022 molecules - cm2/mol - b

18.015[g - H2O/mol] =

𝑁𝑊𝑎𝑡𝑒𝑟 =  3.3428𝑥10―2molecules - H2O/b - cm

Then, calculating the macroscopic fission and absorption cross sections,

𝛴𝑈235
𝑎 = 𝑁𝑈235 × 𝜎𝑎 =

7.686𝑥10―5atoms U235
b - cm ×

595𝑏
atom U235 = 0.0457cm―1

𝛴𝑈235
𝑓 = 𝑁𝑈235 × 𝜎𝑓 =

7.686𝑥10―5atoms U235
b - cm ×

508𝑏
atom U235 = 0.0390cm―1

𝛴𝑈238
𝑎 = 𝑁𝑈238 × 𝜎𝑎 =

4.401𝑥10―4atoms U238
b - cm ×

2.40𝑏
atom U238 = 0.0011cm―1

𝛴𝑤𝑎𝑡𝑒𝑟
𝑎 = 𝑁𝑊𝑎𝑡𝑒𝑟 × 𝜎𝑎 =

3.3428𝑥10―2molecules water
b - cm ×

0.589𝑏
molecule water = 0.0197cm―1

𝛴𝑡𝑜𝑡𝑎𝑙
𝑎 = 𝛴𝑈235

𝑎 + 𝛴𝑈238
𝑎 + 𝛴𝑤𝑎𝑡𝑒𝑟

𝑎 = 0.0457cm―1 + 0.0011cm―1 + 0.0197cm―1 = 0.0665cm―1
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Now we note that 𝜂𝑓 =
𝜈𝛴𝑓

𝛴𝑡𝑜𝑡𝑎𝑙
𝑎

= 2.418 × 0.0390 cm―1

0.0665cm―1 = 1.42 

The fast fission factor, , is assumed to be equal to 1.0, and we will assume p = 1. This is a reasonable 
estimate for uranium–water moderated systems with enrichments greater than 10%. (As we calculated 
earlier, p = 0.954 for this 14.7% enriched case). Thus, the infinite multiplication factor is then k = ηfp.

𝑘∞ = 𝜂 𝑓𝜀𝑝 =  1.42 × 1.0 × 0.954 = 1.355 (𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐴𝑛𝑠𝑤𝑒𝑟 𝑡𝑜 𝑃𝑎𝑟𝑡 3)

Now the critical dimensions for this system can be determined:

𝐿2
𝑡ℎ =

𝐷
𝛴𝑎

=
0.16 cm

0.0665 cm-1 = 2.41 cm2

𝐵2
𝑚 =

𝑘∞ ― 1
𝑀2 =

𝑘∞ ― 1
𝐿2 + 𝜏 =

1.355 ― 1
2.41 + 27 = 0.01207 cm-2 

𝑅 = 2.4052

𝐵2
𝑚

= 2.4052

0.01207 𝑐𝑚–2
= 21.9 𝑐𝑚

𝑅 = 𝑅 ― 𝑑 = 21.9 𝑐𝑚–2.2 𝑐𝑚 = 19.7 𝑐𝑚.

The critical dimension from the estimate was about 3% higher than that obtained from the detailed 
calculation (19.7 cm vs. 19.16 cm). The actual amount of deviation varies depending on the materials in 
each system. However, a reasonable bounding estimate of size can be obtained through a simplified 
modified one-group analysis.
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2.6.6 Diffusion Theory Example Problem 6 – Thermal System with Uranium

It is proposed to store uranium dioxide–water solutions (U(5)O2-H2O) with a concentration of 50 g 
235U/l (0.05 g/cm3) in solution. Assume the temperature of the solution is 20° C, and the uranium is 
5 wt %. Table 2-12 lists the relevant data for this problem.

1. What is the H/X for this solution?
2. Calculate the critical spherical radius using modified one-group diffusion theory.
3. Repeat (2) with the sphere reflected by 30 cm of water.

Before starting any calculation of fissile material system properties, one should have an idea what the 
answer should be—that is, at least an order of magnitude estimate and the expected units of the results. 
For this case, we are interested in the H/X (hydrogen to fissile atom ratio), the infinite multiplication 
factor, and the critical spherical radius in centimeters. We will start with ARH-600, Reference 7. Figure 
III.B.2-6 has H/X ratios for low enriched UO2 – H2O solutions. For U(5), the uranium concentration will 
be 1.0 g U/cm3; this gives an H/X = 470. Figure III.B.10(5)-2 shows k∞ = 1.39 and the migration area = 
28.5 cm2. Figure III.B.10(5)-1 shows a material buckling of 0.01375 cm−2 and an extrapolation distance 
for an unreflected system of 2.1 cm. Figure III.B.3-4 gives a bare, critical diameter of 19.5 in. or a critical 
radius of 24.77 cm. 

Table 2-12. Diffusion Theory Example Problem 6 Data.

Constituent Parameter Data Value Reference

a (2200 m/s) 687 barns 2, Table II.2, pg. 738

f (2200 m/s) 587 barns 2, Table II.2, pg. 738

ν 2.418 2, Table 3.4, pg. 82

ga (non-1/v factor) 
for 20 C 0.9780

2, Table 3.2, pg. 75
or Table 2-1, this document

gf (non-1/v factor) 
for 20 C 0.9759

2, Table 3.2, pg. 75
or Table 2-1, this document

235U

s (2200 m/s) 14.1 barns nndc.bnl.gov, ENDF-VIII.0

a (2200 m/s) 2.73 barns 2, Table II.2, pg. 738

s (2200 m/s) 9.2 barns nndc.bnl.gov, ENDF-VIII.0238U
ga (non-1/v factor) 
for 20 C 0.9780 2, Table 3.2, pg. 75

or Table 2-3, this document

O in UO2 a (2200 m/s) 0.27 mb 2, Table II.3, pg. 741
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Table 2-12 .  Diffusion Theory Example Problem 6 Data (continued).

Constituent Parameter Data Value Reference
Hydrogen
a (2200 m/s) 0.332 b 2, Table II.3, pg. 740

Oxygen
a (2200 m/s)

0.27 mb 2, Table II.3, pg. 741

Water
a (2200 m/s)

0.6643 b = 2 x 0.332 b + 0.27x10-3 b

s (slowing down) 44.6 b =2x 20.4+3.8 (Ref 4, app E)

τ 27 cm2 2, Table 5.3, pg. 259

Water

D 0.16 cm 2, Table 5.2, pg. 254

Part 1. Calculation of the H/X ratio requires values for atom densities for U-235 and Hydrogen.

As stated in Section 2.3.1, because U-235 is a non-1/v absorber, the absorption microscopic cross 
section must also be adjusted using the ga and gf factors as listed in Table 2-1. Thus, the absorption 
and fission microscopic cross sections in barns for U-235 are adjusted as follows.

𝜎𝑎 =
𝜋

2 𝑔𝑎𝜎𝑎(2200 m/sec) = 0.886 × 0.9780 × 687𝑏  =   595𝑏

𝜎𝑓 =
𝜋

2 𝑔𝑓𝜎𝑓(2200 m/sec) = 0.886 × 0.9759 × 587𝑏  =   508𝑏

Note that the uranium in solution is 5 wt %, so it contains 95 wt % U-238. First, the absorption cross 
section must be adjusted for U-238 because it is a non-1/v absorber:

𝜎𝑎(𝑈―238) =
𝜋

2 𝑔𝑎𝜎𝑎(2200) = 0.886 × 1.0017 × 2.7 = 2.40 𝑏

and for oxygen in UO2, it is expressed as follows:

𝜎𝑎(𝑜𝑥𝑦) =
𝜋

2 𝑔𝑎𝜎𝑎(𝑜𝑥𝑦)(2200 m/sec) = 0.886 × 1.0 × 0.28𝑥10―3𝑏  =   0.248x10―3𝑏

For water (H2O), the cross section adjustment is expressed as

𝜎𝑎(𝐻2𝑂) =
𝜋

2 𝑔𝑎𝜎𝑎(𝐻2𝑂)(2200 m/sec) = 0.886 × 1.0 × 0.6643𝑏  =   0.589𝑏The next step is to 

calculate the atom densities for UO2 and water, so the macroscopic cross sections can be determined.



63

𝑁𝑈235 =
𝜌𝑈235 g/cm3 × 𝑁𝐴 atoms - cm2/mol - b

𝐴𝑈235[g/mol]

𝐴𝑈235[g/mol] = 235.04[g/mol];  𝜌 given as 50 g/liter =  0.05 g/cm3

𝑁𝑈235 =
0.05 g/cm3 × 0.6022 atoms - cm2/mol - b

235.04[g/mol] = 1.281𝑥10―4atoms U235/b - cm

 

Knowing the weight fraction of U-235 (5 wt %), we can calculate the effective atomic weight of U(5).

𝐴 =
𝑤𝑓1

𝐴1
+

𝑤𝑓2

𝐴2

―1

=
0.05

235.04 +
(1 ― 0.05)

238.05

―1

= 237.90g - U(5)/mole

To determine the uranium concentration in solution, the concentration of 235U can be adjusted by dividing 
through by the enrichment, which is equal to 5 wt % U-235 in U:

𝐶𝑈 =
𝐶𝑈235

0.05 =
0.05 g - U235

cm3
g - U(5)

0.05 g - U235 = 1.00g - U(5) /cm3

With the density of U(5) in the solution, we can determine the atom density of U(5) and then the atom 
densities of the constituents.

𝑁𝑈(5) =
𝐶𝑈(5) g/cm3 × 0.6022 atoms - cm2/mol - b

𝐴𝑈(5)[g/mol]

𝑁𝑈(5) =
1.00 g/cm3 × 0.6022 atoms - cm2/mol - b

237.9[g/mol] = 2.531𝑥10―3atoms U(5)/b - cm

𝑁𝑈238 = 𝑁𝑈(5) ― 𝑁𝑈235 = 2.531𝑥10―3atoms U(5)/b - cm ― 1.281𝑥10―4atoms U235/b - cm

𝑁𝑈238 = 2.403𝑥10―3atoms U238/b - cm

𝑁𝑂 = 2 × 𝑁𝑈(5) = 2 × 2.531𝑥10―3atoms U(5)/b - cm = 5.062𝑥10―3atoms O/b - cm

Now that the U atom density is known, calculate the volume fractions for UO2 and water to determine the 
molecular density of water. Note the mixture is uranium dioxide (U(5)O2 (molecular weight is 269.9 g / 
mole and density of 10.96 g/cm3 from ARH-600, Vol I, page II.D.2-1, Reference 7) and additional water. 
First, start by determining the concentration of the uranium dioxide based on the uranium concentration.
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𝜌𝑈𝑂2 =
𝜌𝑈(5)

wf𝑈𝑂2

=
1.00 g U(5)
cm3 - mix ×

269.9 g UO2

237.9 g U(5) = 1.1345 
g UO2

cm3 - mix

𝑣𝑓𝑈𝑂2 =
𝜌𝑈𝑂2

Theoretical Density

=
1.1345  g UO2

cm3 - mix ×
cm3 - UO2

10.96 g UO2
= 0.1035 

cm3 - UO2

cm3 - mix

𝑣𝑓𝑊𝑎𝑡𝑒𝑟 = 1 ― 𝑣𝑓𝑈𝑂2 = 1 ― 0.1035 = 0.8965 
cm3 ― 𝐻2𝑂
cm3 - mix

Knowing the volume fractions, we can calculate the mixture density.

𝜌𝑚𝑖𝑥 = 𝑣𝑓𝑈𝑂2 × 𝜌𝑈𝑂2 + 𝑣𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑊𝑎𝑡𝑒𝑟

𝜌𝑚𝑖𝑥 = 0.1035 
cm3 - UO2

cm3 - mix × 10.96 
g UO2

cm3 - UO2
 

        + 0.8965 
cm3 ― 𝐻2𝑂
cm3 - mix × 0.998 

g - Water
cm3 - mix   =   2.029 

g - mix
cm3 - mix

Using the mixture density, can calculate the weight fractions of its two constituents:

𝑤𝑓𝑈𝑂2 =
𝑣𝑓𝑈𝑂2 × 𝜌𝑈𝑂2𝑆

𝜌𝑚𝑖𝑥
= 0.1035 

cm3 - UO2

cm3 - mix × 10.96 
g UO2

cm3 - UO2
 ×

1 cm3 - mix
2.029 g - mix

= 0.5591 
g UO2

g - mix

𝑤𝑓𝑊𝑎𝑡𝑒𝑟 =
𝑣𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑊𝑎𝑡𝑒𝑟

𝜌𝑚𝑖𝑥
= 0.8965 

cm3 ― 𝐻2𝑂
cm3 - mix ×

0.998 g 𝐻2𝑂
cm3 ― 𝐻2𝑂 ×

1 cm3 - mix
2.029 g - mix

 = 0.4410 
g H2𝑂
g - mix

Now, with the weight fraction of water, we can calculate its molecular density in the mixture.
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𝜌𝑊𝑎𝑡𝑒𝑟 = 0.998 g/cm3      A𝑊𝑎𝑡𝑒𝑟 = 2 × 1.00794 + 1 × 15.9994 = 18.015[g/mol]

𝑁𝑊𝑎𝑡𝑒𝑟 =
𝑤𝑓𝑊𝑎𝑡𝑒𝑟 × 𝜌𝑚𝑖𝑥 g/cm3 × 𝑁𝐴 atoms - cm2/mol - b

𝐴𝑊𝑎𝑡𝑒𝑟[g/mol]

𝑁𝑊𝑎𝑡𝑒𝑟 =
0.4410 g H2𝑂

g - mix  × 2.029 g - mix
 cm3 - mix × 0.6022 molecules - cm2

mol - b

18.015 g H2𝑂
mol

= 2.991x10―2molecules Water/b - cm as the solvent

The H/X ratio is the ratio of hydrogen atoms to fissile atoms (in this case U-235). Knowing there are two 
hydrogen atoms per molecule of water, we get:

𝐻
𝑋 =

2 × 2.991𝑥10―2 atoms H
1.281𝑥10―4 atoms U235 = 467

This compares very well with the value of 470 obtained from the handbook.

Part 2. Calculation of the critical spherical radius using modified one-group diffusion theory.

First, calculate the macroscopic cross sections for the mixture constituents.

𝛴𝑈235
𝑎 = 𝑁𝑈235 × 𝜎𝑎 =

1.281𝑥10―4atoms U235
b - cm ×

595𝑏
atom U235 = 0.0762cm―1

𝛴𝑈235
𝑓 = 𝑁𝑈235 × 𝜎𝑓 =

1.281𝑥10―4atoms U235
b - cm ×

508𝑏
atom U235 = 0.0651cm―1

𝛴𝑈238
𝑎 = 𝑁𝑈238 × 𝜎𝑎 =

2.403𝑥10―3atoms U238
b - cm ×

2.40𝑏
atom U238 = 0.0058cm―1

𝛴O in UO2
𝑎 = 𝑁𝑂 × 𝜎𝑎 =

5.062𝑥10―3atoms O
b - cm ×

0.248𝑥10―3𝑏
atom O = 1.3𝑥10―6 cm―1 ≈ 0cm―1
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𝛴𝑊𝑎𝑡𝑒𝑟
𝑎 = 𝑁𝑤𝑎𝑡𝑒𝑟 × 𝜎𝑎 =

2.991𝑥10―2molecules H2𝑂
b - cm ×

0.589𝑏
molecule H2𝑂 = 0.0176cm―1

𝑁𝑂𝑡𝑜𝑡𝑎𝑙
𝑎 = 𝑁𝑂

𝑤𝑎𝑡𝑒𝑟 + 𝑁𝑂
𝑈𝑂2

=
2.991𝑥10―2atoms O

b - cm +
5.062𝑥10―3atoms O

b - cm =
3.497𝑥10―2atoms O

b - cm

∴ 𝛴𝑈𝑂2
𝑎 = 𝛴𝑈235

𝑎 + 𝛴𝑈238
𝑎  +  Σ𝑂

𝑎

           = 0.0762cm―1 + 0.0058cm―1 + 0
           = 0.0820cm―1

∴ 𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒
𝑎 = 𝛴𝑈𝑂2

𝑎 + 𝛴𝑊𝑎𝑡𝑒𝑟
𝑎

           = 0.0820cm―1 + 0.0176cm―1

           = 0.0996cm―1

Next, η, the number of neutrons released in fission per neutron absorbed by a fissile nucleus and f, the 
thermal utilization factor, can be calculated for this system. The macroscopic fission cross section for U-
238 is very small and can be neglected in this calculation:

𝜂 =
𝜈 × 𝛴235𝑈

𝑓 + 𝜈 × 𝛴238𝑈
𝑓

𝛴𝑈𝑂2
𝑎

=  
2.418 × 0.0651 + 0

0.0820 = 1.920

 

𝑓 =
𝛴𝑈𝑂2

𝑎
𝛴𝑚𝑖𝑥𝑡𝑢𝑟𝑒

𝑎
=  

0.0820
0.0996 = 0.823.

Because this system with lower enrichment contains significant quantities of U-238, the resonance escape 
probability must be calculated. The resonance escape probability is the probability that a neutron will 
escape being captured by the material resonances as it slows down from fast to thermal energies. In this 
case, the resonances in the absorption cross-section for U-238 will make fewer neutrons available for 
subsequent fissions and reduce the system reactivity.

First, calculate the mean lethargy gain per neutron collision, , for the moderator and fuel mixture present 
in this system.

𝜉 = 1 ― (𝐴 ― 1)2

2𝐴 𝑙𝑛 𝐴 + 1
𝐴 ― 1

 

For an atomic weight, A, greater than 10 (A>10), the following approximation can be used:

𝜉 ≈
2

𝐴 + 2
3

       for A >  10.

We need to calculate  for each component of the mixture.

For hydrogen (A=1): 𝜉𝐻 = 1 ― (𝐴 ― 1)2

2𝐴 𝑙𝑛 𝐴 + 1
𝐴 ― 1

= 1 ― 0 = 1     (Reference 2, Table 8 - 1). 
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For oxygen (A=16): 𝜉𝑂 ≈
2

16 + 2
3
  =  0.12 . 

For 235U (A=235): 𝜉𝑈235 ≈
2

235 + 2
3
  =  0.0085 . 

For 238U (A=238): 𝜉𝑈238 ≈
2

238 + 2
3
  =  0.0084 . 

Then the value for the mixture is each individual  weighted by the component macroscopic scattering 
cross section.

𝜉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =
𝑁𝐻𝜎𝑠𝐻𝜉𝐻 + 𝑁𝑂𝜎𝑠𝑂𝜉𝑂 + 𝑁𝑈235𝜎𝑠𝑈235𝜉𝑈235 + 𝑁𝑈238𝜎𝑠𝑈238𝜉𝑈238

𝑁𝐻𝜎𝑠𝐻 + 𝑁𝑜𝜎𝑠𝑂 + 𝑁𝑈235𝜎𝑠𝑈235 + 𝑁𝑈238𝜎𝑠𝑈238

𝜉𝑚𝑖𝑥𝑡𝑢𝑟𝑒 =
(2 × 2.991𝑥10―2 × 20.4 × 1) + (3.497𝑥10―2 × 3.8 × 0.12)

(2 × 2.991𝑥10―2 × 20.4) + (3.497𝑥10―2 × 3.8) + (1.28𝑥10―4 × 14.1) + (2.403𝑥10―3 × 9.2)

                   +    
(1.28𝑥10―4 × 14.1 × 0.0085) + (2.403𝑥10―3 × 9.2 × 0.0084)

(2 × 2.991𝑥10―2 × 20.4) + (3.497𝑥10―2 × 3.8) + (1.28𝑥10―4 × 14.1) + (2.403𝑥10―3 × 9.2)

𝜉𝑚𝑖𝑥𝑡𝑢𝑟𝑒    =  
1.2365
1.3771 = 0.898.

Note that 𝛴moderator
𝑠  =  (2 × 2.991𝑥10―2 × 20.4) + (3.497𝑥10―2 × 3.8) = 1.353𝑐𝑚―1 

Now the resonance escape probability can be calculated using Eq. (45):

𝑝 = 𝑒𝑥𝑝
―3.06

𝜉
𝑁𝑈238

𝑁𝑠𝑚𝑜𝑑𝑚𝑜𝑑

0.528

= 𝑒𝑥𝑝
―3.06
0.898

2.403𝑥10―3

1.353

0.528

= 0.887

The fast fission factor, ε, is assumed to be equal to 1.00. Calculating the infinite multiplication factor k = 
ηfp:

𝑘∞ = 𝜂 𝑓𝜀𝑝 =  1.920 × 0.823 × 1.0 × 0.887 = 1.402

When analyzed in PARTISN, the k∞ was 1.42; very good agreement considering the difference in cross 
sections and methods. Based on the result of this calculation, a tank with infinite dimensions at this 
concentration of uranyl sulfate solution would still not be safe at the lower uranium enrichment, even 
with the increased probability for neutron absorption in this kind of fissile system.

Now the critical dimensions for this system can be determined:
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𝐿2
𝑡ℎ =

𝐷
𝛴𝑎

=
0.16 cm

0.0996 cm-1 = 1.61 cm2

𝐵2
𝑚 =

𝑘∞ ― 1
𝑀2 =

𝑘∞ ― 1
𝐿2 + 𝜏 =

1.402 ― 1
1.61 + 27 = 0.01405 cm-2 

𝑅 = 𝜋2

𝐵2
𝑚

= 𝜋2

0.01405 𝑐𝑚–2
= 26.50 𝑐𝑚

𝑅 = 𝑅 ― 𝑑 = 26.5 𝑐𝑚–2.1 𝑐𝑚 = 24.4 𝑐𝑚.

The critical dimension from the estimate was about a few percent lower than that estimated from the 
handbook (24.77 cm) and slightly higher than the PARTISN value of 24.30 cm and the SCALE value of 
24.39 cm. A reasonable bounding estimate of size can be obtained through a modified one-group analysis.

Part 3. Calculation of the critical spherical radius when reflected by 30 cm of water.

Equation (56) as reproduced below gives the following critical condition for a reflected spherical reactor:

𝐵𝑅 𝑐𝑜𝑡(𝐵𝑅) ― 1 = ―
𝐷𝑟

𝐷𝑐

𝑅
𝐿𝑟

𝑐𝑜𝑡ℎ
𝑇
𝐿𝑟

+ 1

where T is the extrapolated thickness of the reflector. This transcendental equation is solved for R either 
graphically or using a goal seek/solver approach in a spreadsheet. The B in Eq. (56) is the square root of 
the critical buckling for the bare system with the same fissile material.

For a 30 cm water reflector, Dr = Dc and Lr = 2.85 cm. Using the square root of the critical buckling 
(0.01405 cm−2) from above = 0.1185 cm−1, then Eq. (56) becomes:

0.1185 cm―1 × 𝑅 × 𝑐𝑜𝑡(0.1185 cm―1 × 𝑅) ― 1 = ―
0.16cm
0.16cm

𝑅
2.85 cm 𝑐𝑜𝑡ℎ

30 cm
2.85 cm + 1      OR

0.1185 cm―1 × 𝑅 × 𝑐𝑜𝑡(0.1185 cm―1 × 𝑅) ― 1 =
―𝑅

2.85 cm × 1 ― 1

0.1185 cm―1 × 𝑅 × 𝑐𝑜𝑡(0.1185 cm―1 × 𝑅) =
―𝑅

2.85 cm

𝑐𝑜𝑡(0.1185 cm―1 × 𝑅) =
―1

2.85 cm
1

0.1185 cm―1 = ―2.961

0.1185 cm―1 × 𝑅 = ―.3257     or - 0.3257 +  𝜋 =  2.816

𝑅 =
2.816

0.1185 cm―1 = 23.76 cm
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Because the reflector and moderator are the same material, the equation can be solved by substitution and 
algebraic manipulation. The cotangent function returns a negative value but also has a positive value that 
differs by π, so the positive value is used. The calculated critical reflected core radius seems high 
compared with the bare radius of 24.4 cm. If the bare radius is approximately Bc / π, then the reflector 
savings for the case of same moderator and reflector material should be: δ = Lr (in this case, 2.85 cm). For 
this example, the calculated bare radius is about 10% less than Bc / π (which is equal to the extrapolated 
radius, 26.5 cm). As the bare radius is reasonably large compared with the extrapolation distance, we can 
estimate the reflected radius as 24.4 cm – 2.85 cm = 21.55 cm. This value compares quite well with the 
estimate of 21.56 cm from Figure 15, LA-10860 (value derived from a critical spherical volume of 42 
liters). However, it should be noted that Figure 15 from LA-10860 is for U(5)O2F2, which has slightly 
more absorption (due to the presence of the fluorine) than U(5)O2. The modified one-group value of 21.55 
slightly larger than the values calculated by PARTISN of 20.44 cm and by SCALE of 20.57 cm.

Note that the reflector savings calculated from PARTISN is 24.30 cm – 20.44 cm = 3.86 cm and as 
calculated from SCALE is 24.39 cm – 20.57 cm = 3.82 cm. This is larger than the thermal diffusion 
length in water of 2.85 cm. However, the reflector savings for water-reflected systems is typically in the 
3.2 to 4.0 cm range, depending on the fissile material and isotopics. As seen in Figure 2-11, the 
experimentally measured reflector savings for water thicknesses greater than 15 cm is 3.92 cm. This 
figure shows the variation of reflector savings with water reflector thickness. 

Figure 2-11. Reflector Savings for Various Fissile Materials. (Reference 7, page II.E-2).

Figure 2-12 from reference 12 shows the extrapolation distance for a fully reflected sphere (h/d = 1) to be 
about 5.9 cm and for a bare sphere to be about 2.1 cm. This gives a reflector savings of 5.9 cm – 2.1 cm = 
3.8 cm. Both values compare quite favorably with those from the computer calculations. In most cases, it 
is easier to use the reflector savings for water-reflected systems than to calculate the reflected critical 
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radius from an equation like Eq. (56). We will revisit the reflector savings and extrapolation distances in 
Section 3, on the buckling conversion method.

Figure 2-12. Effective Extrapolation Distances for Cylinders of U(93.2)O2F2 Solutions. (Reference 12, page 6, 
Figure 3).
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3. BUCKLING CONVERSION METHOD

3.1 WHAT YOU WILL BE ABLE TO DO

 Use critical data for a fissile system with simple geometries to determine the critical dimensions for 
other simple geometries.

 Use this method to analyze an upset scenario in which the fissile material changes shape or geometry.

 Use this method to perform comprehensive parametric studies on criticality safety parameters for 
simple fissile systems.

 Use geometric and material bucklings to determine approximate keff of a system.

3.2 OVERVIEW OF BUCKLING CONVERSION

This technique is very useful for using critical data for a fissile system with simple geometries to 
determine the critical dimensions for other geometries. The discussions in Section 2 demonstrate that the 
geometric buckling is a solution to the neutron diffusion equation and that the material buckling, which is 
dependent upon the materials in the system, is equal to the geometric buckling for a critical system. The 
relationship between the geometric and material bucklings can be derived from the critical equation

―( ― 𝐷∇2𝜙) ― 𝛴𝑎𝜙 + 𝜐𝛴𝑓𝜙 = 0, (60)
or, after some rearranging,

∇2𝜙 +
𝛴𝑎
𝐷 (𝑘∞ ― 1)𝜙 = 0. (61)

For neutrons with the same energy, the one-group diffusion area, L2, can be written as:

𝐿2 =
𝐷
𝛴𝑎

(62)

After substituting for the diffusion area, the critical one-group diffusion equation becomes

∇2𝜙 +
(𝑘∞ ― 1)

𝐿2 𝜙 = 0, (63)

where the term in brackets is the material buckling defined as

𝐵2
𝑚 =

(𝑘∞ ― 1)
𝐿2 , (64)

for simple one-group diffusion theory. For modified one-group diffusion theory, the thermal diffusion 
area, L2, is replaced by the migration area, M2, as given in Eq. (65):

𝐵2
𝑚 =

(𝑘∞ ― 1)
𝑀2 , (65)

Now, for a critical system, the geometric buckling equals the material buckling. In Eq. (63), when the 
geometric buckling is substituted for the material buckling:
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∇2𝜙 + 𝐵2
𝑔𝜙 = 0𝑜𝑟𝐵2

𝑔 = ― ∇2 (66)

Notice that the geometric buckling, Bg
2, is related directly to the neutrons leaking out of a system. Thus, 

fissile systems that have the same geometric buckling have similar leakage characteristics—independent 
of the geometry or the shape of the system. The buckling conversion technique is based on the concept 
that for critical systems, 𝐵2

𝑔 = 𝐵2
𝑚 , and uses this to determine the dimensions of different geometric 

configurations with equivalent leakage.

The neutron balance used to derive the diffusion approximation is as follows:

Absorption +  Leakage =  Production. (67)
Absorption and production depend on the properties of the materials in the system and not on the 
geometry of the system. Therefore, for a given critical system, the neutron leakage out of a system must 
not be changing with time and does not depend on the shape of the system.

According to Lutz (reference 13), “Geometric buckling refers to the curvature of the neutron flux 
distribution in a critical unit. In a small body, the neutron flux distribution goes from zero to some 
maximum in a short distance and, hence, has a large value for its geometric buckling. As the size of any 
body increases, its geometric buckling decreases. When a system is critical, the geometric buckling, 
which depends on shape and size, equals the material buckling, which depends only on the nuclear 
properties of the unit. Buckling calculations allow us to calculate the critical size of different shapes of 
the same material and to ascertain whether a body is safely subcritical. If we know the material buckling 
of a fissile material as a function of, say, moderation, we can perform survey calculations in a fast, 
economical manner. Buckling calculations also help us to understand the relationship between a 
critically safe infinite slab or cylinder and the corresponding finite critical body.”

The geometric buckling is the lowest eigenvalue of the Helmholtz equation (equation 66) and as such is 
only geometry dependent. Equation (66) is the same differential equation that describes wave propagation 
or molecular diffusion, and it has been solved for many different shapes. In the equations for buckling, 
each dimension has a physical component and an extrapolation distance.

When calculating the geometric buckling in diffusion theory, the extrapolation distance, d, is important, 
because diffusion theory assumes that the flux is zero at some point, d, outside the physical dimensions of 
the system.8 Thus, the extrapolation distance must be used to reduce the predicted values for critical size 
to obtain an accurate estimate for the actual, physical critical dimensions. The value for d is usually 
constant for each type of reflector material that is in close contact with the fissile material (Reference 14). 
Furthermore, values for d are determined from experimental data and calculations; relevant data for 
various fissile systems can be found in the literature (References 7, 11, 12, 14, 15, and 16). Appendix A 
provides an in-depth discussion of the linear extrapolation distance.

Table 3-1 provides the geometric buckling expressions for five simple geometries: sphere, infinite 
cylinder, finite cylinder, infinite slab, and rectangular parallelepiped (box). Other references (13, 17, 18, 
and 19) provide equations for more complex geometries, such as hemispheres, hemicylinders, and 
cylinders whose cross section is an n-sided polygon. Table 3-2 provides the geometric buckling 
expressions for hemispheres, infinite hemicylinders, and hemicylinders (Reference 13).

As spherical containers are seldom found in process facilities, one may wonder as to the inclusion of 
spheres in Table 3-1. Paxton (reference 14) discusses this as follows: “Of course, the value of the ability 

8 The extrapolation distance is represented by d in this document. Other documents use  for extrapolation distance.
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to convert from one critical shape to another is that critical data for a single, simple shape such as a 
sphere can be applied generally. Thus, the sphere, which appears so seldom in process equipment, 
represents other more practical shapes. (As an alternative to actual shape conversion, critical masses 
and volumes of sphere, which are minimum values, may be applied conservatively to other shapes.)”
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Table 3-1. Geometric Buckling Expressions for Simple Geometries. (Reference 15 – one of the earliest 
documents with these relationships and use of the term buckling in the context of nuclear systems.)

Configuration Geometry Illustration Geometric Buckling Bg
2

Relationship

Sphere of Radius, r 𝝅
𝒓 + 𝒅

𝟐

Infinite Cylinder
of Radius, r

𝟐.𝟒𝟎𝟓
𝒓 + 𝒅

𝟐

Cylinder of Radius, r,
and Height, h

𝟐.𝟒𝟎𝟓
𝒓 + 𝒅

𝟐

+
𝝅

𝒉 + 𝟐𝒅
𝟐

Infinite Slab of
Thickness, h

𝝅
𝒉 + 𝟐𝒅

𝟐

Parallelepiped of Dimensions
a, b, and c

𝝅
𝒂 + 𝟐𝒅

𝟐
+

𝝅
𝒃 + 𝟐𝒅

𝟐
+

𝝅
𝒄 + 𝟐𝒅

𝟐

Note: The variable d in each of the expressions for geometric buckling is the extrapolation distance, which is 
a function of the fissile material present in the system, the shape or geometry, and the materials surrounding 

the fissile material.
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Table 3-2. Bucklings for Other Shapes. (Reference 13)

Configuration Geometry Illustration Geometric Buckling Bg
2

Relationship

Hemisphere of Radius, r 4.49
𝑟 + 𝑑

2

Infinite Hemicylinder
of Radius, r

3.832
𝑟 + 𝑑

2

Hemicylinder of Radius, r,
and Height, h

3.832
𝑟 + 𝑑

2

+
𝜋

ℎ + 2𝑑
2

3.3 APPLICABILITY OF THE BUCKLING CONVERSION METHOD

It is important to note that labeling a system as critical provides no information about the geometry or the 
shape of the system. Thus, the buckling conversion method can be applied to a myriad of systems, but 
there are limitations inherent in the method. The buckling conversion method is applicable for fissile 
material systems with the following characteristics and assumptions.

 This method allows the conversion among the various geometries mentioned in Table 3-1 if the 
relevant critical data are available.

 This method can be used for a wide variety of bare and reflected systems including both metal and 
solution systems.

 Conversion between shapes that are extremely different, such as a sphere and an infinite slab 
example, does not always give results that are within 5% of actual values due to the difference in 
leakage from a curved surface versus a flat surface.

 The technique does not guarantee that mass or volume is conserved for critical systems that have 
different geometries.

 A system can be critical in simple shapes (e.g., a sphere, cylinder, or slab) that have specific 
expressions for the geometric buckling.

r

r

h
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 Bucklings are also available for shapes such as hemicylinder, hemisphere, equilateral triangular 
cylinder, 45-45-90 triangular cylinder, and 30-60-90 triangular cylinder. (see Reactor Handbook Vol. 
1, Physics, 1955, page 614, Table 1.6.8).

 Because the leakage must remain constant and is related to the buckling of a given geometry, the 
requirements for a critical system can be calculated if the expressions for the geometric bucklings are 
available.

3.4 BARE VERSUS REFLECTED SYSTEMS

The buckling conversion method when applied to bare systems uses boundaries representing the limits of 
the fissile material. Table 3-1 provides the geometric buckling for many shapes of bare systems, but to 
use these equations, accurate values of extrapolation distance are required. It has been assumed that the 
extrapolation distance is a constant regardless of shape. Experiments have shown that extrapolation 
distance varies somewhat with shape. The way in which d (also indicated by δC in the figures that follow) 
varies with the elongation of a cylinder (from a very short cylinder that behaves like an infinite slab to a 
very tall cylinder that is effectively an infinite cylinder) is shown in Figure 3-1 and Figure 3-2. The 
figures are taken from Figures 3 and 4 in TID-7028, reference 12. In these figures, the shape of each 
cylinder is characterized by the ratio of its height to its diameter (h/d). From reference 14, “To avoid 
infinitely long curves, δC appears in the figures as a function of (h/d) / (1+(h/d)).” A value of 0 
corresponds to an infinite slab and a value of 1 represents an infinite cylinder.9

Notice that the extrapolation distances for the bare (unreflected) systems range from about 2.0 cm to 
about 2.2 cm. This indicates that a “good” value for extrapolation distance would be about 2.0 cm if no 
other information is available. According to LA-10860, pg. 16 (Reference 11), “with 0.13 cm stainless 
steel reflection, d = 2.2 cm from Stratton’s spheres applies universally to the transformation of solution 
cylinders.”

9 An infinite cylinder is one that has effectively zero leakage from the top and bottom of the cylinder. Similarly, an 
infinite slab is one with effectively zero leakage from the ends of the slab. 
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Figure 3-1. Extrapolation Distances for High-Enriched Uranium Solution Systems. (Reference 12.)
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Figure 3-2. Extrapolation Distances for High-Enriched Uranium Metal and delta-phase Plutonium Metal 
Systems. (Reference 12.)

So now we know how to handle the variation of extrapolation distance with shape, but what about 
reflected systems? Mathematically, the diffusion equations become more complex with the addition of a 
reflected zone, so there is not a straightforward derivation of geometric buckling for a reflected system. 
To evaluate reflected systems, a reflector savings is used based on the given reflector material. The 
reflector savings is essentially the reduction in critical size between the bare system and the critical size 
for the system with the reflector added. For a slab and a sphere reactor, the reflector savings, δR, is given 
by: 

𝛿𝑅 =
1
2𝐻0 ―

1
2 𝐻     Slab with critical thickness H0

𝛿𝑅 = 𝑅0 ― 𝑅     Sphere with critical radius R0

(68)

Evaluation of the diffusion equations provides the following limiting cases for reflector savings. If the 
thickness, T, of the reflector is relatively small or the core is relatively large (i.e., δ is very small), then 
reflector savings can be estimated as follows:

𝛿𝑅 ≈
𝐷𝑐
𝐷𝑟

× 𝐿𝑟 × tanh
𝑇
𝐿𝑟

     for both a slab and a sphere (69)
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In Eq. (69), Dc is the diffusion coefficient for the core and Dr is the diffusion coefficient for the reflector. 
Lr is the thermal diffusion length in the reflector. As noted above, T, is the thickness of the reflector 
(typically in cm to match units with other parameters).

If the diffusion length, Lr, is appreciably larger than the reflector thickness, T, then the reflector savings 
can be estimated as:

𝛿𝑅 ≈
𝐷𝑐
𝐷𝑟

× 𝑇     for both a slab and a sphere (70)

For a very thick reflector, then the reflector savings can be estimated as:

𝛿𝑅 ≈
𝐷𝑐
𝐷𝑟

× 𝐿𝑟     for both a slab and a sphere (71)

Figure 3-1 and Figure 3-2 provide estimates for extrapolation distances for water reflected systems as 
well as bare systems. These distances are calculated from the sum of the extrapolation distance for a bare 
system and the reflector savings for the reflector material. For full water-reflected systems, the reflector 
savings is between 3.5 cm and 4.0 cm, so the reflected “extrapolation distance” is between 5.5 cm and 6.0 
cm for water-reflected solution systems. A good default number for full water reflector savings is 3.8 cm. 
With the bare extrapolation distance of 2.2 cm, the default reflected extrapolation distance would be 
6.0 cm. However, it should be noted that if specific data are available, it is strongly encouraged to use 
those values rather than a default.

3.4.1 Partially reflected systems

In many applications, one or more surfaces may be reflected, creating partial reflection of the geometry. 
For these surfaces, we add the appropriate reflector savings, δR, to the extrapolation distance, d. For 
example, if a cylinder is sitting on a concrete floor, then the radial and top surfaces are bare, whereas the 
bottom surface is reflected. In this case, the geometric buckling would take the following form:

2.405
𝑟 + 𝑑

2

+
𝜋

𝐻 + 𝑑 + (𝑑 + 𝛿𝑅)
2

(72)

Usual values of reflector savings are based on water reflector, but these can be used to account for other 
reflecting materials. For closely fitting concrete 100 mm or less in thickness, the single unit limits 
specified in Section 2 for thick water reflection may be used.

3.4.2 Determination of effective multiplication factor from geometric buckling

The multiplication constant can now be written in the form

𝑘𝑒𝑓𝑓 =
𝑘∞

1 + 𝐵2
𝑔𝑀2 (73)

When keff = 1, the system is critical and 𝐵2
𝑔 = 𝐵2

𝑚 , the Eq. (73) becomes:

1 =
𝑘∞

1 + 𝐵2
𝑚𝑀2 (74)

By solving both Eq. (73) and (74) for k∞ and then setting them equal,
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𝑘𝑒𝑓𝑓 1 + 𝐵2
𝑔𝑀2 = 1 × 1 + 𝐵2

𝑚𝑀2 𝑜𝑟𝑘𝑒𝑓𝑓 =
1 + 𝐵2

𝑚𝑀2

1 + 𝐵2
𝑔𝑀2 (75)

Thus, if we know the material buckling for a system, and we have information about the geometry such 
that we can determine the geometric buckling, we can determine the effective multiplication factor for the 
specific materials in a given geometry.

Note that this does require calculation of the migration area, but for water moderated systems, it is 
reasonable to assume that M2 is about 28.6 cm2.10 The error in the keff predicted by Eq. (75) increases as 
the actual keff decreases. For bare systems, the equation is off by about 1% for a system keff of 0.9, but it is 
off by around 18% for a system keff of 0.5. In all cases, the error is in the conservative direction, with Eq. 
(75) providing a higher keff than is actually the case.

This equation also works with water reflected systems if the extrapolation distance used for both the 
material and geometric bucklings includes the appropriate reflector savings.

EXAMPLE PROBLEMS

3.4.3 Buckling Conversion Example Problem 1

A process criticality accident occurred at the Idaho Chemical Processing Plant in a disengaging head of a 
solvent extraction column. The head had an h/d = 1.75 and a volume of 315.5 liters uranyl nitrate solution 
{U(82)O2(NO3)2} with a mass of 6.08 kg U-235 at critical. Use buckling conversion to determine the 
equivalent spherical mass involved in the accident. (Assume the head is a bare cylinder.)11

Process

This should be a straightforward buckling conversion from a cylinder to a sphere. One must determine the 
extrapolation distance to be used in the buckling conversions. To use Figure 3-1 (applicable for uranium 
solutions), we need to determine the ratio {H/D} / (1+{H/D}). For an H/D = 1.75, this gives a ratio of 
0.64. From Figure 3-1, this provides an extrapolation distance of 2.15 cm for the cylinder. For the sphere, 
the ratio is 0.5, which gives an extrapolation distance of 2.05 cm. 

Now we need the dimensions of the cylinder; given the volume and H/D.

10 As M2 =  + L2, for water systems,  = 27 cm2 while L2 is L2
mod (1-f). For water, L2

mod = (2.85 cm)2 = 8.12 cm2. 
For most water moderated, thermal systems, f ranges from 0.7 to 0.9 (see example problems 4, 5, and 6 in Chapter 
2). Taking the middle ground with f = 0.8, L2 = 0.2 * 8.12 = 1.6 cm2 so an average M2 would be 28.6 cm2. Analyses 
with values of M2 from 27.8 to 29.5 indicate less than a 0.2% change from results calculated using the 28.6 cm2 
average.
11 As this is an accident, the keff of the assembly is greater than 1.0. In this case, the keff is about 1.041. Thus, the 
buckling conversion is for a cylindrical system with keff = 1.041 to a spherical system with keff = 1.041. Because the 
keff remains constant and the material buckling is constant, consideration of the geometrical buckling will give the 
proper equivalent spherical mass.
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𝑉𝑐𝑦𝑙 =
𝜋𝐷2

4 𝐻⇒
𝐻
𝐷 = 1.75  so H =  1.75 D.  Then 𝑉𝑐𝑦𝑙 =

𝜋𝐷31.75
4 ,  Solve for 𝐷:

𝐷 =
4

1.75 𝜋 𝑉𝑐𝑦𝑙

1/3

=
4

1.75 𝜋 (315.5 L) 1000 
𝑐𝑚3

𝐿

1/3

= 61.23 cm.

𝐻 = 1.75𝐷 = 1.75 ×  61.23 cm = 107.15 cm.

Now using the equation for the buckling of a cylinder, we need the radius = 61.23 / 2 = 30.62 cm and the 
extrapolation distance of 2.2 cm.

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

  

=   
2.405

30.62 cm +  2.15 cm

2

+
𝜋

107.15 cm +  2 × 2.15 cm
2

 =  0.006181 cm―2

Equating the spherical and cylindrical bucklings,

𝜋
𝑅𝑠𝑝ℎ + 𝑑

2
=

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

 =  0.006181 cm―2.

0.006181 cm―2  =   
𝜋

𝑅𝑠𝑝ℎ + 𝑑
2

=
𝜋

𝑅𝑠𝑝ℎ + 2.05 cm
2

𝑅𝑠𝑝ℎ + 2.05 cm =  39.96 cm ⇒  𝑅𝑠𝑝ℎ = 37.91 cm

Now to determine the equivalent spherical critical mass, calculate the uranium density and the sphere 
volume.

U density =  
6.08 kg U235
315.5 liters  =  0.0193 

kg U235
liter

𝑉𝑠𝑝ℎ =
4
3 𝜋𝑅3

𝑠𝑝ℎ =
4
3 𝜋 (37.91 cm)3 = 228.2 liters

Mass =  228.2 liters ×  0.0193 
kg

liter  =  4.4 kg U235

This value, 4.4 kg, compares favorably with the value of 4.34 kg from the LANL accident report 
(reference 6, Table 9, pg. 58). That value is derived using a shape factor as found in Figure 3-3 (Figure 4, 
reference 11).

Based on the H/D of 1.75 for the engaging head, Figure 3-3 gives a shape factor of 1.38 for an unreflected 
system. So, the spherical critical mass is calculated by dividing the cylindrical critical mass by the shape 
factor. For this situation, 𝑀𝑐―𝑠𝑝ℎ =

𝑀𝑐―𝑐𝑦𝑙

shape factor = 6.08 kg
1.38 = 4.41 kg. 

In the accident report (reference 6, Table 9, pg. 58), the shape factor is given as 1.4, which provides a 
value of 4.34 kg for the spherical critical mass. Shape factors provide a quick way to determine spherical 
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critical mass when given the cylindrical critical mass or vice versa. However, you may find it difficult to 
read either curve with much accuracy, so a buckling conversion may give more accurate values.

Figure 3-3. Shape Factors for Cylinders of Solutions. (Reference 11.)

3.4.4 Buckling Conversion Example Problem 2

1. Calculate the water-reflected, critical radius for a cylindrical tank filled to a height of 20 
cm with a 20 gPu/liter Pu(5) metal–water mixture.

2. Compare this resulting critical radius with that of an infinite cylinder.
3. Calculate the relative axial and radial leakage fractions for the cylinder in Part 1 with a 

height of 20 cm. Do this for both the water-reflected cylinder and for a bare cylinder.
4. Calculate the water-reflected critical height for the cylinder in Part 1 with a radius of 18 

cm.
5. Calculate the water-reflected critical height for the cylinder in Part 1 with a diameter of 

15 cm.
Part 1.

First, find some data on critical dimensions of a Pu(5) metal-water mixture at 20 gPu/liter. Good starting 
points include:

1.75

1.38
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 ARH-600, Volume II (has both Pu and 235U data). This is reference 7.

 TID-7028 – Critical Dimensions of Systems Containing 235U, 239Pu, and 233U. This is reference 12.

 LA-10860 - Critical Dimensions of Systems Containing 235U, 239Pu, and 233U, 1986 Revision. This is 
reference 11.

We will start with ARH-600, and remember that Pu(5) indicates 5 wt % Pu-240. Page III.A-1 provides a 
table of contents for the Plutonium Systems data along with a description of the numbering system for the 
figures. The pages that follow provide basic Pu critical parameters and background information on how 
the data were developed. Figure III.9.95-3 in Volume II shows critical sphere volume for Pu(5)-H2O 
mixture for a bare (unreflected) system, a system with one-inch (2.54 cm) water reflection, and a system 
with full water reflection.12 Looking at 20 g Pu(5)/L on the x-axis intersecting with the full reflection 
curve gives a critical sphere volume of 36.5 Liters. (see Figure 3-4.)

12 Based on Figures 44 through 47 from TID-7028 (reference 12), full water reflection is anything greater than 3.5 
inches (8.9 cm) of water.
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Figure 3-4. Figure III.A.9.95-3 from ARH-600. (Reference 7)

Based on a critical spherical volume of 36.5 liters, we can calculate the critical radius:

𝑉𝑠𝑝ℎ = 4
3
𝜋𝑅3

𝑠𝑝ℎ⇒Solve for 𝑅𝑠𝑝ℎ: 𝑅𝑠𝑝ℎ =
3

4𝜋𝑉𝑠𝑝ℎ

1/3

=
3

4𝜋(36.5 L) 1000 
𝑐𝑚3

𝐿

1/3

= 20.58 𝑐𝑚. 

Now that we have the critical radius for the material in a spherical configuration, we can use buckling 
conversion to determine the critical dimensions for a cylinder. 

𝜋
𝑅𝑠𝑝ℎ + 𝑑

2
=

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

.

We have Rsph = 20.6 cm and H = 20 cm, but we also need the extrapolation distance, d. Using Figure 3-5 
(Figure III.A.10.95-3 from ARH-600, Reference 7), we find the full water reflection extrapolation 

Vol =
36.5 L
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distance is 5.65 cm (remember this includes the bare distance of 2.15 cm plus the reflector savings of 3.5 
cm). 

Figure 3-5. Figure III.A.10.95-3 from ARH-600. (Reference 7.)

Notice that Figure 3-5 also provides the material buckling of 0.0143 cm−2 for this mixture. We will use 
this value to check our calculations based on the sphere.

Using the radius of 20.58 cm obtained from the critical volume, calculate the geometric buckling of the 
sphere.

𝐵2
𝑔 =

𝜋
20.58 + 5.65

2
= 0.01435cm―2

This compares favorably with the material buckling of 0.0143 cm−2 from Figure 3-5. Now, use buckling 
conversion to determine the cylindrical radius associated with a mixture height of 20 cm.

𝜋
𝑅𝑠𝑝ℎ + 𝑑

2
=

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

.

Inserting known data

0.01435 cm―2 =
2.405

𝑅𝑐𝑦𝑙 + 5.65

2

+
𝜋

20.0 cm + 2 × 5.65 cm
2

.  

5.65 cm

2.15 cm

0.0143 cm-2

20 g Pu/l
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 Solving the equation for Rcyl :

2.405
𝑅𝑐𝑦𝑙 + 5.65

2

= 0.01435 cm―2 ―
𝜋

20.0 cm + 2 × 5.65 cm
2

2.405
𝑅𝑐𝑦𝑙 + 5.65

2

= 0.01435 cm―2 ― 0.01007 cm―2 = 0.00428 cm―2

𝑅𝑐𝑦𝑙 = 31.1 cm.

It should be noted that the same extrapolation distances were used for both the sphere and the cylinder in 
this calculation. For this cylinder, the height-to-diameter ratio (H/D) = 20 /(2×31.1) = 0.322. Figure 3-6 
(Figure 6 from LA-10860, reference 11) can be used to determine whether the extrapolation distance used 
for the cylinder needs to be adjusted. For the cylinder considered in this example, the ratio (H/D / 
(1+H/D)) = (0.322 / (1+0.322)) = 0.24. Figure 3-6 shows the ratio of extrapolation distances for this case 
is approximately 1, so no adjustment is needed. 
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Figure 3-6. Figure 6 from LA-10860. (Reference 11.)

Part 2.

Now the second part of the problem asked how the finite cylinder radius compares with the critical radius 
of an infinite cylinder. To calculate the infinite cylinder radius, we again use buckling conversion with the 
calculated material buckling of 0.01435 cm-2. From Figure 3-6, the extrapolation distance for an infinite 
cylinder is about 1.033 (blue line in Figure 3-6) times that of the sphere, so d = 1.033 * 5.65 cm = 5.84 
cm. Putting in the known values and solving for the radius of the fully reflected infinite critical cylinder 
gives

2.405
𝑅𝑖𝑛𝑓 𝑐 𝑦𝑙 + 5.84

2

= 0.01435 cm―2

𝑅𝑖𝑛𝑓 𝑐 𝑦𝑙 = 14.24 cm.

Notice that the infinite cylinder has a much smaller critical radius (14.24 cm) than a short, finite cylinder 
(31.1 cm). This result makes sense because a finite cylinder has axial leakage as well as radial leakage, 
whereas the infinite cylinder only has radial leakage. The critical radius calculation for an infinite cylinder 

0.24

1.03
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with Pu(5) solution is comparable to the ANSI/ANS-8.1-2014 subcritical limit of 15.4 cm for a 
239Pu(NO3)4 solution at optimum concentration and thick water reflection.

Part 3. 

The expression for geometric buckling of a cylinder allows you to calculate the fractional leakage in the 
axial and in the radial directions. For the water-reflected cylinder, H = 20 cm, Rcyl = 31.1 cm, and d = 5.65 
cm. Using these values,

𝐵2
𝑔 =

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

     =      radial +  axial.

Radial =  
2.405

𝑅𝑐𝑦𝑙 + 𝑑

2

  =   
2.405

31.1 + 5.65

2

= 0.00428 cm―2

Axial =  
𝜋

𝐻 + 2𝑑
2

  =   
𝜋

20 + 2 × 5.65
2

= 0.01007 cm―2

this indicates that there is 2.35× (= 0.01007 / 0.00428) as much leakage from the ends of the cylinder as 
from the curved surface. Thus, the radial leakage is 30% (= 0.00428 / 0.01435), whereas the axial leakage 
is 70% (= 0.01007 / 0.01435). This large axial leakage is why the finite cylinder with a height of 20 cm 
has a much larger critical radius than that of the infinite cylinder. It is important to note that the leakage 
fractions are based on the core dimensions and not the system dimensions, which include the reflector. 
For the reflected system, there is very little leakage either in the radial or the axial directions. What the 
buckling comparison does provide is a measure of the impact of adding a reflector to a given direction. 
Because the axial leakage is about 2.33× that of the radial leakage, adding reflection in the vertical 
direction will have a larger impact on the system keff.

Now repeating the calculation for a bare cylinder, we use buckling conversion to determine the cylindrical 
radius associated with a mixture height of 20 cm. Remember, the material buckling is independent of 
reflection conditions. (In this case, the bare critical radius is 24.15 cm with an extrapolation distance of 
2.10 cm = 26.25 cm, whereas the reflected critical radius is 20.58 and an extrapolation distance of 5.65 
cm = 26.23 cm. Both will give about 0.01434 cm−2 when divided into π and then squared.)

Now, determining the bare radius and radial buckling component,

0.01435 cm―2 =
2.405

𝑅𝑐𝑦𝑙 + 2.15

2

+
𝜋

20.0 cm + 2 × 2.15 cm
2

.  

 Solving the equation for the radial buckling and Rcyl :

2.405
𝑅𝑐𝑦𝑙 + 2.15

2

= 0.01435 cm―2 ―
𝜋

20.0 cm + 2 × 2.15 cm
2

2.405
𝑅𝑐𝑦𝑙 + 2.15

2

= 0.01435 cm―2 ― 0.01671 cm―2 = ―0.002364 cm―2
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the radial buckling is negative; what happened? A negative buckling indicates a subcritical situation, so a 
bare cylinder of Pu(5)-H2O will not go critical. The issues are basically that when enough material is 
present to support a chain reaction, there is too much leakage in the axial direction.

Increasing the height to 25 cm, then the radius and associated radial buckling are as follows:

0.01435 cm―2 =
2.405

𝑅𝑐𝑦𝑙 + 2.15

2

+
𝜋

25.0 cm + 2 × 2.15 cm
2

.  

 Solving the equation for the radial buckling and Rcyl :

2.405
𝑅𝑐𝑦𝑙 + 2.15

2

= 0.01435 cm―2 ―
𝜋

25.0 cm + 2 × 2.15 cm
2

2.405
𝑅𝑐𝑦𝑙 + 2.15

2

= 0.01435 cm―2 ― 0.01150 cm―2 = ―0.002854 cm―2

𝑅𝑐𝑦𝑙 = 42.9 cm.

For the bare cylinder, H = 25 cm, Rcyl = 42.9 cm, the bucklings are as follows:

𝐵2
𝑔 =

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

     =      radial +  axial.

Radial =  
2.405

𝑅𝑐𝑦𝑙 + 𝑑

2

  =   
2.405

42.9 + 2.15

2

= 0.00285 cm―2

Axial =  
𝜋

𝐻 + 2𝑑
2

  =   
𝜋

25 + 2 × 2.15
2

= 0.01150 cm―2

This indicates that there is 4.04× (= 0.01150 / 0.00285) as much leakage from the ends of the cylinder as 
from the curved surface. Thus, the radial leakage is 20% (= 0.00285 / 0.01435), whereas the axial leakage 
is 80% (= 0.01150 / 0.01435). This large axial leakage is why the height had to be increased to attain a 
critical system. PARTISN calculations give 20.4% radial leakage and 79.6% axial leakage.

Also note that because of the large radius, the geometry of the bare system is close to an infinite slab. 
Using this, we can determine the thickness of a critical infinite slab of Pu(5)-H2O at 20 g Pu(5) per liter. 

0.01435 cm―2 =
𝜋

𝑥 cm + 2 × 2.15 cm
2

.  

Solving the equation for the slab thickness:

𝑥 cm + 2 × 2.15 cm = 26.23

𝑥 = 21.9𝑐𝑚
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So, as determined above, the slab thickness or height must be greater than 20 cm for a critical system. In 
this case, where there is no radial leakage (i.e., the radius is greater than 100 cm where H/D = 20/(2×100) 
= 0.1), the height of the solution must be greater than 21.9 cm for a critical system.

Part 4. 

To determine the height of a fully reflected critical system with a radius of 18 cm, we again use buckling 
conversion:

0.01435 cm―2 =
2.405

18 cm + 5.65 cm

2

+
𝜋

𝐻𝑐𝑦𝑙 cm + 2 × 5.65 cm
2

.

 Solving the equation for 𝐻𝑐𝑦𝑙 :

𝜋
𝐻𝑐𝑦𝑙 cm + 2 × 5.65 cm

2
= 0.01435 cm―2 ―

2.405
18 cm + 5.65 cm

2

𝜋
𝐻𝑐𝑦𝑙 cm + 2 × 5.65 cm

2
= 0.01435 cm―2 ― 0.01034 cm―2 = 0.00401 cm―2

𝐻𝑐𝑦𝑙 = 38.3 cm.
  

So, the height is 38.3 

cm, which makes a cylinder with H/D = 38.3 / 2 × 18 = 1.06. This is just about a right circular cylinder.

Part 5. 

To determine the height of a fully reflected critical system with a diameter of 15 cm (about 6 in.), we 
follow the same process as in Part 4. First, we must convert the 15 cm diameter to a 7.5 cm radius and 
then use buckling conversion to determine the appropriate height:

0.01435 cm―2 =
2.405

7.5 cm + 5.65 cm

2

+
𝜋

𝐻𝑐𝑦𝑙 cm + 2 × 5.65 cm
2

.

 Solving the equation for 𝐻𝑐𝑦𝑙 :

𝜋
𝐻𝑐𝑦𝑙 cm + 2 × 5.65 cm

2
= 0.01435 cm―2 ― 2.405

7.5 cm + 5.65 cm

2

𝜋
𝐻𝑐𝑦𝑙 cm + 2 × 5.65 cm

2
= 0.01435 cm―2 ― 0.03345 cm―2 = ―0.01910 cm―2 As indicated by the 

negative value for buckling, it is not possible for a 15 cm diameter, thick 
water–reflected cylinder containing a 20 gPu(5)/l solution to attain a critical state. This conclusion could 
also be reached from the previous analysis in Part 2, where a minimum 28.48 cm (=14.24 cm × 2) 
diameter is required for a critical infinite cylinder containing the same material. Skinny, long cylinders 
such as this tend to have more neutron leakage than thick, short cylindrical tanks, which inherently makes 
them more safe. Figure 3-7 illustrates that, for Pu densities less than about 1 kg/l (the light blue shaded 
area where plutonium is in solution form), the critical diameter of an infinite cylinder will be greater than 
15 cm (about 6 in.) for a water-reflected system. This fact is the main reason that cylindrical Pu solution 
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storage tanks are designed with this diameter or smaller to ensure, regardless of the Pu concentration or 
neutron reflectors present, that criticality is not possible.

Figure 3-7. Estimated Critical Diameters of Infinitely Long Cylinders of Homogeneous Water–moderated 
Plutonium. (Reference 11, Figure 33.)

NOTE: In Figure 3-7, the units for Pu density (concentration) have changed from grams/liter as used in 
ARH-600 (Reference 7) to kilograms/liter. Thus, the concentration of 20 g/liter becomes a density of 0.02 
kg/liter.

3.4.5 Buckling Conversion Example Problem 3

Deep wells are present in a glovebox (Figure 3-8), where each has a length of 51 in. (129.54 cm), width of 
14 in. (35.56 cm), and depth of 6 in. (15.24 cm). Suspended above these wells are 6 in. (15.24 cm) 
diameter storage tanks, each of which contains 30 liters of Pu solution. (Assume a Pu metal–water 
mixture with 5 wt % 240Pu.) Assume that a single 30-liter, 6 in. (15.24 cm) diameter storage tank breaks 
during operations, and its contents are completely drained into a one deep well. 

15 cm
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1. Determine the critical solution height in the deep well for a Pu(5) concentration of 200 gPu(5) per 
liter for an unreflected system. (That is, neglect the effects of neutron reflection from the well steel or 
other materials in the vicinity of the solution.) 

2. Based on the initial volume in the cylindrical storage tank, can a criticality event occur?
3.

Figure 3-8. Isometric and Elevation Views of Solution Storage Tanks and Glovebox Deep Wells for Buckling 
Conversion Example Problem 1.

Deep wells with dimensions 51” L x 14” W x 6” D.

Wells

Figures are not to scale.
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Part 1. The first step in this problem is deciding which of the geometric buckling expressions to use from 
Table 11. Because the slab is in the shape of a parallelepiped, that expression for buckling would be 
sufficient for this problem. 

The geometric buckling for the parallelepiped that represents the deep well can be equated to that of an 
unreflected, critical sphere with a known critical radius:

𝜋
𝑅𝑠𝑝ℎ + 𝑑

2
=

𝜋
𝑎 + 2𝑑

2
+

𝜋
𝑏 + 2𝑑

2
+

𝜋
𝑐 + 2𝑑

2
,

Solving this equation for the critical height, c, results in the following expression for the critical solution 
height in the well.

𝑐 =
1

𝑟𝑠𝑝ℎ + 𝑑 2 ―
1

(𝑎 + 2𝑑)2 ―
1

(𝑏 + 2𝑑)2

―1
2

― 2𝑑.

We know the value for a and b; thus, we need the extrapolation distance, and the critical sphere 
dimensions for a Pu concentration of 200 gPu/l should be referenced to complete the calculation. Figure 
3-9 provides a plot of the extrapolation distances for Pu metal–water mixtures with 5 wt % Pu-240 for 
various reflection conditions. Figure 3-10 provides volume for a critical sphere for a Pu–metal water 
mixture for various reflection conditions. These data can be used to determine the spherical dimensions.

The extrapolation distance, d, can be found using Figure 3-9. Notice this graph is specific to Pu-H2O 
solutions with 5 wt % Pu-240. Selecting 200 g Pu/liter on the x-axis, we find an extrapolation distance of 
2.25 cm for an unreflected system. Also, note that the material buckling for the system is found using the 
top curve and the y-axis values on the left side. For this mixture, the material buckling is 0.026 cm−2. 

As we know the material buckling, we can calculate the critical spherical radius from the following:

𝐵2
𝑚 = 𝐵2

𝑔|
at critical

=
𝜋

𝑅𝑠𝑝ℎ + 𝑑
2

     for a sphere

0.026 cm―2 =
𝜋

𝑅𝑠𝑝ℎ + 2.25
2

19.48 cm = 𝑅𝑠𝑝ℎ + 2.25;𝑅𝑠𝑝ℎ = 17.23cm

We will compare this value with the value we get from the critical spherical volume information in Figure 
3-10. 
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Figure 3-9. Extrapolation Distance Data for Pu Metal–Water Mixtures with 5 Wt % Pu-240. (Reference 7, Figure III.A.10.95-3.)

2.25 cm

0.026 cm-2



95

Figure 3-10. Critical Volume for an Unreflected Sphere with a Pu Metal-Water Mixture with 5 Wt. % Pu-
240. (Reference 5, Figure III.A.9.95-3.)

From Figure 3-10, the critical unreflected sphere volume for this mixture is 22 liters. Converting to the 
equivalent spherical radius gives:

𝑅𝑠𝑝ℎ = 3 3 × 𝑉
4 × 𝜋

= 3 3 × 22liter × 1000cm3

4 × 𝜋 × liter
= 3 5,252.1cm3 = 17.38cm

This compares well with the 17.23 cm calculated from Figure 3-9 and the material buckling.

1

22 L
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Now that we have all the values, the critical well height for the Pu metal–water mixture can be 
determined:

𝑐 =
1

𝑟𝑠𝑝ℎ + 𝑑 2 ―
1

(𝑎 + 2𝑑)2 ―
1

(𝑏 + 2𝑑)2

―1
2

― 2𝑑.

𝑐 =
1

(17.38 + 2.25)2 ―
1

(129.54 + 2 × 2.25)2 ―
1

(35.56 + 2 × 2.25)2

―1
2

― 2 × 2.25

𝑐 = [0.00260 ― 0.00006 ― 0.00062]―1
2 ― 4.50

𝑐 = 22.82 ― 4.50 = 18.32 cm

Note that the depth 

of the well is only 15.24 cm so there is not enough well volume in this configuration to support a critical 
system.

Part 2. The critical slab height calculated in Part 1 can now be used to calculate the critical solution mass 
and volume required based on the estimated critical height for the deep well. 

Knowing the Pu concentration, , and deep well dimensions a, b, and c, we can calculate the critical 
volume and mass from the following.

𝑉crit box = 𝑎 × 𝑏 × 𝑐 =  129.54 cm ×  35.56 cm ×  18.51 cm

𝑉crit box =  85,265 cm3 =  85.3 liters

The total volume available to the slab tank from a single 6 in. diameter storage tank during an upset of 
this kind is 30 liters, which is far less than the 85 liters that is needed in the slab tank to result in 
criticality. If this process upset were to occur, then a criticality event could not occur unless the contents 
of multiple tanks were to spill into the tank.

3.4.6 Buckling Conversion Example Problem 4

Two isolated cylindrical, non-favorable geometry tanks are being filled with a fissile solution. The first 
tank is filled with a U(93.5)–water mixture, whereas the second tank is being filled with a Pu metal–water 
mixture with 5 wt % Pu-240 (Figure 3-11). Both solutions have a fissile concentration of 100 g fissile/L. 
Assume that the tanks are not externally reflected; the tanks have a 10 in. (25.4 cm) outside radius; the 
tanks begin filling with solution at the same time; the rate of solution addition to the tank is the same; and 
no neutron poisons are assumed to be present in the tank.

1. Determine the critical solution height for each tank and compare the results of the two 
systems.

2. Repeat this calculation with a concentration of 150 g fissile/L. 
3. Repeat this calculation with a concentration of 50 g fissile/L.

The first step in the solution to this problem is to compile the data needed for each mixture. Using figures 
from ARH-600 (reference 7), we can get information about the spherical critical mass (Figure 3-12) = 2 
kg, and the spherical critical volume = 20 liters for a bare U(93.5) metal–water mixture.
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𝑅𝑈(93.5) =
3 × 𝑉𝑈(93.5)

4 × 𝜋

1
3

=
3 × 20 liters × 1000 cm3/liter

4 × 𝜋

1
3

= 16.8 cm

Information for the Pu system is obtained from Figure 3-13 (mcrit = 2.25 kg) and Figure 3-14 (Vcrit = 22.5 
liters).

𝑅𝑃𝑢(5) =
3 × 𝑉𝑃𝑢(5)

4 × 𝜋

1
3

=
3 × 22.5 liters × 1000 cm3/liter

4 × 𝜋

1
3

= 17.5 cm

The extrapolation distances for these systems can be found from Figure 3-15 and Figure 3-16 (try to use 
information from the same dataset for consistency). Figure 3-15 gives the extrapolation distance of 2.05 
cm for an unreflected U(93.5)-H2O system. The material buckling is also found from the chart as 0.028 
cm−2. Figure 3-16 gives the extrapolation distance of 2.15 cm for an unreflected Pu(5)-H2O system. 
Figure 3-16 also show the material buckling for an unreflected Pu(5)-H2O system to be 0.0255 cm-2.
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Figure 3-11. KENO 3D Illustration of Tanks for Buckling Conversion Problem 3. (Not to scale.)

The radius 
of each 
tank is 25.4 
cm



99

Figure 3-12. Spherical Critical Mass and Volume for a Mixture of U(93.5) and Water. (Reference 7, Figure 
III.B.9(93.5)-2.)

20 liters

2 kg
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Figure 3-13. Spherical Critical Mass for a Mixture of Pu(5) and Water. (Reference 7, Figure III.A.6.95-3.)

2.25 kg

100 g/l
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Figure 3-14. Spherical Critical Volume for a Mixture of Pu(5) and Water. (Reference 7, Figure III.A.9.95-3.)

22.5 L

100 g/l
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Figure 3-15. Extrapolation Distance and Material Buckling for a Mixture of U(93.5) and Water. (Reference 7, 
Figure III.B.10 (93.5)-1.)

0.028 cm-2

2.05 cm
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Figure 3-16. Extrapolation Distance and Material Buckling for a Mixture of Pu(5) and Water. (Reference 7, 
Figure III.A.10.95-3.)

Now, let us check the material bucklings obtained from the critical dimensions with those obtained from 
Figure 3-15 and Figure 3-16. First, the uranium system with a critical radius of 16.8 cm,

𝐵2
𝑚 =

𝜋
16.8 cm + 2.05 cm

2
= 0.02778 cm―2 ,

which is very close to 0.028 cm−2 determined from Figure 3-15. Now, checking the Pu system with a 
critical radius of 17.5 cm,

𝐵2
𝑚 =

𝜋
17.5 cm + 2.15 cm

2
= 0.02556 cm―2 ,

which is very close to 0.0255 cm−2 determined from Figure 3-16. Also note that at critical, the uranium 
system has more leakage (larger material buckling) than the Pu system. We will discuss this after 
determining the critical heights of the two systems.

2.15 cm

0.0255 cm-2
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Recall that the geometric buckling for a sphere equates to that of a cylinder, as

𝜋
𝑅𝑠𝑝ℎ + 𝑑

2
=

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

.

The cylinder radii are both 25.4 cm. We will assume that the extrapolation distance used for spheres is the 
same as that for cylinders. Then for the U(93.5) solution tank, the height of the solution at critical would 
be:

0.02778 cm―2 =
2.405

25.4 cm + 2.05 cm

2

+
𝜋

𝐻𝑈 cm + 2 × 2.05 cm

2
.  

 Solving the equation for 𝐻𝑈 :

𝜋
𝐻𝑈 cm + 2 × 2.05 cm

2
= 0.02778 cm―2 ―

2.405
25.4 cm + 2.05 cm

2

𝜋
𝐻𝑈 cm + 2 × 2.05 cm

2
= 0.02778 cm―2 ― 0.00768 cm―2 = 0.02010 cm―2

𝐻𝑈 = 18.1 cm.

Then for the Pu(5) solution tank, the height of the solution at critical would be as follows:

0.02556 cm―2 =
2.405

25.4 cm + 2.15 cm

2

+
𝜋

𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
.  

 Solving the equation for 𝐻𝑃𝑢 :

𝜋
𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
= 0.02556 cm―2 ―

2.405
25.4 cm + 2.15 cm

2

𝜋
𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
= 0.02556 cm―2 ― 0.00762 cm―2 = 0.01794 cm―2

𝐻𝑃𝑢 = 19.2 cm.

Although the critical height difference between the plutonium–water and uranium–water mixtures is small 
(about 1.1 cm), this calculation demonstrates that the uranium–water system will achieve a critical state 
before the plutonium–water system. Intuition supports this conclusion because the critical mass for an 
unreflected, spherical system is lower for uranium (2 kg) than for plutonium (2.25 kg) at a fissile 
concentration of 100 g/l. The height difference can also be inferred from the difference in material 
bucklings. As the radial buckling for both system is about the same (0.00765 cm−2), the larger overall 
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material buckling for uranium indicates that there must be more axial leakage and thus a smaller height 
for the uranium system than for the plutonium system.

Part 2.

For 150-g/l fissile concentration, the calculation proceeds as before. Using Figure 3-12 with a uranium 
concentration of 0.15 g/cm3 (150 g/liter) shows the spherical critical mass as 2.6 kg and a critical 
spherical volume of 17 liters. Using Figure 3-13 with a plutonium concentration of 150 g/L shows the 
spherical critical mass as 3.3 kg, whereas Figure 3-14 shows the spherical critical volume to be 22 L. The 
extrapolation distances change little from 100 g/L to 150 g/L, so we will use 2.05 cm for the uranium 
extrapolation distance and 2.15 cm for the plutonium extrapolation distance as previously determined.

Determining the critical radii for each solution based on the critical volume. For uranium,

𝑅𝑈(93.5) =
3 × 𝑉𝑈(93.5)

4 × 𝜋

1
3

=
3 × 17 liters × 1000 cm3/liter

4 × 𝜋

1
3

= 15.95 cm.

For the plutonium solution,

𝑅𝑃𝑢(5) =
3 × 𝑉𝑃𝑢(5)

4 × 𝜋

1
3

=
3 × 22 liters × 1000 cm3/liter

4 × 𝜋

1
3

= 17.4 cm.

Now, let us check the material bucklings obtained from the critical dimensions with those obtained from 
Figure 3-15 and Figure 3-16. First, the uranium system with a critical radius of 15.95 cm.

𝐵2
𝑚 =

𝜋
15.95 cm + 2.05 cm

2
= 0.03046 cm―2 ,

which is very close to 0.0306 cm−2 determined from Figure 3-15. Now, checking the plutonium system 
with a critical radius of 17.5 cm,

𝐵2
𝑚 =

𝜋
17.4 cm + 2.15 cm

2
= 0.02582 cm―2 ,

which is very close to 0.0258 cm−2 determined from Figure 3-16. Again, note that at critical, the uranium 
system has more leakage (larger material buckling) than the plutonium system. This is expected because 
the critical volume for the uranium solution is less than the critical volume for the plutonium solution.

Calculating the critical height for both solutions, starting with the U(93.5) solution tank, the height of the 
solution at critical would be

0.03046 cm―2 =
2.405

25.4 cm + 2.05 cm

2

+
𝜋

𝐻𝑈 cm + 2 × 2.05 cm

2
.  

 Solving the equation for 𝐻𝑈 :
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𝜋
𝐻𝑈 cm + 2 × 2.05 cm

2
= 0.03046 cm―2 ―

2.405
25.4 cm + 2.05 cm

2

𝜋
𝐻𝑈 cm + 2 × 2.05 cm

2
= 0.03046 cm―2 ― 0.00768 cm―2 = 0.02278 cm―2

𝐻𝑈 = 16.7 cm.

Then for the Pu(5) solution tank, the height of the solution at critical would be

0.02582 cm―2 =
2.405

25.4 cm + 2.15 cm

2

+
𝜋

𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
.  

 Solving the equation for 𝐻𝑃𝑢 :

𝜋
𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
= 0.02582 cm―2 ―

2.405
25.4 cm + 2.15 cm

2

𝜋
𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
= 0.02582 cm―2 ― 0.00762 cm―2 = 0.01820 cm―2

𝐻𝑃𝑢 = 19.0 cm.

Notice that at a fissile concentration of 150 g/L, the difference in critical height for these two systems is 
larger than at 100 g/L. The critical height difference between the two systems has increased from 1.05 cm 
to 2.30 cm. It can be seen from this problem that a Pu metal–water mixture (5 wt % Pu-240) at 100 or 150 
gPu/L requires more volume to achieve a critical state than for a U(93) metal–water system at the same 
concentration for the equivalent cylindrical system. This argument is also true for spherical systems as is 
shown in the minimum critical volume data for the unreflected spherical tanks. 

Part 3.

For 50 g/L fissile concentration, the calculation proceeds as before. Figure 3-12 shows the spherical 
critical mass for U(93.5)-H2O at 0.05 g/cm3 (50 g/liter) as 1.6 kg and a critical spherical volume of 32 
liters. Figure 3-13 shows the spherical critical mass for Pu(5)-H2O at 50 g/liter as 1.35 kg, whereas Figure 
3-14 shows the spherical critical volume to be 27 L. Notice the critical volume (and critical mass) for the 
plutonium solution is now less than that of the uranium solution at 50 g/L. The extrapolation distances 
change little from 100 g/L to 50 g/L, so we will use 2.05 cm for the uranium extrapolation distance and 
2.15 cm for the plutonium extrapolation distance.

Determining the critical radii for each solution based on the critical volume. For uranium,

𝑅𝑈(93.5) =
3 × 𝑉𝑈(93.5)

4 × 𝜋

1
3

=
3 × 32 liters × 1000 cm3/liter

4 × 𝜋

1
3

= 19.7 cm.
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For the plutonium solution,

𝑅𝑃𝑢(5) =
3 × 𝑉𝑃𝑢(5)

4 × 𝜋

1
3

=
3 × 27 liters × 1000 cm3/liter

4 × 𝜋

1
3

= 18.6 cm.

Now, let us check the material bucklings obtained from the critical dimensions with those obtained from 
Figure 3-15 and Figure 3-16. First, the uranium system with a critical radius of 19.7 cm:

𝐵2
𝑚 =

𝜋
19.7 cm + 2.05 cm

2
= 0.02086 cm―2 ,

which is very close to 0.0208 cm−2 determined from Figure 3-15. Now, checking the plutonium system 
with a critical radius of 18.6 cm,

𝐵2
𝑚 =

𝜋
18.6 cm + 2.15 cm

2
= 0.02292 cm―2 ,

which is very close to 0.0230 cm−2 determined from Figure 3-16. Note that at critical, the 50 g/L uranium 
system now has less leakage (smaller material buckling) than the plutonium system. This is as expected 
because the critical volume for the uranium solution is greater than the critical volume for the plutonium 
solution at the given fissile density of 50 g/L.

Calculating the critical height for both solutions, starting with the U(93.5) solution tank, the height of the 
solution at critical would be:

0.02086 cm―2 =
2.405

25.4 cm + 2.05 cm

2

+
𝜋

𝐻𝑈 cm + 2 × 2.05 cm

2
.  

 Solving the equation for 𝐻𝑈 :

𝜋
𝐻𝑈 cm + 2 × 2.05 cm

2
= 0.02086 cm―2 ―

2.405
25.4 cm + 2.05 cm

2

𝜋
𝐻𝑈 cm + 2 × 2.05 cm

2
= 0.02086 cm―2 ― 0.00768 cm―2 = 0.01318 cm―2

𝐻𝑈 = 23.3 cm.

Then for the Pu(5) solution tank, the height of the solution at critical would be:

0.02292 cm―2 =
2.405

25.4 cm + 2.15 cm

2

+
𝜋

𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
.  

 Solving the equation for 𝐻𝑃𝑢 :
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𝜋
𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
= 0.02292 cm―2 ―

2.405
25.4 cm + 2.15 cm

2

𝜋
𝐻𝑃𝑢 cm + 2 × 2.15 cm

2
= 0.02292 cm―2 ― 0.00762 cm―2 = 0.01530 cm―2

𝐻𝑃𝑢 = 21.1 cm.

Notice that at a fissile concentration of 50 g/L, the critical height for the plutonium system is now the 
smaller value by about 2.2 cm. Thus, at some fissile concentration between 50 g/L and 100 g/L, the 
critical volumes of these two solutions will be equal. It is left to the reader to verify that the material 
bucklings and associated solution heights are approximately equal at this concentration.

3.4.7 Buckling Conversion Example Problem 5

For the uranium fissile solution (U(93.5)–water mixture at 100 g fissile/L) in example problem 4, perform 
a parametric study on H/D for an unreflected cylinder. Use H/D values of ∞, 10, 5, 2, 1, 0,9238, 0.7, 0.5, 
0.25, and 0 (i.e., infinite slab thickness). Determine the critical radius and height for the system along 
with the critical mass of U-235. Use a constant extrapolation distance of 2.05 cm for all shapes.
The first step in the solution to this problem is to compile the data needed. Using Figure 3-12 (from ARH-
600, reference 7), we can obtain information about the spherical critical mass = 2 kg, and the spherical 
critical volume = 20 L for a bare U(93.5) metal–water mixture.

𝑅𝑈(93.5) =
3 × 𝑉𝑈(93.5)

4 × 𝜋

1
3

=
3 × 20 liters × 1000 cm3/liter

4 × 𝜋

1
3

= 16.8 cm ,

which is the same answer as found in example problem 4. Now, let us check the material buckling 
obtained from the critical dimensions with that obtained from Figure 3-15 for the uranium system with a 
critical radius of 15.95 cm:

𝐵2
𝑚 =

𝜋
16.8 cm + 2.05 cm

2
= 0.02778 cm―2 ,

which is very close to 0.0280 cm−2 determined from Figure 3-15.

Calculating the critical radius for the infinite cylinder,

 Solving the equation for Rcyl :

2.405
𝑅cyl cm + 2.05 cm

2

= 0.02778 cm―2

𝑅𝑐𝑦𝑙 = 14.4 cm -  2.05 cm =  12.4 cm.

Now, repeating the calculation for H/D = 1 requires iteration or using a program like Excel with its Solver 
Add-on. Notice that we have replaced the height with (H/D) × 2 and are iterating on the radius of the 
cylinder.
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0.02778 cm―2 =
2.405

𝑅𝑐𝑦𝑙 cm + 2.05 cm

2

+
𝜋

2 × (𝐻/𝐷) cm + 2 × 2.05 cm

2
.  

 For H/D =  10:

0.02778 cm―2 =
2.405

𝑅𝑐𝑦𝑙 cm + 2.05 cm

2

+
𝜋

2 × (10) × 𝑟 cm + 2 × 2.05 cm

2
.

Iterating gives 𝑅𝑐𝑦𝑙 = 12.4 cm.

Now that we have the dimensions (i.e., r = 12.4 cm and H = 248.0 cm), we can calculate the volume and 
the critical mass of U-235 based on the 0.1 g 235U/L given concentration.

𝑉𝑠𝑝ℎ = 𝜋𝑅2
𝑐𝑦𝑙𝐻 = 𝜋(12.4 cm)2(248 cm) ×

1 liter
1000 cm3 = 119.8 liters.

𝑀235 =
0.1 kg
liter × 119.8 liters = 12.0 kg

Continuing the process through the h/d values down to H/D = 0.25, we find

 For H/D =  0.25:

0.02778 cm―2 =
2.405

𝑅𝑐𝑦𝑙 cm + 2.05 cm

2

+
𝜋

2 × (0.25) × 𝑟 cm + 2 × 2.05 cm

2
.

Iterating gives 𝑅𝑐𝑦𝑙 = 33.1 cm.

Now that we have the dimensions (i.e., r = 33.1 cm and H = 16.55 cm), we can calculate the volume and 
the critical mass of 235U based on the 0.1 g 235U /liter given concentration.

𝑉𝑠𝑝ℎ = 𝜋𝑅2
𝑐𝑦𝑙𝐻 = 𝜋(33.1 cm)2(16.55 cm) ×

1 liter
1000 cm3 = 56.96 liters.

𝑀235 =
0.1 kg
liter ×  56.96 liters = 5.7 kg

Then for the infinite slab (i.e., H/D = 0), we find a thickness:

 Solving the equation for Hcyl :

𝜋
𝐻cyl cm + 2 × 2.05 cm

2
= 0.02778 cm―2

𝐻cyl = 18.85 cm -  4.1 cm =  14.75 cm.

Tabulation of the results along with the radius values determined from PARTISN is given in Table 3-3 
(Dimensions rounded to one decimal place for ease of viewing).
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Table 3-3. Parametric Evaluation of H/D for 0.1 gU(93.5)/L Solution in Cylinder.

radius
(cm) H/D height

(cm) (H/D)/(1+( H/D)) mass
(kg)

volume
(liters)

PARTISN calc.
radius (cm)

12.3 100 ∞ 0.99 ∞ ∞ 12.3
12.4 10 248.0 0.91 11.98 119.8 12.6
12.5 5 125.0 0.83 6.14 61.4 12.7
13.2 2 52.8 0.67 2.89 28.9 13.4
15.2 1 30.4 0.50 2.21 22.1 15.5
15.6 0.9238 28.8 0.48 2.20 22.0 15.8
17.3 0.7 24.2 0.41 2.28 22.8 17.6
20.5 0.5 20.5 0.33 2.71 27.1 20.8
33.2 0.25 16.6 0.20 5.75 57.5 33.6

∞ 0 14.8 0.00 ∞ ∞ 14.7

Note that the minimum volume and minimum mass occurs with H/D = 0.9238, which comes from 
differentiating the equation for the volume of a cylinder with a given material buckling. Also, note that 
there is little difference between H/D = 0.9328 and H/D = 1, as both have small values of surface area for 
a given volume. Although H/D = 1 seems to imply that the radial buckling should equal the axial 
buckling, this is not the case. The radial buckling depends on the radius and not the diameter, so H/D = 1 
is actually H/r = 2. This indicates that there should be more leakage in the radial direction than in the 
axial direction, as the height is larger than the radius. Also, the radial buckling has the 2.405 factor in the 
numerator, whereas the axial buckling has π in the numerator. This precludes easy quantifiable leakage 
calculations, but the qualitative conclusions will still hold. PARTISN calculations for the H.D = 1 case 
show a radial buckling of about 0.0192 cm−2 and an axial buckling of about 0.0082 cm−2. This indicates 
that for this uranium solution, the radial leakage is about 2.3× the axial leakage.

The ratio in column 4 of the table can be used with Figure 3-17 to determine the effective extrapolation 
distance for each shape. Similar figures appear in Reference 14, LA-3366 Rev (Figures 4 and 5) and 
Reference 11, LA-10860 (Figures 6 and 7).
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Figure 3-17. Effective extrapolation distances for Cylinders of Uranium Solutions. (Figure 3, page 6, 
Reference 12.)

3.4.8 Buckling Conversion Example Problem 6

One of the process criticality accidents occurred in January 1958 at the Mayak Enterprise. The accident 
involved highly enriched uranium solution in a cylinder that was being moved and likely tipped. Use 
buckling conversion to discuss the variation in effective multiplication factor for the various 
configurations of solution in the cylinder.

Mayak 1958 accident

This accident involved a high concentration of highly enriched, 418 g U(90)O2(NO3)2, uranyl nitrate 
solution. Figure 3-18 shows the solution in the tank just prior to tipping. Characteristics of the tank are as 
follows:

 Stainless-steel vessel 
o 750 mm inside diameter with a wall thickness of 2 to 4 mm
o Approximate capacity of 440 L (~116 gallons)

– This indicates a vessel height of at least 900 mm
o >1.5 m from any walls but 600 mm from the control panel shielding slab 
o ~0.8 m above the concrete floor
o Resting on and bolted to a thick (~8 mm) steel support plate/stand

On January 2, 1958, after removing some of the solution through a filling system, the experimenters 
judged the remaining solution volume to be highly subcritical. The knowledgeable dedicated team 
decided to circumvent their procedure and to manually pour the remaining solution from the vessel.
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Figure 3-18. Cylindrical Tank with 58.3 L of uranyl nitrate solution.

At the point where the experimenters decided to stop draining into 6 L bottles and to tip the container, 
there was about 58.3 L of solution (13.2 cm high and 75 cm diameter). Calculations with the PARTISN 
code indicate a bare, unreflected keff of 0.88 for this configuration. However, the tank was setting on a 
stainless-steel pedestal, so there was some bottom reflection. This was modeled as 2.1 cm of water, and 
the resulting keff was 0.97.

To calculate the keff using Eq. (75) (material and geometric bucklings), we need the material buckling for 
this system. The bare sphere critical volume is 17.5 liters (reference 20). This gives a radius of 16.11 cm, 
and a geometric buckling of:

𝜋
𝑟 + 𝑑

2
=

𝜋
16.11 + 2.2

2
= 0.02944𝑐𝑚―2

Because the system is critical, the geometric buckling is equal to the material buckling for this solution. 
The geometric buckling for the unreflected initial geometry is:

2.405
𝑟 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

=
2.405

37.5 + 2.2

2

+
𝜋

13.2 + 2 × 2.2
2

= 0.03553𝑐𝑚―2

Now using the material buckling for the liquid and the geometric buckling for bare initial configuration, 
Eq. (75) is used to determine keff:

𝑘𝑒𝑓𝑓 =
1 + 𝐵2

𝑚𝑀2

1 + 𝐵2
𝑔𝑀2

=
1 + 0.02944𝑐𝑚―2 × 28.6𝑐𝑚2

1 + 0.03553𝑐𝑚―2 × 28.6𝑐𝑚2 = 0.914

The value of 28.6 cm2 is typical of water-moderated systems, as discussed in footnote 10. This value, 
though higher than the code calculated value of 0.88, gives a reasonable indication of the degree of 
subcriticality of the system.

Now, let us use the same technique to assess the keff of the initial configuration with some bottom 
reflection. As noted in Section 3.4.2, partial reflected conditions can be evaluated using the reflector 
savings for the reflector material. In this case, we are going to assume that the stainless-steel reflector has 
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the same effect as 2.1 cm of water. The reflector savings for full water reflection is about 3.8 cm 
(reference 14, LA-3366 Rev, Figure 4, page 16). However, full water reflection requires at least 8 cm of 
water (reference 11, LA-10860, Figure 42, page 95 shows a linear decrease in critical mass up to 8 cm of 
water and then is flat with additional water thickness), so we will reduce the reflector savings by (2.1) / 8 
to get a value of 1.0 cm for this reflection. Also, remember that the reflection is only on the bottom, so 
there is no correction for the upper surface. The geometric buckling for the partially reflected case is then

2.405
𝑟 + 𝑑

2

+
𝜋

ℎ + 𝑑 + 𝛿 + 𝑑
2

=
2.405

37.5 + 2.2

2

+
𝜋

13.2 + 2.2 + 1.0 + 2.2
2

= 0.03220𝑐𝑚―2

Then, the keff for the partially reflected case is

𝑘𝑒𝑓𝑓 =
1 + 𝐵2

𝑚𝑀2

1 + 𝐵2
𝑔𝑀2

=
1 + 0.02944𝑐𝑚―2 × 28.6𝑐𝑚2

1 + 0.03220𝑐𝑚―2 × 28.6𝑐𝑚2 = 0.959

Again, this value, though lower than the code calculated value of 0.97, gives a reasonable indication of 
the effect of partial reflection on the system multiplication.

Tipping the tank changes the leakage from the liquid and thus affects the multiplication factor. The 
following parts of Figure 3-19 (Figure 3-19.a, b, c, and d) show the solution as the tank is tipped from the 
vertical position (angle = 0°).
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a. ID = 75 cm, Solution height = 13.2 cm, solution 
volume = 58.316 L

b. Tank tilted 19.39°, solution just covers bottom 
tilted edge. Solution height up the tank wall = 26.4 
cm, height of solution above table level = 24.90 cm, 

solution volume = 58.316 L.

c. Tank tilted 47.55°, solution 49 cm up the side and 
44.83 cm along bottom of tank. Most reactive 

condition as has least leakage surface area. height of 
solution above table level = 37.07 cm, solution 

volume = 58.316 L. 

.d. Tank tilted 72.32°, largest tip before solution 
spills from tank. Solution height along the bottom 
of tank (left side) = 28.69 cm and solution length 

along the tank wall (right side = 90.00 cm, height of 
solution above table level = 27.33 cm, solution 

volume = 58.316 L.

Figure 3-19. Condition of Cylindrical Tank at Various Angles of Tilt.

For the unreflected container, the change in surface area with tilt angle is shown in Figure 3-20. The 
surface area increases up to the point where it just covers the bottom of the tank (tilt angle = 19.39°). 
With a little further tilting to about 19.8°, the surface area is at a local maximum. This means the bare 
configuration has the minimum keff at this point. Continuing to tip the container rapidly decreases the 
surface and increases the reactivity of the system. This continues to a tilt angle of 47.55° where the 
surface area is 8.64% less than that of the initial condition.

19.39°

47.55°

72.32°
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Figure 3-20. Percentage Change in Surface Area as h/d=0.176 Container is Tilted.

For a container reflected on the bottom, the surface area behavior does not change. However, the 
reflection will decrease. As the container is tipped, the bottom reflection diminishes. At the point of 
maximum reactivity (i.e., minimum surface area for a given volume), there is effectively no bottom 
reflection. This adds negative reactivity but does not cancel the added positive reactivity from the 
decrease in surface area. So, the leakage is being reduced due to the “coalescing” of the fluid, but the 
reflection is also being reduced from tipping. As expected, that the multiplication factor will decrease at 
first as the reflector “moves” away more quickly than the fluid moves together. Then, the fluid moving 
together decreases the leakage increasing the multiplication factor.

As the liquid in Figure 3-19c (tipped at 47.55°) is in the most reactive configuration, the liquid surface is 
effectively a truncated ellipse. The semi-minor axis is the cylinder radius (=37.5 cm), and the semi-major 
axis = 55.56 cm. The total length of the surface in the truncated direction is 66.4 cm. If we treat the liquid 
as a hemicylinder with the “height” (from front to back on the flat top liquid surface as viewed in Figure 
3-21) equal to two times the semi-minor axis (diameter of container = 75 cm, so H = 75 cm), then the 
radius is determined by conserving the volume of liquid.
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𝑉𝑜𝑙ℎ𝑒𝑚𝑖𝑐𝑦𝑙 =
𝜋𝑟2𝐻

2 = 58,316𝑐𝑚3

𝑟 = 2 × 58,316𝑐𝑚3

𝜋 ×  75 cm
= 22.25𝑐𝑚

So, the flat surface has a width of 44.5 cm in the assumed hemicylinder versus the 66.4 cm of the 
truncated surface. This makes sense, as seen in Figure 3-21, where the height is smaller to encompass the 
liquid. Thus, it appears that the assumption of a hemicylinder would be an upper bound on the reactivity 
configuration of the solution.

Figure 3-21. Liquid in most reactive position.

From Table 3-2, the geometric buckling for a hemicylinder is

3.832
𝑟 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

Assuming no reflection and using an extrapolation distance of 2.2 cm, the buckling for the approximated 
Mayak hemicylinder is

3.832
𝑟 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

=
3.832

22.25 + 2.2

2

+
𝜋

75 + 2 × 2.2
2

= 0.02613𝑐𝑚―2

To use Eq. (75) to determine keff requires a value for the migration area. As noted in the footnote 
(repeated below) to the discussion of Eq. (75), it is reasonable to assume that M2 is about 28.6 cm2 for 
water-moderated systems.13

13 As M2 =  + L2, for water systems,  = 27 cm2 while L2 is L2
mod (1-f). For water, L2

mod = (2.85 cm)2 = 8.12 cm2. 
For most water moderated, thermal systems, f ranges from 0.7 to 0.9 (see example problems 4, 5, and 6 in Chapter 
2). Taking the middle ground with f = 0.8, L2 = 0.2 * 8.12 = 1.6 cm2 so an average M2 would be 28.6 cm2. Analyses 
with values of M2 from 27.8 to 29.5 indicate less than a 0.2% change from results calculated using the 28.6 cm2 
average.

r = 22.25 cm

47.55°
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Now, using the material buckling for the liquid and the geometric buckling for the bare hemicylinder 
configuration, Eq. (75) is used to determine keff:

𝑘𝑒𝑓𝑓 =
1 + 𝐵2

𝑚𝑀2

1 + 𝐵2
𝑔𝑀2

=
1 + 0.02944𝑐𝑚―2 × 28.6𝑐𝑚2

1 + 0.02613𝑐𝑚―2 × 28.6𝑐𝑚2 = 1.054

Thus, the system will go critical as the container is tipped. Because the tipping process takes some time, 
the system becomes supercritical and then starts bubbling, etc. This increases the leakage keeping the 
multiplication factor from getting to the 1.05 value calculated. However, the supercritical condition will 
result in a decreased multiplication shutting down the reaction. Also, as shown in Figure 3-20, the surface 
area increases as the container is tipped beyond 47.55°, so the multiplication factor decreases as the 
container is further tipped.
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4. CORE DENSITY CONVERSIONS

4.1 WHAT YOU WILL BE ABLE TO DO

 Determine the critical dimensions of a fissile system caused by changes in the fissile material density 
or volume for a sphere, infinite cylinder, or infinite slab.

 Determine the critical mass of a fissile system due to changes in the fissile material density or volume 
for a sphere, infinite cylinder, or infinite slab.

4.2 CORE DENSITY METHOD OVERVIEW

For homogeneous, critical systems, one exact quantitative relationship can be applied if the density of that 
system changes uniformly. If the dimensions of an assembly are scaled inversely as the density, then any 
neutron path from one region to another will scale in the same way. If the materials of that system remain 
unchanged, then there is no change in the neutron processes in that system (Reference 14). Even though 
the dimensions of the system change, the relative number of neutrons that leak out of the system, are 
absorbed, or scatter remains the same. For example, if the critical radius of a solid plutonium sphere at 
19.75 g Pu/cm3 is 5 cm, then reducing the density by a factor of two will double the radius. Thus, the 
system remains at a critical state (Figure 4-1). References 11, 12, 14, 21, and 22 provide much more 
discussion about this hand calculation method including supporting data.

Figure 4-1. Illustration of Core Density Method Concept.

4.2.1 Theoretical Basis of Core Density Conversion

Extract from pg. 25, LA-3366 Rev, Reference 14: “If all dimensions of an assembly are scaled inversely 
as the density, any neutron path from one region to another scales in the same way, and the number and 
types of nuclei along this path remain unchanged, so there is no change in neutron processes. In other 
words, the relative number of neutrons producing fission, being captured, being scattered, and leaking 
from the system are not changed, so the assembly remains critical. Thus, critical dimensions are inversely 
proportional to the density, provided the density changes are uniform. For a reflected system in which the 
densities of core and reflector are changed by the same ratio, this implies that critical dimensions of both 
core and reflector scale inversely as the density. (If only the reflector density or only the core density 
changes, then the above relationship no longer applies to the core dimensions.) 
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When all densities are changed by the ratio r/ro, it follows that any critical dimension, ℓc, is given by 

𝓁𝑐
𝓁𝑐𝑜

=
𝜌

𝜌𝑜

―1

(76)

where 𝓁𝑐𝑜 applies to the initial density 𝜌𝑜. As core and reflector densities are seldom changed in the same 
proportion, this expression is most applied to unreflected fissile material.”

For a bare sphere, the radius is inversely proportional to the density. Then the volume would be inversely 
proportional to the density cubed.

𝑟
𝑟𝑜

=
𝜌

𝜌𝑜

―1
:     

𝑉
𝑉𝑜

=
𝑟

𝑟𝑜

3
=

𝜌
𝜌𝑜

―3

𝑚
𝑚𝑜

=
𝜌𝑉

𝜌𝑜𝑉𝑜
:     

𝑚
𝑚𝑜

=
𝜌

𝜌𝑜

1 𝜌
𝜌𝑜

―3
=

𝜌
𝜌𝑜

―2 (77)

Similarly, for a bare, infinite cylinder with initial density ρo, and initial critical radius rco, the radius at any 
other density would be

𝑟𝑐
𝑟𝑐𝑜

=
𝜌

𝜌𝑜

―1

(78)

For an unreflected slab of critical thickness to, the thickness at any other density would be

𝑡
𝑡𝑜

=
𝜌

𝜌𝑜

―1

(79)

4.2.2 Core Density Conversion for Bare, Homogeneous Systems

Table 4-1 provides the useful relationships for bare, homogeneous systems. Additional information can be 
found in References 11, 12, and 14. The relationships for infinite cylinders and slabs are not as commonly 
used as the relationships for spheres. 
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Table 4-1. Core Density Conversion Relationships for Bare, Homogeneous Systems.

Geometry Critical Radius 
Relationship

Critical Volume 
Relationship Critical Mass Relationship

Sphere
(Final radius, r, initial 
radius, r0, etc.)

𝑟
𝑟𝑜

= 𝜌
𝜌𝑜

―1 𝑉
𝑉𝑜

= 𝜌
𝜌𝑜

―3 𝑚
𝑚𝑜

= 𝜌
𝜌𝑜

―2

Infinite Cylinder
(Final radius, r, initial 
radius, r0, etc. V’ is 
volume per unit length 
and m’ is mass per unit 
length)

𝑟
𝑟𝑜

= 𝜌
𝜌𝑜

―1 𝑉′

𝑉′𝑜
= 𝜌

𝜌𝑜

―2 𝑚′

𝑚′𝑜
= 𝜌

𝜌𝑜

―1

Infinite Slab
(Final thickness, t, initial 
thickness, t0, etc. V’’ is 
volume per unit area and 
m’’ is mass per unit area)

𝑡
𝑡𝑜

= 𝜌
𝜌𝑜

―1 𝑉′′

𝑉′′𝑜
= 𝜌

𝜌𝑜

―1
 

𝑚′′

𝑚′′𝑜
= 𝜌

𝜌𝑜

0
=  constant

4.2.3 Critical Data

Core density conversions are most applicable in systems with fissile metal or fissile powder and no 
moderation. A starting point would be critical data for bare metal spheres of various enrichments and 
assays. These data, along with pertinent densities, radii, and diluents, are listed in Table 4-2 from 
Reference 23.

Table 4-2. Critical Mass Data for Bare Fissile Metal Spheres.

Data from International Handbook of Evaluated Criticality Safety Benchmark Experiments

Core Material Density 
(g/cm3)

Radius
(Rexp) (cm)

Total Mass
(kg)

Diluent 1
Weight 
percent

Diluent 2
Weight 
percent

Diluent 3
Weight 
percent

U(93.8) 18.74 8.7407 52.420 U-238
5.27

U-234
1.02 N/A

Pu(95.5) 15.61 6.3915 17.073 Pu-240
4.454

Pu-241
0.297

Ga
1.02

233U(98.1) 18.424 5.9838 16.535 U-234
1.24

U-235
0.03

U-238
0.60

For oxide materials, less information is available on critical masses. However, D.E. Cullen from LLNL 
(reference 24) has derived the proportionality constant for six oxide systems. This constant relates the 
mass of the material to the inverse of the square of its density. The systems and proportionality constants 
are given in Table 4-3. As with Table 4-2, the value given in parentheses is the weight percent of the 
dominant fissile isotope (e.g., Pu(95.5) represents 95.5 wt % Pu-239 with the rest of the materials as 
described in the diluent columns.)
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Table 4-3. Critical Mass Data for Bare Fissile Oxide Spheres.

Data from Reference 24

Core 
Material

Theoretical 
Density14 (TD) 

(g/cm3)

Proportionality 
Constant

(kg-g2/cm6)

Total Mass 
at TD
(kg)

Diluent 1
Weight 
percent

Diluent 2
Weight 
percent

Diluent 3
Weight 
percent

U(100)O2 10.838 12295 104.7 U-234
0.0

U-238
0.0 N/A

U(92.94)O2 10.845 13664 116.2 U-234
0.99

U-238
6.07 N/A

U(92.93)3O8 8.306 13030 188.9 U-234
0.99

U-238
6.08 N/A

Pu(100)O2 11.460 3569 27.18 Pu-240
0.0

Pu-241
0.0 N/A

Pu(93.46)O2 11.463 3729 28.38 Pu-240
6.02

Pu-241
0.52 N/A

Pu(62.87)O2 11.483 4488 34.04 Pu-240
22.73

Pu-241
12.68

Pu-242
1.72

The information in Table 4-3 can be used with Eq. (77) to give the critical mass at any given density. For 
example, to determine the critical mass of Pu(93.46)O2 at 6 g/cm3,

𝑚
𝑚𝑜

=
𝜌

𝜌𝑜

―2
     ⇒     

𝑚
28.38 kg =

6 g/cm3

11.463 g/cm3

―2

     m =  103.59 kg

                               OR

using the proportionality constant M =  
const

𝜌2

M [𝑘𝑔] =  
3729 

kg - g2

cm6

(6 g/cm3)2   =   103.58 kg

(80)

The 0.01 kg difference is due to round-off.

Isotopic composition is important in the calculation of critical mass values. As shown in Table 4-3, the 
critical mass is strongly dependent on additional scatterers, as seen above for UO2 versus U3O8, as well as 
how much neutron absorption is present. For uranium, those absorbers would include U-234, U-236, and 
U-238, whereas for plutonium, that would be Pu-240 and Pu-242. Increasing the neutron absorption will 
increase the critical mass. The limit of no absorber is represented by U(100)O2 and Pu(100)O2 in the 
table.

14 The theoretical density for the isotope mixture is determined from the reference theoretical density for the 
compound divided by the molecular weight of the reference compound times the molecular weight of the isotope 
mixture compound. For example, the theoretical density of U(nat)3O8 is 8.39 g/cm3 with a molecular weight of 
842.0749 g/mole. For U(92.93)3O8, the molecular weight is 833.6397 g/mole. Thus, the theoretical density of 
U(92.93)3O8 is 8.306 g/cm3.
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The inclusion of neutron scatters such as oxygen has the effect of decreasing the theoretical density of the 
material, but it also decreases the critical mass for a given density. For example, to determine the critical 
masses of U(92.94)O2 and U(92.93)3O8 at 6 g/cm3, 

𝑈(92.94)𝑂2:M [𝑘𝑔] =  
13664 

kg - g2

cm6

(6 g/cm3)2   =   379.56 kg

While

𝑈(92.94)3𝑂8:M [𝑘𝑔] =  
13030 

kg - g2

cm6

(6 g/cm3)2   =   361.94 kg

(81)

which can also be seen by comparing the proportionality constants; the smaller the constant, the smaller 
the critical mass at a given density.

4.2.4 Core Density Conversion for Reflected, Homogeneous Systems

For reflected systems (see Figure 4-2) where the densities of core and reflector are changed by the same 
ratio, the relationships given in Table 4-1 are applicable. That is, the critical dimensions of both core and 
reflector scale inversely with the density. If only the reflector density or only the core density changes, 
then the relationships do not apply to the core dimensions. In fact, for the typical case where the reflector 
density is held constant and the core density changes, the core density conversion relationships cannot be 
stated in a simple exact form. The exponent varies with form of the core material (e.g., oxide versus 
metal), and with the reflector material (e.g., water versus natural uranium). There are a few historical 
studies that provide empirical correlations for the relationship between critical mass and density. 

Figure 4-2. Illustration of a Reflected, Homogenous System.

One of the earliest documents providing an empirical relationship is LA-442, Part B written by E. Fermi. 
The empirical relationship “recommended by Oppenheimer (is)

Critical Mass~𝜌―1.4𝐶―1.8 (82)

where C is the fraction of 2515 in the active material.” (Reference 25, page 18). This relationship was 
applied to uranium-235 cores surrounded by uranium or tungsten carbide reflectors. A January 1955 

15 The term 25 refers to uranium-235. This is a shorthand for actinides where the first number (2) is the last digit of 
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report, LA-1958 (Reference 26, page 11), provides the following: “Critical masses of OY(93.5) spheres in 
thick normal uranium have been measured at various average densities of the oralloy. The resulting 
relation is of the form:

Oy critical mass  ∝   𝜌―1.2" (83)

(Oy refers to oralloy or high-enriched uranium).

It appears that refinement of the experiments led to a change in the exponent from −1.4 to −1.2 for highly 
enriched uranium cores with natural (normal) uranium reflectors.

The Nuclear Criticality Safety Guide (Reference 27, page 75) indicates that for a highly enriched uranium 
metal core with an equivalent thick water reflector, the exponent is −1.4. This relationship applies to cores 
of highly enriched uranium and plutonium metal, as well as to UO2, U3O8, UO3, and PuO2. 

Cullen’s work on mass and density relationships (Reference 24, page 4) provides exponents in the range 
of −1.46 to −1.51 for various uranium and plutonium oxides reflected by 10 cm of water. These 
relationships were derived using the TART computer program. Analyses of plutonium metal cores 
reflected by 30 cm water, and 20 cm of aluminum, titanium, and lead using the PARTISN code with 
Hansen–Roach cross sections provided exponent values between −1.36 and −1.46. Analysis of the same 
plutonium metal core reflected by natural uranium gives an exponent of −1.27.

Based on these analyses and reports, it appears that a reasonable estimate of critical mass based on density 
variation can be made using the relationships for water-reflected uranium and plutonium oxides:

Critical Mass~𝜌―1.50 (84)

while for water-reflected uranium and plutonium metal systems:

Critical Mass~𝜌―1.45 (85)

These relationships apply to all other reflectors except natural uranium and tungsten carbide. Systems 
with those reflectors seem to follow the relationship given in Eq. (83).

4.2.5 Variation of Critical Mass with uranium Enrichment

As indicated in Eq. (82), the critical mass of a uranium system reflected with either natural uranium or 
tungsten carbide varied with enrichment to the −1.8 power. Later work done at LANL in the 1950s 
indicates that the critical mass of uranium metal systems at a given density is proportional to the U-235 
enrichment raised to the −1.7 power (Reference 25, pg. 11) and to the −1.71 power (Reference 28). This 
report shows the same relationship for unreflected and thick uranium–reflected uranium systems. “The 
critical mass of oralloy metal as a function of average U-235 concentration has been determined for 
nearly spherical oralloy in a reflector of thick normal uranium, and for a series of oralloy cylinders 
without reflector. After the data for the bare cylinders are corrected to apply to spheres, both sets of data 
are of the form Oy critical mass is proportional to (U-235 concentration) (-1.7). (Reference 25, pg.11). It 

the atomic number of the element (= 92 for uranium), and the second number is the last digit of the atomic mass of 
the isotope (=235 for uranium-235). Thus, 49 would refer to plutonium-239 with an atomic number of 94 and an 
atomic mass of 239.
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should be noted that the relationship appears to break down for enrichments “in the neighborhood of 
20%” (Reference 29, page 24).

PARTISN analyses for other reflectors indicate a variation with enrichment raised to the −1.5 power. 
Again, the exponent is dependent on the form of the core material and the type of reflector material. For 
unreflected systems, the exponent of −1.7 seems to apply. For example, using the critical mass of 51.6 kg 
total U for an unreflected U(93.8) metal core based on Godiva measurements (Reference 30, page 18), 
then the unreflected critical mass of U(37.7) would be:

𝑚
𝑚𝑜

=
𝑒𝑛𝑟𝑖𝑐ℎ

𝑒𝑛𝑟𝑖𝑐ℎ𝑜

―1.7

⇒
𝑚

51.6 kg =
37.7
93.8

―1.7

     m =   243.0 kg (86)

Calculating the critical U-235 mass in each enrichment gives 48.4 kg (=51.6 × 0.938) for U(93.8) and 
91.6 kg (=243.0 × 0.377) for U(37.7). These results compare to about 49 kg and 91 kg, respectively, as 
read from Figure 4-3 (Figure 19, Reference 11). Note that enrichment can be entered into Eq. (85) either 
as a weight percent or a weight fraction if both values are consistent.

Figure 4-3. Critical Mass of U235 versus Enrichment of Uranium Metal. (Figure 19, page 43, LA-10860, 
reference 11.)

~ 91 kg

~ 49 kg
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4.2.6 Critical Mass Data for Reflected Systems

Table 4-4 provides critical mass information for fissile metal spheres fully reflected by water. The data is 
extracted from Table 29 – page 97, Figure 43 – page 100, and Table 32 – page 101 in reference 11.

Table 4-4. Critical Mass Data for Fissile Metal Spheres Fully Reflected by Water.

Core Material Density (g/cm3) Radius
(Rexp) (cm)

Fissile Mass
(kg)

Total Mass
(kg)

U(93.9) 18.5 6.83 U-235, 23.2 24.71
Pu(4.5) 15.61 5.05 Pu-239, 7.93 8.30
Pu(5.2) 19.74 4.20 Pu-239, 5.49 5.79
233U(98.1) 18.42 4.66 U-233, 7.68 7.83

For oxide materials fully reflected by water, reference 24 is again used as the source of data. The systems 
are given in Table 4-3. As with Table 4-2, the value given in parentheses is the weight percent of the 
dominant fissile isotope (e.g., Pu[95.5] represents 95.5 wt. % Pu-239 with the rest of the materials as 
described in the diluent columns).

Table 4-5. Critical Mass Data for Fully Water Reflected Fissile Oxide Spheres.

Data from Reference 24

Core 
Material

Theoretical 
Density16 (TD) 

(g/cm3)

Total Mass 
at TD
(kg)

Diluent 1
Weight percent

Diluent 2
Weight percent

Diluent 3
Weight percent

U(92.94)O2 10.845 41.68 U-234
0.99

U-238
6.07 N/A

U(92.93)3O8 8.306 72.39 U-234
0.99

U-238
6.08 N/A

Pu(93.46)O2
93.46% 239 11.463 3.55 Pu-240

6.02
Pu-241

0.52 N/A

Pu(62.87)O2
62.87% 239 11.483 4.70 Pu-240

22.73
Pu-241
12.68

Pu-242
1.72

4.3 USE OF CORE DENSITY CONVERSION

4.3.1 Application of the Core Density Conversion

The core density method is applicable for fissile material systems with the following characteristics 
and assumptions.

 The system must have a uniform, homogeneous composition.

16 The theoretical density for the isotope mixture is determined from the reference theoretical density for the 
compound divided by the molecular weight of the reference compound times the molecular weight of the isotope 
mixture compound. For example, the theoretical density of U(nat)3O8 is 8.39 g/cm3 with a molecular weight of 
842.0749 g/mol. For U(92.93)3O8, the molecular weight is 833.6397 g/mol. Thus, the theoretical density of 
U(92.93)3O8 is 8.306 g/cm3.
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 If the system is reflected, then the critical dimensions of both the core and reflector vary inversely with 
their density, assuming that the density of the core and reflector are changed by the same ratio.

 If the reflector density is held constant while the core density is changed, then the exponent in the 
relationship will be between −1.2 and −1.7 depending on the materials.

 For uranium systems with changes to the enrichment, the critical mass can be calculated based on the 
ratio of density changes and enrichment changes.

4.3.2 Limitations of the Core Density Conversion

The core density method has the following limitations to consider. 

 The method cannot be used if the system contains heterogeneities such as lumps of fuel or fuel rods in 
a reactor.

 For reflected systems, if the reflector density changes, or if the core density changes are not uniform, 
then the relationships presented in this section cannot be used to derive new system dimensions.

4.4 CORE DENSITY EXAMPLE PROBLEMS

4.4.1 Core Density Example Problem 1

Calculate the critical mass for a spherical, unreflected Pu(4.5) metal system that is changed from delta 
phase (15.6 g/cm3) to alpha phase with a density of 19.8 g/cm3. Recall that Pu(4.5) is a system with 95.5 
at. % Pu-239 and 4.5 at. % Pu-240. The core density conversion method can be used to calculate the bare 
critical mass for this system. The unreflected, spherical critical mass for a Pu(4.5) system with a density 
of approximately 15.6 g/cm3 is approximately 16.8 kg (Reference 11, Table 32). Note that this is less than 
the critical mass of 17.07 kg given in Table 4-2. The difference is likely due to better experimental data 
and evaluation of uncertainties for the information in Table 4-2. This indicates that although the core 
density conversion process is exact, there can be significant variation in the values provided for critical 
masses. For this example, we will use both values and see what the range of results will be.

Using the spherical critical mass relationship in Table 12, the critical mass for this system can be 
calculated as follows:

𝑚
𝑚𝑜

=
𝜌
𝜌𝑜

―2

𝑚 = 𝑚𝑜
𝜌
𝜌𝑜

―2
= (16.8kg) ×

19.8g/cm3

15.6g/cm3

―2

= 10.43 kg

𝑚 = 𝑚𝑜
𝜌
𝜌𝑜

―2
= (17.07kg) ×

19.8g/cm3

15.61g/cm3

―2

= 10.61 kg

Thus, the initial difference of less than 2% creates a similar difference of less than 2% in the new critical 
masses. For hand calculations and most uses of these methods, the 2% variation will be acceptable for 
bounding and scoping calculations.
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4.4.2 Core Density Example Problem 2

Calculate the critical radius for a spherical, unreflected U(93.5)-H2O system with a density of 10.0 g/cm3, 
assuming that the initial density for this system was 18.9 g/cm3.

Recall that U(93.5) is a system with 93.5 at. % U-235 and 6.5 at. % diluent uranium. The core density 
conversion method can be used to calculate the bare critical mass for this system. Based on Figure 
III.B.9(93.5)-2 from Volume II, Reference 7, the unreflected volume at 18.9 g/cm3 is 2.15 L. We can also 
find the unreflected critical volume at 10.0 g/cm3 to be 4.8 L, which we will use to check our answer. 

The critical radius for the system with density of 18.9 g/cm3 is as follows: 

𝑟 =
3 × 𝑉

4𝜋

1
3

=
3 × 2,150𝑐𝑚3

4𝜋

1
3

= 8.01𝑐𝑚

Then, using critical sphere radius relationship from Table 4-1, with the new density of 10.0 g/cm3,

𝑟
𝑟𝑜

=
𝜌
𝜌𝑜

―1
𝑟 = 𝑟𝑜

𝜌
𝜌𝑜

―1
= 8.01𝑐𝑚

10.0𝑔/𝑐𝑐
18.9𝑔/𝑐𝑐

―1

= 15.14𝑐𝑚

compare the result against the value derived from Figure III.B.9(93.5)-2 from Volume II.

𝑟 =
3 × 𝑉

4𝜋

1
3

=
3 × 4,850𝑐𝑚3

4𝜋

1
3

= 10.46𝑐𝑚

Note that the core density conversion gives a much larger radius than is actually the case. This indicates 
that core density conversion is not applicable to systems containing hydrogen (in this case, water) or those 
where the neutron spectrum is changed by the change in system density.

4.4.3 Core Density Example Problem 3

Repeat example problem 2 with systems containing U(92.94)O2. Calculate the critical radius for a 
spherical, unreflected system with a density of 6 g/cm3, assuming that the initial density for this system 
was 10.845 g/cm3.

From Table 4-3, we find that the critical mass of U(92.94)O2 at 10.845 g/cm3 is 116.2 kg. Using this, we 
can calculate the critical volume and critical radius at that density.

𝑉 =
𝑀𝑐

𝜌 =
116.2kg

10.845kg/liter = 10.71liters

𝑟 =
3 × 𝑉

4𝜋

1
3

=
3 × 10,710𝑐𝑚3

4𝜋

1
3

= 13.67𝑐𝑚

Then, using critical sphere radius relationship from Table 4-1, with the new density of 5.0 g/cm3,
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𝑟
𝑟𝑜

=
𝜌
𝜌𝑜

―1
𝑟 = 𝑟𝑜

𝜌
𝜌𝑜

―1
= 13.67𝑐𝑚

5.0𝑔/𝑐𝑐
10.845𝑔/𝑐𝑐

―1

= 29.65𝑐𝑚

Checking these values against those from PARTISN, we find the critical radius at theoretical density 
(=10.845 g/cm3) is 13.65 cm, whereas the critical radius for the system with a density of 5.0 g/cm3 is 
29.62 cm. The closeness of the values indicates that for uranium oxide systems, the core density 
conversion process is applicable and provides useful results.

4.4.4 Core Density Example Problem 4

Calculate the critical mass for a spherical, unreflected 239PuO2 system with a density of 1, 3, 5, 7, and 9 
g/cm3, assuming that the initial density for this system was 11.46 g/cm3 (i.e., theoretical density). 
Compare the results to the results calculated in Section 2.6.3 (Diffusion Theory Example Problem 3).
The critical mass for an unmoderated 239PuO2 system at theoretical density was calculated in Section 
2.6.3, using diffusion theory,17 as approximately 31 kg. Using the critical mass relationship from Table 
4-1 for a spherical system, the critical mass for this unmoderated system can be calculated for the 
densities of interest. As an example of the process, we will calculate the critical mass for a density of 10 
g/cm3:

𝑚
𝑚𝑜

=
𝜌
𝜌𝑜

―2

𝑚 = 𝑚𝑜
𝜌
𝜌𝑜

―2
= (31kg) ×

1.0g/cm3

11.46g/cm3

―2

= 4071 kg

This calculation is repeated for the other densities of interest. The resulting critical mass estimates for the 
system are summarized in Table 4-6.

Table 4-6. Calculation Results for Core-Density Example Problem 4.

Density of
Pu (g/cm3)

Critical Spherical 
Radius (cm)

Estimated Critical
Mass of PuO2 (kg)

(One-Group Diffusion 
Theory)

Estimated Critical
Mass of PuO2 (kg)

(Core-Density Method)

1.0 99.1 4,080 4,071
3.0 33.0 453 452
5.0 19.8 163 163
7.0 14.2 83 83
9.0 11.0 50 50

Notice that the results are essentially the same as the critical mass estimates from Section 2.6.3. If the 
initial critical mass is known with some confidence and the applicability of this technique is valid 
(Section 4.3), then the critical mass estimates at other densities can be estimated very accurately with the 
core density method. Note that the starting point being the critical mass determined from PARTISN 
calculations (27 kg) or from SCALE calculations (27.8 kg) leads to the same set of answers as provided in 

17 The diffusion theory value is used, as it is consistent with the diffusion theory critical mass values shown in Table 
2-8 and those used for comparison in Table 4-6.
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Table 2-8. That is, at 1.0 g/cm3 density, the critical mass from the core density conversion method is 
3,546 kg from PARTISN, which is within round-off of the 3,540 kg in the table.

4.4.5 Core Density Example Problem 5

Calculate the water-reflected critical mass for a spherical U(93.5)O2 system with a density of 5.0 g/cm3 if 
the oxide had an initial density of 10.85 g/cm3.

Using the information in Section 4.2.4, the critical mass of a water-reflected oxide systems should be 
related to density as expressed in Eq. (84). From a PARTISN run, the reflected critical mass of uranium 
oxide at theoretical density is 50.8 kg. Then the reflected critical mass at a density of 5.0 g/cm3 would be:

𝑚
𝑚𝑜

=
𝜌
𝜌𝑜

―1.5

𝑚 = 𝑚𝑜
𝜌
𝜌𝑜

―1.5
= (50.8kg) ×

5.0g/cm3

10.85g/cm3

―1.5

= 162.4 kg

Calculations from PARTISN give a reflected critical mass of 162.4 kg at 5.0 g/cm3. This value matches 
quite well with that determined from the core density conversion. This is somewhat expected as the 
exponent in Eq. (84) was determined from parametric studies using PARTISN. This process of 
determining reflected critical mass is much less exact than many hand calculations, so it can be used for 
bounding of scoping calculations. In the case, the value calculated using Eq. (84) should provide a value 
within a few percent of that from the computer analysis.

4.4.6 Core Density Example Problem 6

Calculate the water-reflected critical mass for a spherical, Pu(5) metal systems with a density of 15.61 
g/cm3 from a density of 19.8 g/cm3. Repeat problem for a density of 19.8 g/cm3 from a density of 15.61 
g/cm3.

Another method of determining critical mass for reflected systems is given in Reference 11, page 19. This 
uses the same form of the core density conversion equation, with the exponent determined from the plot 
shown in Figure 4-4. The data are applicable to U(93.5) metal and δ-phase plutonium cores. The plot 
shows the variation of the exponent with the degree of reflection as characterized by the ratio of the 
reflected crtical radius to the unreflected critical radius.

𝑚
𝑚𝑜

=
𝜌
𝜌𝑜

―𝑛

For this system, we need the reflected and unreflected critical mass of Pu(5) at any density. Most likely 
these values will be available for the theoretical density, but this is not always the case. Let’s start with 
the 19.8 g/cm3 system and use that information to determine the critical mass for reflected plutonium 
metal at 15.61 g/cm3. The critical mass of a water reflected sphere of Pu(5) at 19.8 g/cm3 is 5.79 kg from 
Table 4-4. The unreflected critical mass of such a system was calculated in example problem 1 of this 
section (Section 4.4.1) and was determined to be 10.61 kg. Then, we need to calculate the ratio of the 
radii to determine the exponent from Figure 4-4.
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𝑟𝑟𝑒𝑓𝑙

𝑟𝑢𝑛𝑟𝑒𝑓𝑙
=

𝑚𝑟𝑒𝑓𝑙

𝑚𝑢𝑛𝑟𝑒𝑓𝑙

1
3

=
5.79 kg

10.61 kg

1
3

= 0.817

With an x-value of 0.817, the exponent read from Figure 4-4 is 1.52. Using this, we can calculate the 
critical reflected mass at a density of 15.61 g/cm3.

𝑚
𝑚𝑜

=
𝜌
𝜌𝑜

―1.52
𝑚 = 𝑚𝑜

𝜌
𝜌𝑜

―1.52
𝑚 = 5.79 kg 

15.61 g/cc
19.8 g/cc

―1.52

= 8.31 kg

This value compares quite well with the 8.30 kg found in Table 4-4.

We will repeat the process for 15.61 g/cm3 data to determine the reflected critical radius of the system at a 
density of 19.8 g/cm3, The critical mass of a water reflected sphere of Pu(5)) at 15.61 g/cm3 is 8.30 kg 
from Table 4-4. The unreflected critical mass of such a system is given in Table 4-2 as 17.07 kg. Now we 
need to calculate the ratio of the radii to determine the exponent from Figure 4-4.

𝑟𝑟𝑒𝑓𝑙

𝑟𝑢𝑛𝑟𝑒𝑓𝑙
=

𝑚𝑟𝑒𝑓𝑙

𝑚𝑢𝑛𝑟𝑒𝑓𝑙

1
3

=
8.30 kg

17.07 kg

1
3

= 0.786

With an x-value of 0.786, the exponent read from Figure 4-4 is 1.45. Then, we can calculate the critical 
reflected mass at a density of 19.8 g/cm3.

𝑚
𝑚𝑜

=
𝜌
𝜌𝑜

―1.45
𝑚 = 𝑚𝑜

𝜌
𝜌𝑜

―1.45
𝑚 = 8.30 kg 

19.8 g/cc
15.61 g/cc

―1.45

= 5.88 kg

This value is a little bit higher than the 5.79 kg found in Table 4-4. This difference is partly due to 
variations in Pu-240 content among the various entries in Table 4-2 through Table 4-5. Also, variation of 
±0.05 in the exponent leads to a variation of ±0.07 kg in critical mass. Notice that the value of the 
exponent from Figure 4-4 matches that given in Eq. 85.

The results can be compared with SCALE 6.1.3 calculations for Pu(5) systems. For a density of 
15.61 g/cm3, the total mass was 8.30 ± 0.04 kg, whereas for a density of 19.8 g/cm3, the total mass was 
5.79 ± 0.03 kg.
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Figure 4-4. Density Exponents of Unmoderated Spherical Cores in Constant Density Reflectors. (Figure 8, page 20, Reference 11.)
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5. ARRAY CRITICALITY CALCULATIONS

5.1 WHAT YOU WILL BE ABLE TO DO

 List the various hand calculation methods covered in this primer.
 Discuss the various hand calculation methods applicable to arrays of fissile materials.
 Identify the applicability, limitations, and data requirements needed for the various array methods.

5.2 OVERVIEW OF ARRAY CALCULATIONS

The best review of methods used to evaluate the criticality safety of arrays of fissile materials is provided 
by Hunt, 1976 (reference 31). He states,

The methods commonly used in this country to evaluate the criticality safety of fissile material arrays 
include density analog, NBN2 surface density, equilateral hyperbola, albedo, and solid angle techniques. 
These can be divided into array unit interaction and semiempirical methods. The albedo and solid-angle 
techniques fall into the former class; the rest fall into the latter class.

A study reveals that interaction methods are useful in treating arrays of arbitrary mesh patterns (e.g., 
triangular or hexagonal) having only a few units, while the semiempirical techniques are more applicable 
to arrays with a large number of units. The density analog and surface density approaches are easy to 
apply but typically require more auxiliary calculations, while other methods are more difficult to use, but 
more broadly applicable.

None of the methods satisfactorily handle nonuniformly spaced arrays, arrays with arbitrary amounts of 
internal moderator, or "clumped" arrays, i.e., arrays of arrays. Most of the methods have some provision 
for treating mixed arrays, but these provisions often do not apply to arrays of arbitrarily arranged fast 
(e.g., metal) and slow (e.g., solution) units.

5.3 SUMMARY OF ARRAY CALCULATION METHODS COVERED IN THIS PRIMER

For what Hunt terms the unit interaction methods, this document covers only the solid angle technique. 
The solid angle method is applicable to the following:

 Small numbers of moderated fissile units.
 Each individual unit must have keff ≤ 0.8, and a unit must be subcritical when subjected to full 

water reflection.
 If flooding is credible, then the separation between units must be ≥ 0.3 m (1 ft).
 Any reflector must not be more effective than a thick water reflector at the boundary of the 

array.
 The method is more practical and reliable for arrays consisting of a small number of units (for 

example, <64).

More detail provided in Section 6 – The Solid Angle Method.

For what Hunt terms the semiempirical methods, this document covers only the surface density, density 
analog, and limiting surface density (or 𝑁𝐵2

𝑁 ) techniques.

The limiting surface density or 𝑁𝐵2
𝑁 method is applicable to:
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 Fissile arrays of any shape provided that the necessary array and fissile data are known (i.e., total 
number of units, mass of a unit, and the least number of units along an array edge).

 Must have at least 64 units in the array.
 Can have different fissile materials and different reflector materials.
 Method is comprehensive, so it can be more difficult than the other methods in its understanding 

and its application.

More detail is provided in Section 7 – The Limiting Surface Density or 𝑁𝐵2
𝑁 method.

The surface density method is applicable to the following:

 Fissile array with one dimension limited (e.g., number of units high).
 Can handle units of irregular shapes (e.g., different pieces of equipment containing fissile 

material).
 Requires the dimensions of a water-reflected infinite slab of the same fissile material stored in the 

array.

More detail is provided in Section 8 – The Surface Density Method.

The density analog method is applicable to the following:

 Fissile arrays with no limitations on array arrangement but a finite number of units.
 Requires the dimensions of a water-reflected infinite slab of the same fissile material stored in the 

array.
 Requires the bare, spherical critical mass for the material stored in the array.

More detail is provided in Section 9 – The Density Analog Method.

Hunt’s review for these models and methods leads to several general conclusions:

 Solid angle methods, including the ORGDP and albedo procedures, are more practical and 
reliable for arrays consisting of a small number of units (for example, <64). This is because these 
methods rely on interaction probabilities for two-unit interactions and do not adequately account 
for interposed units. For arrays with no interposed units, the methods are flexible and can often be 
used in determining the critical parameters of nonuniformly spaced, arbitrarily shaped arrays 
(e.g., an L-shaped or T-shaped planar array of cylinders with different unit spacing in different 
directions). These methods are most conservative for planar arrays of solution units and can be 
nonconservative for reflected three-dimensional arrays of compact metal units.

 Density analog and surface density methods are most applicable to arrays with many units. For 
density analog techniques, this is because of the analogy of “lumpy” arrays with single 
homogeneous solids, whereas for surface density methods, it occurs because of the assumption of 
mass nearly uniformly distributed over some specific area.

 The first two conclusions indicate that the two types of methods are complementary to each other, 
and that the user should be able to select one or the other depending on their need.

 There is currently no method that considers clumped arrays.
 No method offers a comprehensive treatment of internally moderated arrays.
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 The albedo method involves the solution of a set of algebraic equations for application, whereas 
the ORGDP solid-angle method requires (a) calculation of the multiplication factor of a single 
array unit either bare or half-reflected, and (b) calculation of the total solid angle of interaction 
seen by the centermost unit of an array. In practice, the ORGDP method is easier to use but more 
approximate.

 The original Los Alamos Scientific Laboratory density analog work is easy to use but limited in 
applicability. The extension of this by Thomas as the 𝑁𝐵2

𝑁 method is more flexible and 
comprehensive but harder to apply. In the 𝑁𝐵2

𝑁 method, several factors, and array conversions 
based on these factors, must be calculated so that it is not a method that can be quickly and easily 
applied by a criticality engineer.

 The two surface density methods are readily applied by the nuclear safety specialist. The surface 
density method using unit shape factor, s/v version (Reference 32), has been more extensively 
developed and is preferred over the Paxton–Gutman version, since it considers more factors and 
is based on more reliable data.

 No method handles nonuniformly spaced arrays with many elements very well. The best attempt 
for large arrays is in the s/v method, where up to 15% nonuniformity in array unit spacing is 
permitted before the remainder of the model rules becomes invalid.

 The equilateral hyperbola formulation is useful and valid but needs more development before it is 
of much worth in solving a range of criticality problems.

 Most methods are based on weapons-related data that deal with high-enrichment material. The 
application of these methods to low-enrichment systems is usually possible if suitable input 
parameters are available. This point is discussed further and calculationally illustrated in Hunt 
and Dickinson (Reference 33).
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6. SOLID ANGLE METHOD

6.1 WHAT YOU WILL BE ABLE TO DO

 Determine the total solid angle for a small number of moderated fissile units arranged in an array 
configuration.

 Based on solid angle restrictions for an array, calculate the minimum spacing that moderated fissile 
units can have in an array configuration.

6.2 SOLID ANGLE METHOD OVERVIEW

This technique has been around since the late 1940s. The basic idea behind this method is that the 
multiplication factor for fissile materials in an array configuration depends on the multiplication factor for 
a single, representative fissile unit in an array and the probability that a neutron will leak out of this fissile 
unit and interact with another unit. This interaction will increase the overall multiplication factor for the 
array system. The probability that a neutron leaks out of a fissile unit to intersect another is dependent 
upon the solid angle occupied at the most central unit by all the other units of the array. This method was 
developed as a quick, empirical means of evaluating interaction among small numbers of moderated 
fissile units (References 34 and 35). Application of the method, which is based on experiments with 
aqueous solutions, to small numbers of closely spaced units characterized by a fast neutron spectrum can 
result in nonconservative spacing. (Reference 36).

“Analytic representation of criticality in terms of the total solid angle subtended by the unit nearest the 
center of an array has permitted an evaluation of the margin of subcriticality implicit in an allowable total 
solid angle, ΩA. It is shown that the method cannot have general applicability but is dependent upon the 
type of fissile material, the number and specific arrangement of the units in an array, and the array 
reflector conditions. The method is principally one of comparison. The relative difference between the 
allowed total solid angle and the total solid angle corresponding to criticality is a measure of the safety. 
This study demonstrates that the arbitrary application of an ΩA to an array of fissile material without 
having established the magnitude of the margin of subcriticality is questionable. The method is usable 
provided the area of applicability is defined by a validated method” (Thomas, Reference 37).

This technique was developed by accumulating a great deal of experimental data in aqueous solutions and 
the development of a correlation that is dependent upon the reactivity of the individual units in the array 
and the maximum sold angle subtended at the central fissile unit by the other fissile units in the array. 
References 34 and 37 provide additional information about the development of this method for use in 
array calculations.
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The solid angle method specifies a maximum allowable solid angle subtended at any unit, with a neutron 
multiplication factor kcff, by all other units in the array. A given array is then judged to be subcritical if the 
actual solid angle is equal to or less than the allowed solid angle given by

𝛺𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 = 9 ― 10 × 𝑘𝑒𝑓𝑓 (87)

where: Ωallowable = the allowable solid angle in steradians (sr) that may be subtended at the center 
of any fissile unit (the most reactive fissile unit) of the array by the remainder 
of the units in the array.

keff = the effective multiplication factor for an unreflected fissile unit in the array.

This relationship has been shown to be acceptable for different array configurations and fissile materials. 
Figure 6-1 illustrates the allowable solid angle as a function of the multiplication factor for the array units 
under consideration. A certain configuration of array units is safe if the solid angle subtended by the units 
of the array falls to the left and below the curve in Figure 6-1. 

Figure 6-1. Allowable Solid Angle (allowable = 9-10keff).
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The solid angle between array units is calculated using the applicable method from Table 6-1. These 
methods consider the solid angle between a point and various shapes (e.g., arbitrary shape, disks, 
cylinders, spheres, planes, etc.). The point, P, in the figures is meant to represent the center-most unit of 
the array. Using these methods for each unit in the array, the total solid angle subtended at this center-
most unit, P, is simply the sum of each of the solid angle contributions from the array units. Table 6-1 
includes the most common formulae for use in this primer. More complicated situations such as 
determining the solid angle between the centermost array unit and an offset cylinder, plane or disk can be 
calculated using the guidance in Reference 35, (Figure 4-2, page 100) and will not be included here.

6.3 APPLICABILITY FOR THE SOLID ANGLE METHOD

There are some important points to consider when using this method. This method is applicable for the 
following situations and configurations.

 This technique is applicable to small numbers of moderated fissile units. The experimental data used 
to develop this technique considered aqueous solutions.

 Users wishing to apply this method to large arrays of metal or oxide systems with intermediate or fast 
neutron spectra should be cautioned that the results obtained from the solid angle method can be non-
conservative (Reference 35).

 The multiplication factor, keff, of any unit should not exceed 0.80.

 Each unit considered should be subcritical with thick water reflection.

 The minimum separation distance between fissile units should be 0.3 m (1 ft).

 The allowed solid angle according to the method shall not exceed 6 steradians.

 The effectiveness of the reflector surrounding the array of fissile units should not be more effective 
than a thick water reflector located at the boundary of the array (Reference 35). The boundary 
location is no closer to the peripheral array units than about half of the edge-to-edge separation 
between fissile units. Concrete reflection on three sides of the array can be shown to meet the 
effectiveness criterion. For full reflection by concrete thicker than 12 cm, the allowable solid angle 
shall be reduced by 40% (Reference 35, page 101). 
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Table 6-1. Solid Angle Approximate Formulas (Reference 35).

Point-to-Sphere Point-to-Cylinder Point-to-Arbitrary Shape

𝛺 = 2𝜋 1 ―
1

1 +
𝑅
𝐻

2

where:
R = radius of sphere
H = distance from the point to the 

surface of the sphere.

𝛺 =
𝐿𝐷

𝐻 𝐿
2

2
+ 𝐻2

where:
L = length of cylinder
D = diameter of cylinder
H = distance from the point to the 

surface of the cylinder.

𝛺 = Cross Sectional Area
𝐻2

where:
H = distance from the point to 

the surface of the shape.

Point-to-Plane Point-to-Disk

𝛺 = sin―1
𝐴𝐵

𝐴2 + 𝐻2 × 𝐵2 + 𝐻2

where:
A = length of one side of plane
B = length of other side of plane
H = perpendicular distance from the point to the corner of 

the plane.

If the point P is directly above the center of the plane with 
dimensions 2A × 2B, multiply W by 4 to obtain solid angle. 
This also works for cylinders with half height = A and radius 
= B.

𝛺 = 2𝜋 1 ―
1

1 +
𝑅
𝐻

2
≤

𝜋𝑅2

𝐻2

where:
R = radius of disk
H = distance from the point P to the surface of 

the disk.
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6.4 SOLID ANGLE METHOD EXAMPLE PROBLEMS

6.4.1 Solid Angle Example Problem 1

Calculate the allowable solid angle for a 3×3×1 array of aluminum containers filled with a U(4.89)O2F2 
and water mixture with a hydrogen to U-235 (H/X) ratio of 524. Figure 6-2 provides a sketch of the array 
looking down from the top. Each container has the following characteristics:

 Inside diameter of 15.24 cm (6 in.),
 Outside diameter of 15.56 cm (6.125 in.),
 Inside height of 100 cm (39.37 in.), and
 Outside height of 110 cm (43.31 in.).

Characteristics of Array (Figure 6-2):

 Separation (edge-to-edge, ETE) = 60.96 cm (24 in.)
 Pitch (center-to-center, CTC) = 76.52 cm (30.125 in.)

Figure 6-2. Illustration of the 331 Array for Solid Angle Example Problem 1.

There is a need to store the solution bottles in a 3×3×1 array as shown in Figure 6-3. A SCALE 6.1.3 
calculation indicated the multiplication factor for an unreflected container of U(4.89)O2F2 solution is 
0.378  0.001. Therefore, each unit in this problem has a multiplication factor of less than 0.8 and meets 
the solid angle criteria. Also, the minimum separation distance between array units is 0.6 m, which is 
greater than the minimum solid-angle-method separation distance of 0.3 m.

24 
in.

Note: Not to Scale.

60.96 cm

76.52 cm

30.125 
in.
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Figure 6-3. KENO3D Illustration of the Array for Solid Angle Example Problem 1.

In many cases, the analyst may not know the multiplication factor of an unreflected single unit before 
starting a solid angle problem; however, some approximations are presented in Appendix B, which can be 
used to perform the multiplication factor check. The array is not reflected externally by any materials 
such as water or concrete, so the solid angle analysis will provide conservative results because the method 
assumes that the array is externally reflected by water.

The “point-to-cylinder” solid angle formula from Table 6-1 may be used to calculate the solid angle for 
each unit in the array. The solid angle subtended by each unit in the array is then summed together to 
obtain the total solid angle, and the result is compared to the applicability plot in Figure 6-1. 

𝛺 =
𝐿𝐷

𝐻 𝐿
2

2
+ 𝐻2

where, as indicated in Table 6-1, 

L – length of each cylinder (cm)18;
D – cylinder inside diameter (cm); and
H – distance from the point, P, and the cylindrical surface (cm).

18 Although H is often used to indicate the height of a cylinder, the solid angle methodology uses L as the cylinder 
height or length and H is the point-to-surface distance used in the solid angle equations.
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Note that H is the distance from the center point P of the “centermost” cylinder to the surface of another 
cylinder. This is equal to the pitch minus the cylinder radius. However, as the neutrons interact with the 
material inside the cylinder, this distance is usually calculated as the pitch minus the inside radius of the 
other cylinder.

Now, one can calculate the solid angle for each unit in the array. As shown in Figure 6-4, the four units 
identified as A have the same center-to-center distance with respect to the centermost unit, X. The value 
of H for these units would be 76.52 cm – (15.24 cm / 2) = 68.90 cm.

Figure 6-4. Units with Similar Distances from Centermost Unit, X.

Calculating the solid angle subtended by a cylinder of type A with respect to cylinder X,

𝛺1 =
𝐿𝐷

𝐻 ( 𝐿
2)2 + 𝐻2

,

𝛺1 =
(100 𝑐𝑚)(15.24 𝑐𝑚)

(68.90 𝑐𝑚) × (100 𝑐𝑚/2)2 + (68.90 𝑐𝑚)2 ,

𝛺1 = 0.26 𝑠𝑟.

As there are four A units, the total solid angle from these units is:

𝛺1 + 𝛺2 + 𝛺3 + 𝛺4 = 4 × 𝛺1 = 4 × 0.26 = 1.04 𝑠𝑟.

The solid angle from each of the remaining four units (B units at the four corners of the array) can now be 
calculated by using the same relationship as above with the appropriate value of H:

B B

B B

A

A

A

AX
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𝐻5 = 𝑃𝑖𝑡𝑐ℎ × 2 ―  
𝐼𝐷
2 = 76.52𝑐𝑚 × 2 ―  

15.24𝑐𝑚
2 = 100.6 𝑐𝑚

𝛺5 =
(100 𝑐𝑚)(15.24 𝑐𝑚)

(100.60 𝑐𝑚) × (100 𝑐𝑚/2)2 + (100.60 𝑐𝑚)2 ,

𝛺5 = 0.135 𝑠𝑟.

As before, the total solid angle for the B units is

𝛺5 + 𝛺6 + 𝛺7 + 𝛺8 = 4 × 𝛺5 = 4 × 0.135 = 0.54 𝑠𝑟.

Therefore, the sum of the solid angles for all units is calculated as follows:

𝛺1 + 𝛺2 + 𝛺3 + 𝛺4 + 𝛺5 + 𝛺6 + 𝛺7 + 𝛺8 = 1.04 + 0.54 = 1.58 sr.

Comparing these results with Figure 6-1, for a multiplication factor of 0.378, the allowed solid angle is 
approximately 5.22 sr (= 9 – 10 × 0.378). The calculated solid angle for all array units is 1.58 sr.; 
therefore, this storage array would be acceptable. 

6.4.2 Solid Angle Example Problem 2

1. Reexamine the Solid Angle Example Problem 1 (Section 6.4.1) with array units spaced 30.48 
cm (12 in.) edge-to-edge, instead of 60.96 cm (24 in.).

2. What minimum edge-to-edge spacing would be permitted using the solid angle method? 

Part 1. 

Because the multiplication factor is relatively low for a single unit (SCALE value = 0.378  0.001), 
spacing the units closer together could save valuable storage space in the process facility. Based on the 
applicability for the solid angle method, the units should be no closer than 0.3 m (30 cm) apart. This 
spacing meets the problem requirements, and the single unit multiplication factor is also below 0.8. The 
layout of the array is still as shown in Figure 6-4 with different distances for the A and B type cylinders.

The new value of H1 would be: 30.48 + 15.56 – (15.24/2) = 38.42 cm. Therefore, the solid angle for the 
side units of the array is determined from the following:

Calculating the solid angle subtended by a cylinder of type A with respect to cylinder X,

𝛺1 =
𝐿𝐷

𝐻 ( 𝐿
2)2 + H2

,

𝛺1 =
(100 cm)(15.24 cm)

(38.42 cm) × (100 cm/2)2 + (38.42 cm)2 ,

𝛺1 = 0.629 sr.

As there are four A units, the total solid angle from these units is:
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𝛺1 + 𝛺2 + 𝛺3 + 𝛺4 = 4 × 𝛺1 = 4 × 0.629 = 2.52 𝑠𝑟.

For the B unit, the solid angle can now be calculated by using the same relationship as above with the 
appropriate value of H:

𝐻5 = (𝐸𝑇𝐸 + 𝑂𝐷) × 2 ―  
𝐼𝐷
2 = (30.48 𝑐𝑚 +  15.56𝑐𝑚) × 2 ―  

15.24𝑐𝑚
2 = 57.49 𝑐𝑚

𝛺5 =
(100 cm)(15.24 cm)

(57.49 cm) × (100 cm/2)2 + (57.49 cm)2 ,

𝛺5 = 0.348 𝑠𝑟.

As before, the total solid angle for the B units is:

𝛺5 + 𝛺6 + 𝛺7 + 𝛺8 = 4 × 𝛺5 = 4 × 0.348 = 1.39 𝑠𝑟.

Therefore, the sum of the solid angles for all units is calculated as follows:

𝛺1 + 𝛺2 + 𝛺3 + 𝛺4 + 𝛺5 + 𝛺6 + 𝛺7 + 𝛺8 = 2.52 + 1.39 = 3.91 𝑠𝑟.

Comparing these results with Figure 6-1, for a multiplication factor of 0.378, the allowed solid angle is 
approximately 5.22 sr (= 9 – 10 x 0.378). The calculated solid angle for all array units is 3.91 sr.; 
therefore, this storage array would be acceptable.

The total solid angle for the array units spaced 30.48 cm apart is well below the allowed 5.22 steradians 
as calculated in the previous example problem. Therefore, this array will remain subcritical for normal 
spacing conditions. As indicated from a SCALE calculation for a fully reflected 3×3×1 array with 30.48 
cm ETE, the keff is 0.646 ± 0.001, so it is still safely subcritical.

For the allowable solid angle to be 3.9 sr, the individual-array-unit multiplication factor must be greater 
than 0.51. Thus, 30 cm spacing is subcritical for units with a maximum keff < 0.51.

Part 2.

Using a spreadsheet, for example, it is not difficult to iterate on the surface-to-surface spacing between 
array units, using the methodology discussed in Part A, to determine where the solid angle reached the 
limiting value from Figure 6-1 (5.22 sr.). The results are shown in Table 6-2. The spacing that gives the 
maximum allowed solid angle would be 23.1 cm; however, use of the solid angle method requires a 
minimum 30 cm spacing. Reducing the spacing below 30 cm requires that another analysis method be 
used to evaluate the safety of such a configuration.

The minimum 30 cm spacing was imposed to provide for thick water reflection. It also turns out that 
spacing closer than 30 cm impacts the assumptions made to derive the solid angle equation. For this 3×3 
array, it was determined that a spacing of 0.0 cm produced a keff of 0.996 + 0.001 when water was present 
in the interstitial spaces.
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Table 6-2. Solid Angle versus Edge-to-Edge (ETE) Spacing for Example Problem 2.

Edge-to-Edge
(cm)

Solid Angle
(steradians)

15.0 7.62
20.0 5.99
23.1 5.22
25.0 4.83
30.0 3.98
30.5 3.91
40.0 2.83
50.0 2.10
60.0 1.62
61.0 1.58
75.0 1.15
100.0 0.71
125.0 0.48
150.0 0.35
200.0 0.21
250.0 0.13
300.0 0.09

Notice that as the surface-to-surface spacing between array units is increased from the 0.3 m (30 cm) 
applicability limit for the solid angle method, the total array solid angle exponentially drops 
asymptotically to zero (Figure 6-5). These results clearly show the effect of neutron interaction between 
array units; the effects of interaction are greatest when the array units are close together and quickly 
decrease as a function of distance.
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Figure 6-5. Solid Angle Method Example Problem 2 Spacing Parametric Results.

6.4.3 Solid Angle Example Problem 3

A plutonium processing facility needs to store plutonium solution (Pu(4)O2) in a 3×3×1 unreflected 
planar array of 4 L spherical bottles. The plutonium in the solution contains 4 at. % Pu-240. The array is 
assumed to be only one unit high (i.e., the containers are not stacked). The bottles are spaced 1 ft apart 
under normal conditions in fixed storage locations. The plutonium solution concentration can vary 
significantly over the range 20 gPu/L to 200 gPu/L. Will this storage arrangement be safe over this 
concentration range?

Characteristics of array (Figure 6-6):

 Separation (edge-to-edge, ETE) = 30.48 cm (12 in.)
 Pitch (center-to-center, CTC) = 50.80 cm (20 in.)
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Figure 6-6. Illustration of Problem Geometry for Solid Angle Example Problem 3.

The multiplication factor of a single, unreflected unit in the array can be approximated using the figures 
and Tables in Appendix B. Figure B-4 provides the multiplication factor as a function of the fraction of 
critical mass. Pu concentration. The critical masses are from Table B-2 for 4 wt % plutonium solutions. 
The estimated values of keff are read from Figure B-4 with the appropriate fraction critical. The 
multiplication factor plots in Appendix B for Pu solutions assume Pu with 4 at. % Pu-240. 

Table 6-3 shows that the array units, regardless of concentration, meet the solid angle criteria that no 
unreflected, individual array unit has a multiplication factor of greater than 0.8. Estimates of keff are read 
from Figure B-3. Empirical equations in Appendix B for keff as a function of k∞ are valid for fraction 
critical values of 0.3 or greater, which does not apply to the conditions for this example.
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Table 6-3. Multiplication Factor Estimation for Solid Angle Example Problem 3.

Pu Conc.
(g Pu/liter)

Bare Pu 
Critical 
Mass (g)

Pu Mass
(kg)

Fraction of Critical 
Mass

19Est. keff

20 1090 20g - Pu
liter  ×  4 liters =  80 g - Pu 

80 g - Pu
1090 g - Pu =  0.073 0.37

30 1060 30 
g - Pu
liter  ×  4 liters =  120 g - Pu

120 g - Pu
1060 g - Pu  =  0.113 0.42

50 1290 50
g - Pu
liter  ×  4 liters =  200 g - Pu

200 g - Pu
1290 g - Pu  =  0.155 0.47

200 4030 200
g - Pu
liter  ×  4 liters =  800 g - Pu

800 g - Pu
4030 g - Pu  =  0.199 0.54

The results in Table 6-3 show that the maximum multiplication factor for an unreflected, spherical single 
unit would be about 0.54, which is within the solid angle method applicability of 0.8. Thus, the 4 L Pu 
spheres would be acceptable for the solid angle method.

The first step is to determine whether the arrangement, shown in Figure 6-6, meets the applicability 
criteria for the solid angle method:

 The distance between units is 1 ft (30.48 cm) apart, which is greater than the minimum separation 
distance of 30 cm.

 The array considered is a bare system that has no external neutron reflectors present.

 Table 6-3 shows that the maximum multiplication factor for an unreflected, spherical single unit 
would be about 0.54. Thus, regardless of concentration, the 4 L Pu spheres meet the solid angle 
criteria that no unreflected, individual array unit has a multiplication factor of greater than 0.8.

The first part of the problem is to determine the radius of a sphere with 4 L volume.

𝑉𝑠𝑝ℎ𝑒𝑟𝑒 =
4
3 𝜋𝑟3     Solve this for r:

𝑟 = 3 3 × 𝑉𝑠𝑝ℎ𝑒𝑟𝑒

4 × 𝜋
= 3 3 × 4 liters ×  1000 cm3

liter
4 × 𝜋

 =  9.847 cm  (inside radius)

As before, there are two “types” of units in the array: A and B. The center to surface distance for each is 
calculated as follows:

19 Calculated keff values from PARTISN with 16 group Hansen-Roach cross sections give 0.372, 0.426, 0.479, and 
0.544 for the different concentrations.
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𝑝𝑖𝑡𝑐ℎ =  𝐸𝑇𝐸 +  𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

𝑝𝑖𝑡𝑐ℎ =  30.48 𝑐𝑚 + 20.32 𝑐𝑚 =  50.80 𝑐𝑚

𝐻𝐴 = 𝑝𝑖𝑡𝑐ℎ ― 𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑑𝑖𝑢𝑠

𝐻𝐴 = 50.80 𝑐𝑚 ― 9.847 𝑐𝑚 =  40.95 𝑐𝑚

𝐻𝐵 = 𝑝𝑖𝑡𝑐ℎ ×  2 ― 𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑑𝑖𝑢𝑠

𝐻𝐵 = 50.80 𝑐𝑚 ×  2 ― 9.847 𝑐𝑚 =  62.00 𝑐𝑚

The “point-to-sphere” solid angle formula from Table 6-1 may be used to calculate the solid angle for 
each unit in the array. As in Solid Angle Example problems 1 and 2, the solid angle subtended by each 
unit in the array is then summed together to obtain the total solid angle, and the result is compared to the 
applicability plot in Figure 6-1. The “point-to-sphere” solid angle formula from Table 16 can be used as 
follows:

𝛺 = 2𝜋 1 ―
1

1 +
𝑅
𝐻

2

Starting with the A units:

𝛺𝐴 = 2𝜋 1 ―
1

1 +
9.847 cm
40.95 cm

2
= 0.174 sr

Total A solid angle =  4 ×  𝛺𝐴 =  0.696 sr

Then for the B units (those on the diagonals),

𝛺𝐵 = 2𝜋 1 ―
1

1 +
9.847 cm
62.00 cm

2
= 0.078 sr

Total B solid angle =  4 ×  𝛺𝐵 =  0.312 sr

The total solid angle for 4 L spherical bottles of Pu(4)O2 solution in a 3 × 3 × 1 array is 1.01 sr = 0.696 sr 
+ 0.312 sr. Based on the maximum keff of 0.54 at 200 g-Pu/L, Figure 6-1 shows a maximum allowable 
solid angle of 3.6 sr. So, the array configuration with the given spacing and fissile material will be 
subcritical. A SCALE calculation of a reflected 3×3×1 array of Pu(4)O2 solution at 0.200 g Pu/cm3 gives 
a keff = 0.818 ± 0.001.



150

6.4.4 Solid Angle Example Problem 4

It is desired to establish the safe spacing for a 10-unit array of 10 in. diameter cylinders (schedule 20 pipe) 
each 6 feet long on a square lattice pattern in two rows of five. The cylinders are to contain 4.98% 
enriched uranyl fluoride of maximum 3.2 g U/cm3 concentration. From ORNL data20 (Reference 38), a 
bare stainless steel cylinder of U(4.98)O2F2 solution was critical with a radius of 19.55 cm and a height of 
101.7 cm. Use the solid angle criterion to estimate a safe spacing for this configuration.
To apply the solid angle method to this problem, the multiplication factor, keff, of the solution cylinder 
must be found. We can use the following equation to estimate keff:

𝑘𝑒𝑓𝑓 =
1 + 𝐵2

𝑚𝑀2

1 + 𝐵2
𝑔𝑀2 =

𝑘∞

1 + 𝐵2
𝑔𝑀2

For nuclear criticality safety purposes, the two usual ways of maintaining safety in these situations is 
either through a mass limit or through fixed geometry. For this situation, the geometry is fixed, and the 
concentration can vary (i.e., the mass varies by concentration) up to a maximum of 3.2 g U/cm3 or a U-
235 concentration of 0.1594 g U-235/cm3. Because there is a wide range of concentrations possible for 
these units, a review of the critical geometry information in Figure 6-7, shows the minimum critical 
diameter of a water-reflected infinite cylinder is 28.5 cm (11.22 in.). So, the 10 in. diameter cylinders 
should always be subcritical as individual units regardless of the concentration of solution and reflection 
conditions.

20 The experiment had an H/X of 496, a U-235 concentration of 0.04487 g 235/ cm3, a uranium concentration of 
0.901 g U/ cm3, and a solution density of 2.020 g/ cm3.
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Figure 6-7. Critical Diameters of Infinite Cylinders for Various Enrichments of Uranium. (Reference 11, Figure 16.)

Minimum Diameter = 28.5 cm
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Figure 6-8. Extrapolation Distance Data for U(5)O2-H2O System. (Reference 7, Figure III.B.10(5)-1.)

2.1 cm at 0.901 g U/cm3
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Figure 6-9. Migration Area Data for U(5)O2-H2O System. (Reference 9, Figure III.B.10(5)-2.)

28.6 cm2 at 0.901 g U/cm3



154

Now to calculate the material buckling from the experimental information and use an extrapolation 
distance, d, of 2.1 cm from Figure 6-8, the buckling at critical (i.e., material buckling) is

𝐵2
𝑔 =

2.405
𝑟 + 𝑑

2

+
𝜋

𝐿 + 2𝑑
2

,

𝐵2
𝑔 =

2.405
19.55 𝑐𝑚 + 2.1 𝑐𝑚

2

+
𝜋

101.7 𝑐𝑚 + 2 × 2.1 𝑐𝑚
2

= 0.01322 𝑐𝑚–2.

For 10 in. diameter, schedule 20 pipe, the inside diameter is 10.25 in. and the wall thickness is 0.25 in., 
which gives an outside diameter of 10.75 in. Then, the solution cylinder dimensions are

𝑟 =
10.25 𝑖𝑛𝑐ℎ𝑒𝑠

2 ×
2.54 𝑐𝑚

𝑖𝑛𝑐ℎ  =  13.0175 𝑐𝑚

𝐿 =  6 𝑓𝑡 ×  
12 𝑖𝑛𝑐ℎ𝑒𝑠

𝑓𝑡 ×
2.54 𝑐𝑚

𝑖𝑛𝑐ℎ  =  182.88 𝑐𝑚

Substitute these values into the geometric buckling relationship for a finite cylinder using the same 
extrapolation distance of 2.1 cm from Figure 6-8:

𝐵2
𝑔 =

2.405
𝑟 + 𝑑

2

+
𝜋

𝐿 + 2𝑑
2

,

𝐵2
𝑔 =

2.405
13.0175 𝑐𝑚 + 2.1 𝑐𝑚

2

+
𝜋

182.88 𝑐𝑚 + 2 × 2.1 𝑐𝑚
2

= 0.02559 𝑐𝑚–2.

For migration areas, we refer to Figure 6-9, and find M2 = 28.6 cm2 at 0.901 g U/cm3. Then we can use 
the diffusion theory approximation (Eq. 75) to estimate the keff.

𝑘𝑒𝑓𝑓 =
1 + 𝐵2

𝑚𝑀2

1 + 𝐵2
𝑔𝑀2 =

𝑘∞

1 + 𝐵2
𝑔𝑀2

𝑘𝑒𝑓𝑓 =
1 + 0.01322cm―2 ×  28.6 cm2

1 + 0.02559cm―2 ×  28.6 cm2 =
1.37803
1.73179  =  0.796

This keff is just below the upper limit for use of the solid angle method.21 This is the maximum keff 
expected for the range of concentrations that could be stored in the unit. 

For U(4.89)O2F2 , Figure 6-7 shows that a minimum diameter of 28.5 cm is required to make a reflected 
solution critical. Thus, the unit cylinder’s diameter of 26.035 cm should be subcritical for concentrations 
of interest. Furthermore, no reflectors better than water are expected in this facility. Thus, this problem 
meets two of the three criteria for applicability for the solid angle method (i.e., unit keff less than 0.8 and 
fully water-reflected unit subcritical). Now, the safe spacing can be determined for the proposed array.

21 A PARTISN analysis of U(4.98)O2F2 at H/X = 496 gives a keff of 0.7565. As was indicated in the chapter on buckling 
conversion equation 3.16 over predicts the actual keff. KENO gives a keff of 0.7558 ±0.0012 for the cylinder without 
stainless steel and 0.7841 ± 0.0012 for the unit with the stainless steel.



155

The solid angle criterion for this problem, based on the calculated keff for this unit cylinder is:

𝛺𝑎𝑙𝑙𝑜𝑤𝑒𝑑 = 9 ― 10𝑘𝑒𝑓𝑓 = 9 ― 10 × 0.796 = 1.04 𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠

This is consistent with the solid angle criterion shown in Figure 6-1.

The total solid angle, Ωtotal, is the sum of the solid angles subtended by the visible surrounding individual 
units. Figure 6-10 illustrates the parameters used to calculate the solid angle due to the height of the 
cylinders above the center point of the central array unit. For this configuration, the most central unit is 
chosen for the calculation of the solid angle. Figure 6-10 illustrates the array configuration with the 
central unit center identified as point P.

Figure 6-10. Parameters for Determination of Solid Angle for Unit Cylinders.

In Figure 6-10, L is the total height of the cylinder, D is the diameter of the cylinder and H is the point-to-
surface distance = Pitch – ID/2 (note: H is measured from point P to surface of fissile material so inside 
diameter is used). The solid angle calculations will be based on determining the value of the point-to-
surface distance for the three unit types that gives the allowable solid angle. For a square array, the 
separation distance, S, can be determined from the pitch minus the outside diameter (S = Pitch - OD).

The point-to-cylinder formula from Table 6-1 that matches Figure 6-10 is

𝛺𝑖 =
𝐿 × 𝐼𝐷

𝐻𝑖 ( 𝐿
2)2 + 𝐻2

𝑖
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Figure 6-11. Illustrations of 10-unit Array for Solid Angle Example Problem 4.

Because of symmetry, the units can be separated into 4 types; each type identified by distance from the 
central unit: Unit 1 is one pitch away, Unit 2 is √2 × pitch distant, Unit 3 is √5 × pitch distant, and Units 4 
are in the corners and fully shadowed by Unit 1 in the vertical direction. So, three solid angle calculations 
have to be performed to determine the total solid angle.

Based on the information illustrated in Figure 6-11, the total solid angle can be represented as follows:

𝛺total = 3 × 𝛺 1 + 2 × 𝛺 2 + 2 × 𝛺 3.
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Using Hi to represent the point-to-surface distance of Unit i, Figure 6-11 gives the following equations:

𝐻1 = 𝑃𝑖𝑡𝑐ℎ ―
𝐼𝐷
2

𝐻2 = 2𝑃𝑖𝑡𝑐ℎ ―
𝐼𝐷
2

𝐻3 = 5𝑃𝑖𝑡𝑐ℎ ―
𝐼𝐷
2

With these equations and cylinder dimensions (D = 2 × 13.0175 cm and L = 182.88 cm), the solid angle 
for each unit can be determined:

𝛺1 =
𝐿𝐷

𝐻1
𝐿

(2)2 + 𝐻2
1

=
182.88 cm × 26.035 cm

(𝑃𝑖𝑡𝑐ℎ ― 13.0175) 182.88 cm
(2)2 + (𝑃𝑖𝑡𝑐ℎ ― 13.0175)2

𝛺2 =
𝐿𝐷

𝐻2
𝐿

(2)2 + 𝐻22

=
182.88 cm × 26.035 cm

(𝑃𝑖𝑡𝑐ℎ × 2 ― 13.0175) 182.88 cm
(2)2 + (𝑃𝑖𝑡𝑐ℎ × 2 ― 13.0175)2

𝛺3 =
𝐿𝐷

𝐻3
𝐿

(2)2 + 𝐻32

=
182.88 cm × 26.035 cm

(𝑃𝑖𝑡𝑐ℎ × 5 ― 13.0175) 182.88 cm
(2)2 + (𝑃𝑖𝑡𝑐ℎ × 5 ― 13.0175)2

A spreadsheet can be used to set up these equations to determine the safe spacing between array units. 
Table 6-4 provides the results of the iterative search on the array unit spacing. The pitch has is varied 
searching for the value where the total solid angle equals the limiting solid angle value of 1.04 sr.

Table 6-4. Solid Angle Method Example Problem 4 Safe Spacing Results.

Pitch 
(in.)

Pitch 
(cm)

H1

(cm)
Ω1 
(sr)

H2 
(cm)

Ω2 
(sr)

H3 
(cm)

Ω3 
(sr)

Ωtotal 
(sr)

62 157.5 144.5 0.193 209.7 0.099 339.1 0.040 0.857
60 152.4 139.4 0.205 202.5 0.106 327.8 0.043 0.912
58 147.3 134.3 0.218 195.3 0.113 316.4 0.046 0.972
56 142.2 129.2 0.233 188.1 0.121 305.0 0.049 1.038
54 137.2 124.1 0.249 181.0 0.130 293.7 0.053 1.111
52 132.1 119.1 0.266 173.8 0.140 282.3 0.057 1.192
50 127.0 114.0 0.286 166.6 0.150 271.0 0.061 1.281
48 121.9 108.9 0.307 159.4 0.163 259.6 0.067 1.381

47.25 120.0 107.0 0.316 156.7 0.167 255.3 0.069 1.421
47 119.4 106.4 0.319 155.8 0.169 253.9 0.069 1.435
46 116.8 103.8 0.331 152.2 0.176 248.2 0.072 1.492

Based on these results, the minimum pitch that will result in a safe configuration is 56 in. (142.24 cm). 
However, pitch is difficult to measure in situ, so we need the edge-to-edge separation distance, which is 
the pitch minus the outside diameter. From the problem statement, the outside diameter is 10.75 inches 
(27.305 cm), so the minimum edge-to-edge distance is 56 – 10.75 = 45.25 in. (=142.24 – 27.31 = 114.93 
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cm) or 45.25 ni., a little less than 4 ft. The results also show that, as expected, it is the closest units that 
provide the largest solid angle or the most interaction, and the interaction between array units decreases 
rapidly as the spacing between units is increased. 

Notice that a change of two in. in spacing, from 56 to 54 in., has an effect of about 0.07 sr on the 
allowable angle. This translates to a variation of 0.007 in the keff of the unit, which is the difference 
between the diffusion calculated keff and the KENO value for the unit with a SS container. Thus, use of 
Eq. (75) gives a first approximation to spacing.

6.4.5 Solid Angle Example Problem 5

1. Use the Solid Angle Method to determine if an array of 4,500 g alpha-phase (𝛼) Pu(4.5) 
metal ingots (L/D = 1) spaced 30 cm apart in a 331 array would be acceptable.

2. What if the ingots have an L/D = 7; how does that affect the spacing? 
Part 1. 

The layout of this 331 array is approximated in Figure 6-2 (plan view) and Figure 6-3 (elevation view, 
but with L/D22 = 1 rather than L/D = 7.07). Because the multiplication factor is relatively low for a single 
unit, spacing the units closer together could save valuable storage space in the process facility. Based on 
the applicability for the solid angle method, the units should be no closer than 0.3 m (30 cm) apart. This 
spacing meets the problem requirements. The applicability criteria for the single unit multiplication factor 
can be determined using the following methodology based on fraction critical relationships (See 
Appendix B). 

The fraction of critical mass, F, can be calculated based on the information in Appendix B. Table B-1 
gives the critical mass of an unreflected -Pu(4.5) sphere as 10.6 kg or 10,600 g.

𝐹 =
4,500 𝑔𝑟𝑎𝑚𝑠

10,600 𝑔𝑟𝑎𝑚𝑠 = 0.425

For an Pu metal system, the multiplication factor for a system can be approximated using equation B.1 
from Appendix B:

Thus, the application criterion of keff ≤ 0.8, as described in Section 6.3, is met.

We should also check that a fully water-reflected unit is subcritical. Again, referring to Table B-1, the 
critical mass of a water-reflected Pu(4.5) sphere is 5.9 kg or 5,900 grams. Then the fraction critical for a 
fully water-reflected unit is

𝐹 =
4,500 𝑔𝑟𝑎𝑚𝑠
5,900 𝑔𝑟𝑎𝑚𝑠 = 0.763

For an Pu metal system, the multiplication factor for a system can be approximated again using equation 
B.1 (applies to both bare and reflected plutonium metal systems):

22 For the solid angle example problems, the height (or length) of a cylinder will be denoted by L to avoid confusion 
with the point-to-surface parameter, H.

 0.30.3
eff effk .     For = 0.425, k 0.425 = 0.774 . F F  
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Thus, the application criterion of a water-reflected unit being subcritical, as described in Section 6.3, is 
met. 

Some of the criteria for application of solid angle are not met. First, these ingots are not moderated 
systems, and second, being ingots, it is likely that they may be stored in concrete reflected arrays. As the 
thickness of concrete is unknown, we will reduce the allowable solid angle by 40%.

Using the point-to-cylinder solid angle formula from Table 6-1, the solid angle for each unit in the array 
may now be calculated. The solid angle subtended by each unit in the array is then summed to obtain the 
total solid angle. The result will then be compared to 40% of the value determined from Figure 6-1. Based 
on the bare unit keff, the allowable solid angle is:

𝛺𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 =  9 ― 10𝑘𝑒𝑓𝑓 = 9 ― 10 × 0.774 = 1.26 ∗ 0.4 = 0.504

To determine the dimensions of each ingot, we use the density of 19.6 g/cm3 (from Appendix B) and 
calculate the volume:

𝑉𝑖𝑛𝑔𝑜𝑡 =
4,500grams

19.6grams/cm3   = 229.6cm3

𝑉𝑖𝑛𝑔𝑜𝑡 = 𝜋
𝐷2

4 L     For L/D =  1, solve this for D:

𝑉𝑖𝑛𝑔𝑜𝑡 = 𝜋
𝐷3

4 = 229.6cm3𝐷 = 3 4 × 229.6cm3

𝜋
=  6.637 cm 

Ingot dimensions:  D =  6.637 cm, r =  3.3185 cm,  L =  6.637 cm,

The point-to-cylinder formula from Table 6-1 is:

𝛺𝑖 =
𝐿𝐷

𝐻𝑖 ( 𝐿
2)2 + 𝐻2

𝑖

Where L is the total height of the cylinder (6.637 cm), D is the diameter of the cylinder (6.637 cm) and H 
is the point-to-surface distance, which depends on the Pitch. The Pitch = edge-to-edge + 2 × radius 
(3.3185 cm).

Using S = 30 cm as the minimum spacing, then Pitch = 30 cm + 2 × 3.3185 cm = 36.637 cm.

The point-to-surface distance depends on unit location. For the A type units, HA = Pitch – radius, whereas 
for B type units, HB = Pitch x √2 – radius. So HA = 36.637 cm - 3.3185 cm = 33.3185 cm, and HB = 
36.637 cm x √2 – 3.3185 cm = 48.494 cm. 

Based on the information illustrated in Figure 6-4, the total solid angle can be represented as follows:

𝛺𝑡𝑜𝑡𝑎𝑙 = 4 × 𝛺 𝐴 + 4 × 𝛺 𝐵.

 0.30.3
eff effk .     For = 0.763, k 0.763 = 0.922 . F F  
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For the units of type A (see Figure 6-4), the solid angle will be

𝛺𝐴 =
𝐿𝐷

𝐻 ( 𝐿
2)2 + 𝐻2

,

𝛺𝐴 =
(6.637 𝑐𝑚)(6.637 𝑐𝑚)

(33.3185 𝑐𝑚) × (6.637 𝑐𝑚/2)2 + (33.3185 𝑐𝑚)2 ,

𝛺𝐴 = 0.0395 𝑠𝑟.

For the units of type B (see Figure 6-4), the solid angle will be:

𝛺𝐵 =
𝐿𝐷

𝐻 ( 𝐿
2)2 + 𝐻2

,

𝛺𝐵 =
(6.637 𝑐𝑚)(6.637 𝑐𝑚)

(48.494 𝑐𝑚) × (6.637 𝑐𝑚/2)2 + (48.494 𝑐𝑚)2 ,

𝛺𝐵 = 0.0187 𝑠𝑟.

The total solid angle is then:

𝛺𝑡𝑜𝑡𝑎𝑙 = 4 × 𝛺 𝐴 + 4 × 𝛺 𝐵      = 4 × 0.0395 + 4 × 0.0187 = 0.2328 𝑠𝑟

As 40% of the maximum allowed solid angle is 0.504, and the calculated solid angle with 30 cm 
separation is 0.233, this storage array would be acceptable. It is important to note that larger arrays, 
particularly with unmoderated materials, are not amenable to evaluation by the solid angle method. 
However, in most cases, this is not an issue, as solid angle evaluation of arrays with more than 50 units is 
tedious; so solid angle evaluation likely would not be the first choice for an analysis method.

Part 2. 

What if the ingots have an L/D = 7; this presents more surface area, so the solid angle should increase. 
From the previous calculation, we know the volume is 229.6 cm3, so we need the dimensions with L/D = 
7.

𝑉𝑖𝑛𝑔𝑜𝑡 = 𝜋
𝐷2

4 L     For L/D =  7, solve this for D:

𝑉𝑖𝑛𝑔𝑜𝑡 = 𝜋
7 × 𝐷3

4 = 229.6cm3𝐷 = 3 4 × 229.6cm3

7 × 𝜋
=  3.469 cm 

Ingot dimensions:  D =  3.469 cm, r =  1.7345 cm, L =  24.283 cm

The point-to-cylinder formula from Table 6-1 is:
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𝛺𝑖 =
𝐿𝐷

𝐻𝑖 ( 𝐿
2)2 + 𝐻2

𝑖

Where L is the total height of the cylinder (24.283 cm), D is the diameter of the cylinder (3.469 cm) and 
H is the point-to-surface distance, which depends on the pitch. The pitch = edge-to-edge + 2 × radius 
(1.7345 cm).

Using S = 30 cm as the minimum spacing, then Pitch = 30 cm + 2 × 1.7345 cm = 33.469 cm.

The point-to-surface distance depends on unit location. For the A type units, HA = Pitch – radius while for 
B type units, HB = Pitch × √2 – radius. So, HA = 33.469 cm – 1.7345 cm = 31.7345 cm, and HB = 33.469 
cm × √2 – 1.7345 cm = 45.598 cm. 

Based on the information illustrated in Figure 6-4, the total solid angle can be represented as follows:

𝛺total = 4 × 𝛺 A + 4 × 𝛺 B.

For the units of type A (see Figure 6-4), the solid angle will be

𝛺𝐴 =
𝐿𝐷

𝐻 ( 𝐿
2)2 + 𝐻2

,

𝛺𝐴 =
(24.283 𝑐𝑚)(3.469 𝑐𝑚)

(31.7345 𝑐𝑚) × (24.283 𝑐𝑚/2)2 + (31.7345 𝑐𝑚)2 ,

𝛺𝐴 = 0.0781 𝑠𝑟.

For the units of type B (see Figure 6-4), the solid angle will be:

𝛺𝐵 =
𝐿𝐷

𝐻 ( 𝐿
2)2 + 𝐻2

,

𝛺𝐵 =
(24.283 𝑐𝑚)(3.469 𝑐𝑚)

(45.598 𝑐𝑚) × (24.283 𝑐𝑚/2)2 + (45.598 𝑐𝑚)2 ,

𝛺𝐵 = 0.0392 𝑠𝑟.

The total solid angle is then:

𝛺𝑡𝑜𝑡𝑎𝑙 = 4 × 𝛺 𝐴 + 4 × 𝛺 𝐵      = 4 × 0.0781 + 4 × 0.0392 = 0.469 𝑠𝑟

As 40% of the maximum allowed solid angle is 0.504, and the calculated solid angle for h/d = 7 with 30 
cm separation is 0.469, this storage array would still be acceptable. Note that increasing the L/D from 1 to 
7 doubled the solid angle. If the shape of a unit is not known, then bounding calculations are necessary to 
confirm that the proposed array with a given spacing is acceptable.
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Also note that although the solid angle doubled, this does not mean that the array with L/D=7 units has a 
higher keff than the array with L/D=1 units. The L/D=7 unit does have a greater solid angle, but it also has 
much greater leakage. In fact, the keff of a L/D=7 unit is about 0.54 versus the keff of the L/D=1 unit of 
0.76. This indicates that an increase in solid angle is not always indicative of an increase in keff of an 
array.

6.4.6 Solid Angle Example Problem 6

The 10 units of 10 in. diameter cylinders (schedule 20 pipe) each 6 feet long U(4.98)O2F2 solution 
cylinders from Example Problem 4) are to be placed vertically along the corner walls of a room as shown 
in Figure 6-12. Use the solid angle criterion to estimate a safe spacing for this configuration.

Figure 6-12. Layout of 10-unit Array for Solid Angle Example Problem 6.

The cylinder arrangement as shown in Figure 6-12 has three cylinders along the top that are shadowed 
from the “center” unit by a cylinder of type 1. For solid angle analyses, these shadowed units are ignored 
in the calculations. Although the shadowed cylinders have no direct impact or neutron connection with 
the center unit, they will provide some additional neutrons to the rightmost unit 1. After using the solid 
angle method to analyze the spacing in this problem, SCALE will be used to analyze the impact of the 
shadowed units.
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Using Hi to represent the point-to-surface distance of Unit i, Figure 6-12 gives the following equations:

𝐻1 =  𝑃𝑖𝑡𝑐ℎ ―  
𝐼𝐷
2

𝐻2 =  2𝑃𝑖𝑡𝑐ℎ ―  
𝐼𝐷
2

𝐻3 =  5𝑃𝑖𝑡𝑐ℎ ―  
𝐼𝐷
2

𝐻4 =  10𝑃𝑖𝑡𝑐ℎ ―  
𝐼𝐷
2

𝐻5 =  17𝑃𝑖𝑡𝑐ℎ ―  
𝐼𝐷
2

With these equations and cylinder dimensions (D = 2x13.0175 cm and L = 182.88 cm), the solid angle for 
each unit can be determined:

𝛺1 =
𝐿𝐷

𝐻1 ( 𝐿
2)2 + 𝐻2

1

=
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(𝑃𝑖𝑡𝑐ℎ ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (𝑃𝑖𝑡𝑐ℎ ― 13.0175)2

𝛺2 =
𝐿𝐷

𝐻2 ( 𝐿
2)2 + 𝐻22

=
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(𝑃𝑖𝑡𝑐ℎ × 2 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (𝑃𝑖𝑡𝑐ℎ × 2 ― 13.0175)2

𝛺3 =
𝐿𝐷

𝐻3 ( 𝐿
2)2 + 𝐻32

=
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(𝑃𝑖𝑡𝑐ℎ × 5 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (𝑃𝑖𝑡𝑐ℎ × 5 ― 13.0175)2

𝛺4 =
𝐿𝐷

𝐻4 ( 𝐿
2)2 + 𝐻42

=
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(𝑃𝑖𝑡𝑐ℎ × 10 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (𝑃𝑖𝑡𝑐ℎ × 10 ― 13.0175)2

𝛺5 =
𝐿𝐷

𝐻5 ( 𝐿
2)2 + 𝐻52

=
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(𝑃𝑖𝑡𝑐ℎ × 17 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (𝑃𝑖𝑡𝑐ℎ × 17 ― 13.0175)2

Again, the use of a spreadsheet allows one to iterate on spacing. The total solid angle is

𝛺total = 2 × 𝛺 1 + 1 × 𝛺 2 + 1 × 𝛺 3 + 1 × 𝛺 4 + 1 × 𝛺 5.

For this system, a total solid angle of 1.04 (based on keff = 0.796) is found with a pitch of 44.25 inches 
(112.4 cm). This pitch gives an edge-to-edge spacing of 33.5 in. (85.1 cm). If the KENO calculated keff of 
0.756 (air gap in place of the steel can), the allowable solid angle becomes 1.44 sr. This is found to be a 
pitch of 36.75 in. (93.35 cm) and an edge-to-edge spacing of 26 in. (66 cm). Thus, the use of diffusion 
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theory to calculate keff results in a very conservative spacing—one that is 7.5 in. (19.05 cm) wider than 
that from a computer calculation. Analysis of the array with SCALE indicated that the keff at 30 cm edge-
to-edge separation was 0.8879 ± 0.0012; so, indeed, the method is quite conservative for these well-
moderated units.

Using a pitch of 44.25 in. (112.4 cm) in the solid angle equations gives the following results:

𝛺1 =
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(112.4 𝑐𝑚 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (112.4 𝑐𝑚 ― 13.0175)2

= 0.3548 sr

𝛺2 =
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(112.4 𝑐𝑚 × 2 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (112.4 𝑐𝑚 × 2 ― 13.0175)2

= 0.1894 sr

𝛺3 =
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(112.4 𝑐𝑚 × 5 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (112.4 𝑐𝑚 × 5 ― 13.0175)2

= 0.0783 sr

𝛺4 =
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(112.4 𝑐𝑚 × 10 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (112.4 𝑐𝑚 × 10 ― 13.0175)2

= 0.0392 sr

𝛺5 =
182.88 𝑐𝑚 × 26.035 𝑐𝑚

(112.4 𝑐𝑚 × 17 ― 13.0175) ( 182.88 𝑐𝑚
2)2 + (112.4 𝑐𝑚 × 17 ― 13.0175)2

= 0.0230 sr

The total solid angle is

𝛺total = 2 × 0.3548 sr + 1 × 0.1894 sr + 1 × 0.0783 sr + 1 × 0.0392sr + 1 × 0.0230 sr

𝛺total = 1.0395 sr.

This verifies the result from the spreadsheet.

6.4.6.1 Effect of Shadowed Units

As discussed in the beginning of this example problem, fully shadowed units are ignored in the 
calculation of an array solid angle. For this problem, some KENO analyses were performed to determine 
the impact of ignoring the shadowed units to the left of the type 1 unit. For the units with a SS container, 
ignoring the three units created a keff within one sigma of the keff for the array analysis. This was true for 
both a 60 cm unit spacing and a 30 cm unit spacing. So, there appears to be no statistically significant 
impact on keff from the shadowed units in this example.

The analysis was continued to determine the effects of the units down the left side of the array. Removal 
of the type 2 unit reduced the keff by 0.0095 ± 0.0017; removal of type 3 did not create a statistically 
significant change in keff as was also true for removal of type 4 and removal of type 5. As can be seen in 



165

Figure 6-12, type 3, type 4, and type 5 are a significant distance from the “center” unit and have small 
solid angles due to that distance. Type 3 contributes about 7.5% to the total solid angle, while types 4 and 
5 contribute about 3.8% and 2.2%, respectively for a total of 13.5% from the three units. In addition, type 
4 and type 5 are somewhat shadowed (type 4 about 25% by type 3 and type 5 about 50% by type 4). 
Thus, the combination of distance and partial shadowing reduced the impact of the more distant units. If it 
is assumed that only the type 1 and type 2 units contribute to the neutron exchange, then the edge-to-edge 
spacing calculated for an allowed solid angle of 1.04 sr would be 30.75 in. (76.2 cm); a reduction of 2.25 
in. from the value determined with all five types.

6.4.6.2 Interesting Observations from KENO Runs

Several runs were made with H/X = 525 (optimum moderation). These demonstrate that the addition of a 
SS container (thickness = 0.5 in. or 1.27 cm) to the model increases the keff by 0.0283 ±0.0017 (from 
0.7558 ± 0.0012 to 0.7841 ± 0.0012) over the model assuming an air gap. However, for a fully reflected 
unit, the unit without stainless steel had a keff = 0.9141 ± 0.0012. The addition of the SS container to the 
model decreases the keff by 0.0371 ± 0.0017 to 0.8770 ± 0.0012. The increase for the bare system is due to 
the SS container reflecting some of the neutrons back into the fissile solution. When reflected, the SS 
container absorbs the more thermal neutrons being reflected by the water so the keff is reduced. 

As discussed in Example Problem 4, a small variation in the keff of a unit can lead to differences of a few 
inches in spacing. As shown above, the variation in bare unit keff from diffusion theory (0.796) to that 
calculated by transport theory (0.756), leads to a difference of 7.5 in. in spacing for a variation of 0.04 in 
keff. Because the diffusion theory estimates of keff are usually greater than those determined from transport 
theory for water-moderated systems, the application of the solid angle technique to these systems will 
result in conservative spacing guidelines.
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7. LIMITING SURFACE DENSITY METHOD

7.1 WHAT YOU WILL BE ABLE TO DO

 Determine the critical mass and critical unit spacing between fissile units in the array for arrays of any 
shape provided that the necessary array and fissile material data are known.

 Determine spacing between fissile array units for individual units of any shape or density.

 Calculate spacing between fissile array units with different fissile materials in the array or different 
reflectors (i.e., water vs. concrete).

 Calculate the multiplication factor for various array configurations.

7.2 LIMITING SURFACE DENSITY METHOD OVERVIEW

The limiting surface density or 𝑁𝐵2
𝑁 method combines the density analog method and diffusion theory 

into a thorough method for performing array criticality calculations. Reference 39 states that the 𝑁𝐵2
𝑁 

method for calculating critical parameters of reflected cubic arrays is used to define a surface density 
parameter that permits the interpretation of many practices with and perturbations to arrays of fissile 
material. The geometric buckling for a single unit is expanded analogously for a water-reflected cubic 
array, which can then be expanded to arrays of various shapes, such as rectangular and planar arrays, and 
other reflection conditions, such as concrete. The concept of the 𝑁𝐵2

𝑁 method is that units in each vertical 
column of the array are projected downward to smear the fissile material from the column onto a sheet 
that uniformly covers one face of a unit cell. Thomas (Reference 39) describes the surface density of a 
critical array as follows assuming the product of the number of units in a stacked column, n, and the array 
unit mass, m, divided by dimension of a cubic array cell, 2an:

𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 (88)

This method assumes that if this projected fissile slab is subcritical, then the projected surface density of 
the array will also be subcritical (Reference 40). As the number of units in the array, N (equal to n3 for a 
cubic array) approaches infinity, the limiting surface density approaches the value 𝜎(𝑎𝑛) (Reference 31). 
Figure 7-1 illustrates this concept. 
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Illustration of the Center-to-Center 
Spacing between Array Units

Surface Density of a 64 Unit 
Array with nz = 4. The 

surface density is equal to 
the total mass of fissile 

material in the stack divided 
by the area of one array unit.

Illustration of a 64 unit Cubic Array. For 
the cubic array illustrated above N=64 and 
is equal to the number of units present in 

the array (4×4×4)

Figure 7-1. Concept of Surface Density for Cubic Arrays of Fissile Material.

7.2.1 Geometrical Array Characteristics

The Thomas representation of the 𝑁𝐵2
𝑁 method is used to determine critical spacing of array units of a 

given mass. The limiting surface density, (m), for a cubic array for identical, air-spaced, spherical units 
with a thick water reflector at the outside the cubic array boundary is defined by the following 
relationship that define the geometrical configuration of the cubic array:

𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2

or

𝜎(𝑚) =
𝑛𝑧

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2

𝑚

(89)
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Where:

𝑛 – the least number of units along an array edge, equal to 3 𝑁 for a cubic array (nz is the 
number of units high in the z-direction),

𝑚 – the mass of an array unit (kg),
𝑎𝑛 – half of the center-to-center spacing between units in the array (cm) as illustrated in Figure 

7-1,
𝑐  – an empirically determined constant equal to 0.55  0.18 (Reference 39), and
𝑁 – the total number of fissile units in the array.

The term 
𝑛𝑚

(2𝑎𝑛)2 represents the surface density (g/cm2) of a stack of 𝑛 units with mass 𝑚 and a center-to-
center spacing 2𝑎𝑛 as illustrated in Figure 7-1.

7.2.2 Material Characteristics of the Array 

Another relationship can be defined that is dependent on the material properties of the array units based 
on experimental observations:

𝜎(𝑚) = 𝑐2(𝑚0 ― 𝑚)
or

𝜎(𝑚) = 𝑐2𝑚
𝑚0
𝑚 ― 1

(90)

where

𝑐2 is a constant that depends on all material properties of the array except for the mass, m, and 
is also equal to the slope of the “material-line” discussed later (cm–2) (Table 7-1 provides 
values for this constant for various fissile systems);

𝑚0 is the critical mass (kg) of an unreflected, single fissile unit in the array (Figure 7-1); and
𝑚 is the mass (kg) of a fissile unit in the array (Figure 7-1).

Both expressions for 𝜎(𝑚) are linear relationships with the independent variable being fissile unit mass, 
m, and the dependent variable, the surface density, 𝜎(𝑚). If this method is applied to array units that are 
not air-spaced, e.g., fissile materials in containers, fissile solutions, or interstitial materials between array 
units, the m, 𝜎(𝑚) relationship may be non-linear and the Thomas derivation of the 𝑁𝐵2

𝑁 method will not 
be applicable (Reference 34).

Equations (89) and (90) can be combined into a relationship that includes both the geometrical and 
material properties of the array for a single picture of the criticality of an array:

𝜎(𝑚) =
𝑛𝑧

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2

𝑚 = 𝑐2(𝑚0 ― 𝑚) (91)

This relationship can be used to solve for the fissile material mass, m1, or array unit center-to-center 
spacing, d0, required for the array to achieve a critical state. These relationships are defined below.

Solving Eq. (91) for the array unit mass23, m = m1, provides the mass required to create a critical array.

23 In equation 91, m is the mass of a unit in the array. When solving for the intersection of the material line and the 
geometry line, we are finding the mass of a unit that makes the array critical. We identify this mass as m1, or the 
mass where keff of the array = 1.
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𝑚1 =
𝑚0

1 + 𝑛𝑧
𝑐2(2𝑎𝑛)2 1 ―

𝑐
𝑁

2 (92)

Equation (92) provides the unit mass, m1, necessary for a critical array of N units on a center-to-center 
spacing of 2an= d0. 

Solving this equation for the array unit center-to-center spacing, 2an= d0, allows one to estimate the 
critical array unit spacing for units of mass m1. 

𝑑0 =
𝑛𝑧

𝑐2
𝑚0
𝑚1 ― 1

1 ―
𝑐
𝑁

2

(93)

As can be seen in Eqs. (92) and (93), m1 and d0 are related – m1 is the critical mass associated with the 
spacing d0 while d0 is the critical spacing associated with the mass m1. You can choose one of the two, but 
the other is then determined from Eq. (92) or Eq. (93) as appropriate. Because the geometrical (equation 
89) and material (equation 90) expressions for the limiting surface density, 𝜎(𝑚), (i.e., the dependent 
variable), are linear relationships and are set equal, the critical point of an array can be determined by 
plotting these relationships to determine where the two expressions intersect. Figure 7-2 illustrates that 
the m is the independent variable and 𝜎(𝑚) is the dependent variable. The slope of the material line is -c2, 
and its intercept is c2m0, which is the surface density for m0, σ(m0).

Figure 7-2. Illustration of the Limiting Surface Method.
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7.3 APPLICABILITY OF THE LIMITING SURFACE DENSITY METHOD

The base 𝑁𝐵2
𝑁 technique is valid for cubic array configurations of spherical or cylindrical (H/D ratio 

between 0.3 and 3), air-spaced array units. At least 64 units (4×4×4 cubic array) is required, although the 
method works well for some smaller arrays, such as 3×3×3 cubic arrays with 27 units. The neutron 
reflection considered in the method are 20 cm slabs of water reflection (or equivalent reflector thickness 
for another material) outside the array boundaries. With fewer than 64 units, the spherical shape of an 
array unit may not be the most limiting shape for the array, and the calculation results may not be 
conservative. Material data to support the method is available for some dry and moderated (Hydrogen-to-
fissile or H/X ratio of 20 or less) fissile units and the unreflected critical mass for the fissile array units 
must be known to apply to the calculation. The method can be adapted for rectangular or planar arrays, 
non-spherical array unit shapes, or external concrete reflection (Reference 41). However, it is the most 
comprehensive and flexible of the array methods presented here.

The limiting surface density method is easily adapted to a spreadsheet or computer code, where quick 
parametric studies on the factors affecting criticality safety can be performed. The 𝑁𝐵2

𝑁 method can be 
adapted for other configurations to include planar, that is, non-cubic arrays, non-spherical array units, and 
reflector materials other than water. This method has been adapted for arrays of type 9975 fissile material 
packages that resulted in a non-linear adaptation of the method for a very specific application (Reference 
42). Additional derivations and variations of the method are described in more detail elsewhere 
(References 39, 41-46) and in Appendix B (method derivation from References 39 and 42).

The limiting surface density method is a versatile and comprehensive method to perform array studies for 
a variety of fissile materials and array configurations. This method is applicable for the following 
situations.

 This method was developed for cubic arrays (air-spaced units) reflected by water at least 200 mm 
thick. Guidance for applying this method with arrays located next to concrete reflectors can be 
found in Reference 41.

 Arrays of units of any shape can be treated provided the data for c2 and mo are available 
(Reference 47).

 The array units should have an H/D ratio between 0.3 and 3.
 To achieve a limiting value for the surface density, the use of the method is limited to cubic 

arrays with at least 64 fissile units (some of the example problems apply the method to arrays 
with fewer units, but do not achieve a limiting surface density value).

 This method does not specifically account for non-uniform moderation within the arrays; 
however, the data in Table 7-1 consider moderated units with an H/X ratio of up to 20. Thus, this 
technique can be used for slightly moderated units but not for solutions.

 References 31 and 45 state that if a cubic array has less than 64 units, then a sphere may not be 
the most limiting fissile array unit.

 If the method is to be used for various array units with different fissile material compositions, 
care should be exercised when mixing units with significantly different levels of moderation. 

 A disadvantage of this method is that, for some problems, scaling one array type to another to 
ultimately yield the configuration of interest may involve a significant number of calculations 
(see example problems for the limiting surface density method in Reference 16), which can 
introduce opportunities for error.
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Table 7-1. Bare Spherical Critical Masses and Characteristic Constants for Some Fissile Materials in Water 
Reflected Cubic Arrays. (Reference 41, Table III)

Characteristic Constant, c2, for Criticality of 
Water-Reflected Arrays (10−3 cm−2)No. Material H/X

Spherical Unit 
Unreflected Critical 

Mass, mo (kg) c2 ±
1 Metal, U(100)24 0 45.68 1.806 0.036
2 Metal, U(93.2) 0 52.10 1.762 0.017
3 Oxide, U(93.2)O2 0.4 90.24 0.854 0.007
4 Oxide, U(93.2)O2 3 63.59 0.758 0.008
5 Oxide, U(93.2)O2 10 31.43 0.778 0.007
6 Oxide, U(93.2)O2 20 17.34 0.805 0.004
7 Metal, U(80) 0 69.89 1.359 0.012
8 Oxide, U(80)O2 0.4 111.36 0.780 0.006
9 Oxide, U(80)O2 3 74.08 0.713 0.006
10 Oxide, U(80)O2 10 36.16 0.725 0.006
11 Oxide, U(80)O2 20 18.67 0.779 0.005
12 Metal, U(70) 0 89.16 1.192 0.018
13 Oxide, U(70)O2 0.4 133.39 0.723 0.006
14 Oxide, U(70)O2 3 83.44 0.686 0.006
15 Oxide, U(70)O2 10 36.89 0.735 0.004
16 Oxide, U(70)O2 20 19.30 0.793 0.004
17 Metal, U(50) 0 159.60 0.901 0.008
18 Oxide, U(50)O2 0.4 207.73 0.589 0.005

24 U(X) denotes uranium enriched to X weight percent in U-235 (i.e., U[100] denotes isotopically pure U-235 with no U-238 present and U(93.2) 
indicates uranium enriched to 93.2 weight percent U-235 with the remainder U-238).
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Table 7-1. Bare Spherical Critical Masses and Characteristic Constants for Some Fissile Materials in Water 
Reflected Cubic Arrays (continued). (Reference 41.)

Characteristic Constant, c2, for Criticality of 
Water-Reflected Arrays (10-3 cm-2)No. Material H/X

Spherical Unit 
Unreflected Critical 

Mass, mo (kg) c2 ±
19 Oxide, U(50)O2 3 112.82 0.594 0.004
20 Oxide, U(50)O2 10 55.14 0.520 0.006
21 Oxide, U(50)O2 20 21.48 0.777 0.005
22 Metal, U(40) 0 228.06 0.787 0.016
23 Metal, U(30) 0 379.70 0.589 0.007
24 Oxide, U(30)O2 0.4 409.60 0.450 0.003
25 Oxide, U(30)O2 3 150.01 0.603 0.005
26 Oxide, U(30)O2 10 54.01 0.636 0.004
27 Oxide, U(30)O2 20 25.15 0.744 0.005
28 Metal, Pu(0)25 0 9.95 4.356 0.112
29 Oxide, Pu(0)O2 0.4 26.66 1.542 0.015
30 Oxide, Pu(0)O2 3 28.65 1.113 0.010
31 Oxide, Pu(0)O2 10 20.21 0.965 0.007
32 Oxide, Pu(0)O2 20 14.05 0.885 0.008
33 Metal, Pu(5.2) 0 10.34 4.138 0.091
34 Oxide, Pu(5.2)O2 0.4 27.93 1.561 0.013
35 Oxide, Pu(5.2)O2 3 32.78 1.097 0.011
36 Oxide, Pu(5.2)O2 10 28.74 0.817 0.007
37 Metal, Pu(20) 0 11.69 4.261 0.099
38 Oxide, Pu(20)O2 0.4 32.14 1.529 0.023
39 Oxide, Pu(20)O2 3 42.43 1.022 0.013
40 Oxide, Pu(20)O2 10 47.81 0.679 0.005
41 Metal, U-233 0 15.75 2.751 0.022
42 Oxide, U-233O2 0.4 34.46 1.199 0.008
43 Oxide, U-233O2 3 31.69 0.939 0.008
44 Oxide, U-233O2 10 17.64 0.907 0.010
45 Oxide, U-233O2 20 10.28 0.947 0.009

46 Metal, U(93.2)-10 
wt. % Mo 0 73.06 1.305 0.009

7.3.1 Calculating the Multiplication Factor of an Array

A useful relationship developed by Thomas (Reference 39) for calculating the effective multiplication 
factor, keff, for a cubic array configuration. This expression is a function of mk, which is the mass of a 
spherical fissile unit in an array with a given keff, and m1, the mass of a spherical fissile unit in a critical 
array (keff = 1).

By substituting the expression for the fissile material density, this equation can be rearranged to be a 
function of only the radius of each unit. Recall that the volume of a sphere is equal to 𝑉 = 4

3𝜋𝑟3, and the 
density is the mass divided by the volume:

25 Pu(Y) denotes plutonium with Y atom percent Pu-240 (i.e., Pu[5.2] denotes plutonium with 5.2 atom percent Pu-240 and the remainder Pu-
239).
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𝜌 =
mass

volume =
𝑚
𝑉 =

𝑚
4
3 𝜋𝑟3 (94)

Solve for m = mass in sphere with density, ρ.

𝑚 =
4
3 𝜋𝑟3𝜌 (95)

Now substitute into Eq. (94) for the multiplication factor (note that the spacing between array units 
remains constant, and the material density, , does not change as it is the same fissile material for both 
units):

𝑘𝑒𝑓𝑓 =
𝑚𝑘

𝑚1

1
3

=
4
3 𝜋(𝑟𝑘)3𝜌
4
3 𝜋(𝑟0)3𝜌

1
3

=
𝑟𝑘

𝑟0

(96)

The keff for an array is simply the ratio of the subcritical spherical radius, rk, of an array unit to the 
spherical radius, r0, of a unit that makes the array critical. This relationship holds well for fast systems; 
however, the linear relationship may not hold well for thermal systems (see Appendix B on keff vs. critical 
mass). The use of this relationship will be illustrated in the example problems to follow. Also, this 
expression for the keff of an array can be used to derive relationships for the center-to-center spacing, d, 
between array units, and the keff as a function of d.

7.3.2 Limiting Surface Density Relationships for Subcritical Arrays

Unlike the surface density and density analog methods, the limiting surface density relationships derived 
in Section 7.2 are valid for critical array configurations. Using these relationships and the keff relationship 
in Section 7.3.1, expressions for the unit mass, mk, to get an array keff, and the center-to-center spacing, 
d=2an, can be derived as a function of the desired keff for a particular array configuration.

Begin the derivation with Eq. (96) for the keff for an array as defined in Section 7.3.1.

𝑘𝑒𝑓𝑓 =
𝑚𝑘

𝑚1

1
3

Recall that the mass m1 in a critical array with spacing, d0, is given by Eq. (93) or as rearranged:

𝑚1 = 𝑚0 ×
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2𝑑2
0

+ 1

―1

     OR     
𝑚0

𝑚1 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2𝑑2
0

+ 1 (97)

Now from Eq. (94) for the k-effective, whenever we have m1 / m0, we can substitute mk / m0 * 1 / keff
3 or 

for m0 / m1, we can substitute m0 / mk * keff
3. Substituting into Eq. (98):
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𝑚0

𝑚1 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2𝑑2
0

+ 1      ⇒
𝑚0

𝑚𝑘 × 𝑘3
𝑒𝑓𝑓 =

𝑛𝑧 1 ―
𝑐
𝑁

2

𝑐2𝑑2
0

+ 1 (98)

Then solving Eq. (98) for the keff associated with a given mass, mk, and a given unit spacing, d0, we find

𝑘3
𝑒𝑓𝑓 =

𝑛𝑧 1 ―
𝑐
𝑁

2

𝑐2𝑑2
0

+ 1 ×
𝑚𝑘

𝑚0

                   OR     

𝑘𝑒𝑓𝑓 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2𝑑2
0

+ 1 ×
𝑚𝑘

𝑚0

1
3

(99)

Notice that there are three interrelated parameters: keff, mk, and d0. We can choose any two of them and 
then solve for the related value of the third. So, if we want to determine the mass, mk, associated with a 
given spacing, d0, and a given, keff:

𝑚𝑘 = 𝑚0
𝑘3

𝑒𝑓𝑓

𝑛𝑧 1 ―
𝑐
𝑁

2

𝑐2𝑑2
0

+ 1
(100)

where d0 is the center-to-center spacing for a critical array, c2 is the constant for the fissile material and m0 
is the unreflected spherical critical mass for the fissile material—both found in Table 7-1—c = 0.55, nz is 
the least number of units in any direction, N is the total number of units in the array, and mk is the mass of 
a unit that gives an array the desired keff.

Now we can determine the center-to-center spacing, dk, that gives a particular keff in an array composed of 
units with mass, mk.

𝑑𝑘 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2 𝑘3
𝑒𝑓𝑓

𝑚0
𝑚𝑘 ― 1

(101)

The following equation gives the ratio of the unreflected critical mass of an array unit to the array unit 
mass in a critical array = m0 / m1. Noting that the right-hand sides of Eq. (98) and (99) are the same, we 
can write the following equation for the left-hand sides:

𝑚0

𝑚1 =
𝑚0

𝑚𝑘 × 𝑘3
𝑒𝑓𝑓 (102)
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Note that Eq. (103) makes sense as mk = m1 when keff = 1.

Substituting keff = 1 and m1 in Eq. (102), we can determine the critical center-to-center spacing, d0, for a 
critical array with mass, m1.

𝑑0 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2
𝑚0
𝑚1 ― 1

(103)

Replacing m1 with mk (mk < m1) and retaining the spacing, d0, will produce an array with a keff < 1 as 
shown in Eq. (100) (repeated below).

𝑘𝑒𝑓𝑓 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2𝑑2
0

+ 1 ×
𝑚𝑘

𝑚0

1
3

(104)

7.3.3 Summary of the Fundamental Limiting Surface Density Relationships

This section summarizes the fundamental limiting surface density relationships defined up to this point of 
Section 7. Other relationships are defined to consider changes in array unit density, for example, and will 
be considered in subsequent sections. For these equations, there are three interrelated parameters, keff – 
the keff of the array, mk – the mass in an array with a given keff, and dk – the center-to-center spacing for an 
array with a particular keff. We can choose any two of them and then solve for the related value of the 
third. For a critical array, dk = d0, mk = m1, and keff = 1.

Array keff as a function of array unit mass, mk and center-to-center spacing, dk – Eq. (105):

𝑘𝑒𝑓𝑓 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2𝑑2
𝑘

+ 1 ×
𝑚𝑘

𝑚0

1
3

(105)

Array unit mass, mk, required for a desired array keff and center-to-center spacing, dk – Eq. (106):

𝑚𝑘 = 𝑚0
𝑘3

𝑒𝑓𝑓

𝑛𝑧 1 ―
𝑐
𝑁

2

𝑐2𝑑2
𝑘

+ 1
(106)

Array unit center-to-center spacing, dk, as a function of the mass, mk, and array keff – Eq. (107):
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𝑑𝑘 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2 𝑘3
𝑒𝑓𝑓

𝑚0
𝑚𝑘 ― 1

(107)

7.4 EXAMPLE PROBLEMS FOR LIMITING SURFACE DENSITY

Using the graphical technique, as illustrated in Figure 7-3, can be helpful to visualize changes to the 
critical points of an array during a parametric study. This concept will be shown in some of the example 
problems that follow. Table 7-1 provides values of the unreflected spherical critical mass and 
characteristic constants for a variety of materials for use in the example problem solutions. The example 
problem solutions and a comparison to a computer code (SCALE or MCNP) are provided in Chapter 10.

Figure 7-3. U(100) Metal Critical Array Solution for 4×4×4 Array (30 in. spacing).

7.4.1 Limiting Surface Density Example Problem 1

For 222, 4x4x4, 101010, and 100100100 arrays, what is the minimum center-to-center spacing of 
plutonium oxide (239PuO2) containers loaded with 4,500 g of Pu per container? Assume that the Pu oxide 
density is 11.48 g/cm3, which is the theoretical density for PuO2, and the Pu is pure Pu-239
The limiting surface density relationships were developed from array configurations with 64 or more 
units. Thus, this method should not be used for the 222 array; however, the other cubic arrays, the 
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4x4x4, 101010, and 100100100 configurations, can be evaluated using this method. From Section 
7.1, the center-to-center spacing between array units can be calculated as follows.

𝑑0 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2
𝑚0
𝑚1 ― 1

where:

mo – 26.66 kg for 239PuO2 oxide with an H/X = 0.4 (Table 7-1);
m1 – 4.5 kg from the problem description26;
nz – 4, 10 and 100 from the problem description;
c2 – 0.001542 cm–2 (Table 7-1) – note that the values in Table 7-1 are multiplied by 

1000;
N – equal to n3=64, 1,000, and 1,000,000; and
c – 0.55, defined previously.

Note that there is a small quantity of moisture (H/X = 0.4) in the critical mass and c2 data listed in Table 
7-1. This fact should not affect the result significantly because a small quantity of moisture tends to 
reduce only the density of the Pu oxide instead of providing significant moderation. Substituting the 
values for each variable into the array critical mass relationship provides the following center-to-center 
unit spacing results.

The 4 × 4 × 4 cubic array center-to-center spacing is given by

𝑑0 =
4 1 ―

0.55
64

2

0.001542 cm―2 26.66 kg
4.5 kg ― 1

≈ 21.4 cm ≈  8.5 inches

This center-to-center spacing of PuO2 units would make the 444 cubic array critical. The edge-to-edge 
spacing would be 21.4 cm—the diameter of the 4.5 kg sphere. From the footnote on the previous page, 
the diameter is 9.468 cm, so the spheres would be spaced 11.9 cm (or about 4.75 in.) apart to create a 
critical 4×4×4 array.

The 10 × 10 × 10 cubic array center-to-center spacing is given by

𝑑0 =
10 1 ―

0.55
1000

2

0.001542 cm―2 26.66 kg
4.5 kg ― 1

≈ 35.7 cm ≈  14 inches

This spacing of PuO2 units would make the 101010 cubic array critical.

26 The 4.5 kg of Pu is in the form of PuO2, so multiplying by 271.05 g PuO2 / mole and dividing by 239.05 g 
Pu/mole gives 5.1 kg for the weight of the PuO2. At a density of 11.48 g/cm3, this gives a volume of 444.46 cm3. 
This volume in spherical form would have a radius of 4.734 cm and a diameter of 9.468 cm.
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For a 100100100 array, one would expect that the critical, center-to-center spacing would be much 
larger than that for the 101010 array—just as the spacing for the 10×10×10 array was larger than that 
for the 4×4×4 array. The 100100100 cubic array center-to-center spacing is given by:

𝑑0 =
100 1 ―

0.55
1,000,000

2

0.001542 𝑐𝑚―2 
26.66 𝑘𝑔

4.5 𝑘𝑔 ― 1

𝑑0 = (2𝑎𝑛) = 114.7 𝑐𝑚 (~45.0 𝑖𝑛.)

This is significantly more spacing between units than for the 101010 case. Although the 100×100×100 
array is unrealistic, it was used here to show the trend in spacing as one moves towards an infinite array.

Note that the surface density of the arrays given by 
𝑛 × 𝑚

𝑑2  approaches a limiting value, as n gets larger. For 
the 4×4×4 array, the surface density is

𝑛 × 𝑚
𝑑2 =

4 × 4,500 g
(21.4 cm)2 = 39.3 

𝑔
cm2, whereas the surface density for the 10×10×10 array is

𝑛 × 𝑚
𝑑2 =

10 × 4,500 g
(35.7 cm)2 = 35.3 

𝑔
cm2, and the surface density for the 100×100×100 array is

𝑛 × 𝑚
𝑑2 =

100 × 4,500 g
(114.7 cm)2 = 34.2 

𝑔
cm2.

A quick calculation with a spreadsheet shows that the limiting value for the surface density for this 
example problem is about 34.2 g/cm2 as the array size increases toward an infinite number of units. A 
simpler way to determine the limiting value for the surface density is to calculate it using the definition 
for the surface density as given in Eq. (90), which is dependent upon the material properties of the array:

𝜎(𝑚) = 𝑐2(𝑚0 ― 𝑚) , where c2, m0, and m are previously defined.

Substituting these values into this relationship results in the same limiting surface density value as 
calculated above:

𝜎(𝑚) = 1.542𝑥10―3 cm―2(26.68 kg ― 4.5 kg)
103 grams

kg = 34.2
grams

cm2

7.4.2 Limiting Surface Density Example Problem 2

1. Using the limiting surface density method, determine the minimum center-to-center spacing  
for 4×4×4 and 101010 arrays of 4,500 g Pu(5) metal ingots.

2. Calculate the center-to-center spacing that would give a keff = 0.8 for a 10×10×10 array of the 
4,500 g Pu(5) metal ingots.

𝑑0 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2
𝑚0
𝑚1 ― 1
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where:

mo – 10.34 kg for Pu(5.2) metal (Table 7-1)
m – 4.5 kg from the problem description
nz – 4 and 10 from the problem description
c2 – 0.004138 cm2 (Table 7-1)
N – equal to n3 = 64 and 1,000 
c – 0.55, defined previously.

Note that the data from Table 7-1 for Pu metal is for Pu(5.2), which contains 5.2 wt % Pu-240 rather than 
5 wt % as in the problem statement. This should not significantly affect the results. Substituting the values 
for each variable into the array critical mass relationship provides the following center-to-center unit 
spacing result for the 4×4×4 array.

𝑑0 =
4 1 ―

0.55
64

2

0.004138 cm―2 10.34 kg
4.5 kg ― 1

≈ 25.4 cm ≈  10.0 inches

This is the center-to-center spacing of 4.5 kg Pu(5.2) metal units required to make the 4×4×4 cubic array 
critical. 

For a 10×10×10 array, one would expect that the critical, center-to-center spacing would be much larger 
than that of the 4×4×4 array. The 101010 cubic array center-to-center spacing is given by:

𝑑0 =
10 1 ―

0.55
1000

2

0.004138 cm―2 10.34 kg
4.5 kg ― 1

≈ 42.4 cm ≈  16.75 inches

This is a greater spacing between units than that for the 4×4×4 case, as expected. 

PART 2 – A relationship was derived for this Primer to consider the array unit center-to-center spacing as 
a function of the array keff (Eq. 102, Section 7.3.2). Thus, if a criticality safety engineer wanted a center-
to-center spacing, dk, result that resulted in an array keff of 0.8, the following calculation could be done.

For a subcritical array, Eq. (102) gives the center-to-center spacing between array units for a given keff: 

𝑑𝑘 =
𝑛𝑧 1 ―

𝑐
𝑁

2

𝑐2 𝑘3
𝑒𝑓𝑓

𝑚0
𝑚𝑘 ― 1

For a 10×10×10 array, the spacing for units of 4.5 kg and keff = 0.8:
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𝑑𝑘 =
10 1 ―

0.55
1,000

2

0.004138 cm―2 (0.8)3 10.34 kg
4.5 kg ― 1

≈ 115.0 cm ≈  45.25 inches

Thus, to maintain a subcritical configuration for this large array size, it makes sense that the array units 
should be spaced much farther apart than for the critical array (i.e., 45.25 in. for keff = 0.8 versus 16.75 in. 
for critical).

7.4.3 Limiting Surface Density Example Problem 3

1. Using the limiting surface density method, calculate the critical mass for each array unit 
required for a water-reflected cubic array of fully enriched U(100) metal for a 4×4×4 array 
with a center-to-center spacing of 30 in. (76.2 cm).

2. After the critical mass is calculated, determine the multiplication factor for storing 20 kg of 
U(100) units in the 4×4×4 array.

Non-graphical solution

PART 1 – For a 444 cubic array with the given spacing

n = nx = ny = nz = 4

an = ax = ay = az = 30/2 = 15 in. (38.1 cm)

the following relationship (Eq. 101 with keff = 1) for a cubic array can be used to determine the critical 
mass per unit to maintain the array in a critical condition for U(100) metal units.

𝑚1 = 𝑚0
1

𝑛𝑧 1 ―
𝑐
𝑁

2

𝑐2𝑑2
0

+ 1

where

mo – 45.68 kg from Table 7-1
nz – 4 from the problem statement above
d0 – center-to-center spacing (ctc) = 30 in. (76.2 cm) from the problem statement
c2 – 0.001806 cm−2 from Table 7-1
N – equal to n3 = 64 
c – 0.55, defined previously.

Substituting the values for each variable into the array critical mass relationship provides the following 
result:

𝑚1 = 45.68 kg 
1

4 1 ―
0.55

64
2

0.001806 cm―2(76.2 cm)2 + 1

= 34.3 kg
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This is the mass of U(100) metal required in each array unit to make the 444 cubic array critical.

PART 2 – Now, the multiplication factor can be calculated if one is interested in storing 20 kg U(100) 
metal units in each array location. The resulting multiplication factor is calculated using Eq. (95), where 
mk is the desired unit mass to be stored (20 kg) and m1 is the calculated critical mass in the array as 
calculated above:

𝑘𝑒𝑓𝑓 =
𝑚𝑘

𝑚1

1
3

=
20 kg

34.3 kg

1
3

= 0.835

With the specified 30 in. (76.2 cm) spacing between units of 20 kg each, this array configuration will 
remain subcritical.

Graphical solution

Referring to Figure 7-3, we see that the characteristics of a geometry line are

slope:     =
3 𝑁

(2𝑎𝑛)2 1 ―
0.55

𝑁

2

y - intercept:     =  0
equation:     𝜎(𝑚) = slope × 𝑚 + 0

And then the characteristics of a material line are

slope:     = ― 𝑐2

y - intercept:     =  c2 × 𝑚0

equation:     𝜎(𝑚) = slope × 𝑚 + 𝑐2 × 𝑚0

The mass at the intersection of the geometry and material lines is calculated as

𝑚 =
𝑚0

geom line slope
𝑐2

+ 1
     or   

𝑚𝑜
3 𝑁

(2𝑎𝑛)2 1 ―
0.55

𝑁
2

𝑐2
+ 1

Then, for the example,

Geometry Line:

𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2

=
4𝑚

(76.2 cm)2 1 ―
0.55

64

2

𝜎(𝑚) = 5.974𝑥10―4 × 𝑚[𝑐𝑚]―2or   
𝜎(𝑚)

𝑚[grams] = 5.974𝑥10―4[𝑐𝑚]―2



182

Material line for U(100):𝜎(𝑚) = 𝑐2(𝑚0 ― 𝑚) grams
cm2

 Note that the intercept is:: c2 m0 = 1.806 x 10-3 * 
45,680 = 82.5 g/cm2, which is s(m0).

𝜎(𝑚) = 1.806𝑥10―3(45,680 ― 𝑚)
grams

cm2    or   
𝜎(𝑚)

𝑚 = 1.806𝑥10―3
45,680

𝑚[grams] ― 1 [cm-2]

Equating the geometrical and material line relationships,

𝜎(𝑚)
𝑚[grams] = 5.974𝑥10―4[𝑐𝑚]―2 = 1.806𝑥10―3

45,680
𝑚[grams] ― 1 [cm-2]

𝑚[grams] = 34,326 grams

Or calculating the mass from the intersection point as,

𝑚 =
𝑚0

geom line slope
𝑐2

+ 1
     or   

45.68kg
5.974x10―4cm-2

1.806𝑥10―3cm-2 + 1
= 34.326 kg

Note that the graphical solution (Figure 7-4) indicates the array critical unit mass is approximately 34,300 
grams for this 64-unit array, which corresponds to a limiting surface density of about 20.5 g/cm2. 

PART II – Using the graphical method, what would be the effect on critical array unit mass if the 
U(100) metal was adjusted to a more realistic material such as highly enriched uranium, U(93.2)?

The change of material can be made simply by finding the value of c2 and mo for U(93.2) metal in Table 
7-1 (mo= 52.1 kg or 52,100 grams and c2 = 0.0001762 cm−2) and replacing the U(100) value in the 
material line as follows:

Material line:𝜎(𝑚) = 𝑐2(𝑚0 ― 𝑚) grams
cm2

 

𝜎(𝑚)
𝑚 = 1.762𝑥10―3

52,100
𝑚[grams] ― 1 [cm-2]

The geometry line equation is unchanged:
𝜎(𝑚)

𝑚[grams] = 5.974𝑥10―4[𝑐𝑚]―2 

Setting the geometry line equal to the material line results in the following:

𝜎(𝑚)
𝑚[grams] = 5.974𝑥10―4[𝑐𝑚]―2 = 1.762𝑥10―3

52,100
𝑚[grams] ― 1 [cm-2]

𝑚[grams] = 38,908 grams
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Figure 7-4. U(93.2) Metal Critical Array Solution 4x4x4 Array (30” spacing).

Figure 7-5 shows the new material line for U(93.2) next to the U(100) material line. The decrease in 
U-235 enrichment for the uranium metal units results in an increase in the array unit mass necessary for 
criticality from 34,374 g to 38,964 g (increase 4,590 g of uranium mass). This calculation estimates the 
level of conservatism associated with the use of U(100) metal to bound the storage of HEU metal in a 
process facility. 

The keff for 20 kg U(93.2) metal units in each array location can be calculated and compared to the U(100) 
keff. 

𝑘𝑒𝑓𝑓 =
𝑚𝑘

𝑚1

1
3

=
20 kg

38.964 kg

1
3

= 0.801

With the 20 kg units spaced 30 in., center-to-center, changing from U(100) to U(93.2) reduces the keff 
from 0.835 to 0.801. 



184

Figure 7-5. Solution for Limiting Surface Density Example Problem 4.

7.4.4 Limiting Surface Density Example Problem 4

1. Using the limiting surface density method, calculate the critical mass for each array unit 
required for a water-reflected cubic array of 5 kg Pu(5.2) metal units in a 4×4×4 array with a 
center-to-center spacing of 30 in. (76.2 cm).

2. After the critical mass is calculated, determine the multiplication factor for storing 5 kg of 
Pu(5.2) units in the 4×4×4 array.

Non-graphical solution:

𝑚1 = 𝑚0
1

𝑛𝑧 1 ―
𝑐
𝑁

2

𝑐2𝑑2
0

+ 1

where

mo – 10.34 kg (Table 7-1)
nz – 4 from the problem statement above
d0 – center-to-center spacing (ctc) = 30 in. (76.2 cm) from the problem statement
;;c2 – 0.004138 cm-2 (Table 7-1)
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N – equal to n3 = 64
c – 0.55, defined previously

Substituting the values for each variable into the array critical mass relationship provides the following 
result:

𝑚1 = 10.34 kg 
1

4
0.004138 cm―2(76.2 cm)2 1 ―

0.55
64

2
+ 1

= 9.035 kg

This is the mass of Pu(5.2) metal required in each array unit to keep the 444 cubic array critical at a 
center-to-center spacing of 30 in. (76.2 cm). Note that this critical mass is significantly lower than the 
34.3 kg required for U(100) metal in the same configuration.

Now, the keff can be calculated if one is interested in storing 5 kg Pu(5.2) metal units in each array 
location. The resulting keff is calculated below where m is the desired unit to be stored (5 kg) and m' is the 
calculated critical mass in the array as calculated above:

𝑘𝑒𝑓𝑓 =
𝑚𝑘

𝑚1

1
3

=
5 kg

9.04 kg

1
3

= 0.821

Storing 5 kg Pu(5.2) metal units in a 444 array with about 30 in. (76.2 cm) spacing between array units 
is subcritical under normal conditions.

Graphical Solution

Notice that the array geometry is unchanged from the previous example problem. For comparison 
purposes, the final plot will include the data from the last example problem to illustrate the change to the 
system when the array units are Pu(5.2) metal instead of U(100) metal while keeping the array 
geometrical configuration constant.

Geometry Line:

𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2

=
4𝑚

(76.2 cm)2 1 ―
0.55

64

2

𝜎(𝑚) = 5.97𝑥10―4 × 𝑚[𝑐𝑚]―2or   
𝜎(𝑚)

𝑚[grams] = 5.97𝑥10―4[𝑐𝑚]―2

Material line for Pu(5.2):𝜎(𝑚) = 𝑐2(𝑚0 ― 𝑚) grams
cm2

 Note that the intercept is: c2 m0 = 4.138 × 10-3 * 
10336 = 42.8 g/cm2, which is s(m0) for Pu(5.2).

𝜎(𝑚)
𝑚 = 4.138𝑥10―3

10,336
𝑚[grams] ― 1 [cm-2]

Equating the geometrical and material line relationships,
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𝜎(𝑚)
𝑚[grams] = 5.974𝑥10―4[𝑐𝑚]―2 = 4.138𝑥10―3

10,336
𝑚[grams] ― 1 [cm-2]

𝑚[grams] = 9,032 grams

Note that the graphical solution (Figure 7-6) illustrates a solution for the array critical unit mass at about 
9 kg (illustrated by the M2 line in the plot), which corresponds to a limiting surface density of about 
5.4 g/cm2. This plot clearly shows how much more reactive Pu(5.2) metal is as compared to U(100) 
metal. The higher infinite multiplication factor of Pu(5.2) requires a much lower array unit mass than does 
U(100) metal for the same keff, keeping the array geometry constant.

Figure 7-6. Demonstration of Mass Equivalence.

7.4.5 Limiting Surface Density Example Problem 5

Based on the results of the previous example problem in Section 7.4.4 (Limiting Surface Density 
Example Problem 4), calculate the required array unit mass that results in a multiplication factor of 0.9 
using the same limiting surface density relationships.

The first step for this problem is to calculate the mass required for this array to have a multiplication 
factor of 0.9 by rearranging Eq. (94).
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𝑘𝑒𝑓𝑓 =
𝑚𝑘

𝑚1

1
3

⇒
𝑚𝑘

𝑚1 = 𝑘3
𝑒𝑓𝑓⇒𝑚𝑘 = 𝑚1 × 𝑘3

𝑒𝑓𝑓

Note that m1 is the critical array mass calculated in the last problem: 9,035 g.

𝑚𝑘 = 𝑚1 × 𝑘3
𝑒𝑓𝑓 = 9,032 grams × (0.9)3 = 6,584 grams

The array unit mass necessary for a keff of 0.9 reduces the array unit mass by 2,448 g.

7.5 THE EQUIVALENCE OF DIFFERENT FISSILE UNITS IN WATER-REFLECTED 
ARRAYS

Units of different fissile material or of different reactivity may be defined as equivalent when a 
substitution of units in a reflected array does not produce a change in the array multiplication factor 
(Reference 39). This array condition will be true if the following is true.

𝜎(𝑚)
𝑚 =

𝜎(𝑚′)
𝑚′

(108)

In this relationship, the variables m and m´ represent the different masses of different materials in the 
same array configuration (i.e., an, N and nz do not change as these represent the geometrical configuration 
of the array). (Note: the prime superscript will be used to denote a different fissile material). One can 
derive an equivalence relationship for this situation as follows.

The ratio of the geometry and material lines for the two different array fissile materials can be used to 
derive a relationship for the “equivalent” mass of a different fissile material to maintain array criticality. 

Geometry line:

𝜎(𝑚)
𝑚 =

𝑛𝑧

(𝑑)2 1 ―
𝑐
𝑁

2
(109)

Material line:

𝜎(𝑚)
𝑚 = 𝑐2

𝑚0
𝑚[grams] ― 1 [cm-2] (110)

Equating the geometry and material lines results in the following equivalence relationship:

𝑛𝑧

(𝑑)2 1 ―
𝑐
𝑁

2

= 𝑐2
𝑚0

𝑚[grams] ― 1 [cm-2] (111)

For two different types of fissile materials, masses m and m’ have unreflected critical masses m0 and m0’, 
respectively. The equivalence relationship modified for the substituted material and noting that the 
geometrical properties of the array do not change can be written as follows:
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𝑛𝑧

(𝑑)2 1 ―
𝑐
𝑁

2

= 𝑐′2
𝑚′0

𝑚′[grams] ― 1 [cm-2] (112)

Taking the ratio of the equivalence relationship for each material, 

𝑛𝑧
(𝑑)2 1 ―

𝑐
𝑁

2

𝑛𝑧
(𝑑)2 1 ―

𝑐
𝑁

2 =
𝑐2

𝑚0
𝑚[grams] ― 1 [cm-2]

𝑐′2
𝑚′0

𝑚[grams] ― 1 [cm-2]
= 1 (113)

Simplify this relationship and then solve for the mass of the substituted unit, m’:

𝑐′2
𝑚′0

𝑚′[grams] ― 1 [cm-2] = 𝑐2
𝑚0

𝑚[grams] ― 1 [cm-2]

Then, 

(114)

𝑚′1 =
𝑚′0

𝑐2
𝑐′2

𝑚0
𝑚1 ― 1 + 1

Notice that the grams units have been removed. If the masses in the ratios have the same units, then it 
does not matter whether these are expressed as grams or as kilograms.

Thus, this relationship can be used to consider an “equivalent” mass, m’, of a different fissile material to 
maintain criticality of the array.

Calculation of Equivalent Mass for given keff

The “equivalent” mass, mk’, of a different fissile material for a given keff , d, nz , and N is

𝑚′𝑘 = 𝑚′1 × 𝑘3
𝑒𝑓𝑓or

𝑚′𝑘 =
𝑚′0 × 𝑘3

𝑒𝑓𝑓

𝑐2
𝑐′2

𝑚0
𝑚1 ― 1 + 1

(115)

And similarly, keff can be calculated as

𝑘𝑒𝑓𝑓 =
𝑚′𝑘

𝑚′1

1
3

or

𝑘𝑒𝑓𝑓 =
𝑚′𝑘

𝑚′0

𝑐2

𝑐′2

𝑚0

𝑚1 ― 1 + 1

1
3

(116)
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Where: m1’ is the “equivalent” mass to produce a critical array, m1 is the mass of the first nuclide that 
creates a critical array, and m0 is the critical mass of a single unit sphere of the first nuclide.

7.5.1 Limiting Surface Density Example Problem 6

Use the equivalence relationship derived in Section 7.5 to confirm the results of the example problem 4 
from Section 7.4.4 for Pu(5.2) metal units in a 4×4×4 array.

The values for the characteristic constants, c2 and c2’ and the bare, spherical critical masses can be found 
in Table 7-1. 

mo´ – 10.34 kg for Pu(5.2) metal
c2´ – 4.13810–3 cm–2 for Pu(5.2) metal
m1 – 34.30 kg for U(100) metal (result from example problem in Section 7.4.3)
mo – 45.68 kg for U(100) metal
c2 – 1.80610–3 cm–2 for U(100) metal

The equivalence relationship, Eq. (111) from Section 7.5 can be used to find the equivalent mass of 
Pu(5.2) in the critical 444 array of U(100) metal units:

𝑚′1 =
𝑚′0

𝑐2
𝑐′2

𝑚0
𝑚1 ― 1 + 1

𝑚′1 =
10.34 kg

1.806𝑥10―3cm―2

4.138𝑥10―3cm―2
45.68 kg
34.30 kg ― 1 + 1

= 9.032 kg

𝑚′ = 9.03 𝑘𝑔

Within roundoff, this is the same critical mass as calculated in Section 7.4.4 (9.035 kg), which represents 
the mass of Pu(5.2) metal units that would be required to maintain criticality of the 4×4×4 array. Equation 
(111) provides a technique to examine the effect of array unit fissile material substitutions for situations 
where the array geometry, such as array size and array unit dimensions, is unchanged.

Looking at Figure 7-7 shows how the mass equivalence works graphically. The geometry line is the same 
for both U(100) metal units and Pu(5.2) metal units as the array is the same. The intersection of a material 
line with the geometry line gives the unit mass that result in keff = 1.0 for the given array. For U(100) 
metal units, the mass is about 34,000 g, whereas for Pu(5.2) metal units, the mass is about 9,000 g. If 
other units were to be placed in the same array, that equivalent mass would be determined from the 
intersection of its material line with the geometry line. For example, if we want to add U-233 metal units, 
Table 7-1 gives mo = 15,750 grams and c2 = 0.002751 cm-2. Then the material line for U-233 would be

Material line: 𝜎(𝑚) = 0.002752cm-2 × (15,750 ― 𝑚)grams 

Then plotting this against the geometry line shows a mass of 12,940 grams for the U-233 metal unit to be 
critical in the specified array (see Figure 7-8).
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Figure 7-7. Use of Plots to Demonstrate Mass Equivalence.

Figure 7-8 shows that the U-233 metal unit mass of 12,940 g is equivalent to a Pu(5.2) metal unit of 
9,032 g or a U(100) metal unit of 34,326 g.

Figure 7-8. Illustration of Two Different 64 Unit Arrays.

4x4x4 Array 8x4x2 Array
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7.6 THE EFFECT OF ARRAY SHAPE (NON-CUBIC ARRAYS) ON ARRAY CRITICALITY

So far, the discussions about the limiting surface density method have focused on cubic arrays that have at 
least 64 units, corresponding to at least a 444 array. This method can also be used for arrays that may 
be cuboidal in shape instead of cubic. In other words, the 444 array can be transformed to allow the 
analyst to determine the characteristics of a critical array with the same number of units that has a 
different shape or layout such as a 1622 or an 842 array (Figure 7-9). It is somewhat intuitive that a 
cubic array with a certain number of units will be more reactive than a non-cubic or cuboidal array with 
the same number of fissile units. The non-cubic array is less reactive than the cubic array because the 
neutron leakage increases. To maintain criticality, the unit mass must increase, the distance between units 
be reduced, or the number of units in the array be increased. 

Figure 7-9. Solution for the U(93.2) metal 444 Array

The limiting surface density method can be applied to non-cubic arrays (cuboidal) simply by using a 
shape factor to adjust the slope of the material line, –c2, to account for the neutron leakage characteristics 
of the transformed array. Once the array is adjusted for a new configuration, a 444 array to an 842 
array, for example (Figure 7-9), the new array parameters can be adjusted to determine the characteristics 
for a critical array of this new size. The approach provided here, as defined in Reference 39, can be used 
to adjust the array shape.

In most facilities with fissile material operations, it is much more common to experience storage arrays 
that are not cubic but non-cubic in shape as illustrated in Figure 7-9. Furthermore, in a process facility, 
arrays are usually made up of drums of fissile material stored on the floor or on pallets in arrays, for 
example, and not of ideal, compact arrangements such as those shown in this section. However, ideally, to 
account for an array change of shape from a cubic to non-cubic arrangement, the ratio of the surface to 
volume ratio for the array shape change can be calculated to determine a shape factor, R. The shape factor 
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is then used in subsequent calculations to determine the new characteristics that the units in the new array 
must have to remain in a critical configuration. The shape factor, R, can be derived as follows. 

The surface area for a noncubic array, Snc, can be calculated by the following where nx, ny and nz represent 
the number of array units/cells in the x, y, and z directions, respectively. Also, recall the center-to-center 
spacing is denoted by 2an. 

𝑆𝑛𝑐 = (2𝑎𝑛)2[𝑛𝑥𝑛𝑦 + 𝑛𝑥𝑛𝑧 + 𝑛𝑦𝑛𝑧] (117)

The volume of the cubic storage cells, Vnc, in the noncubic array can be expressed as follows:

𝑉𝑛𝑐 = (2𝑎𝑛)3[𝑛𝑥𝑛𝑦𝑛𝑧] (118)

Now, the suface area-to-volume ratio for the noncubic array can be determined by calculating the ratio Snc 
to Vnc as follows:

𝑆𝑛𝑐
𝑉𝑛𝑐

=
1

2𝑎𝑛

1
𝑛𝑥

+
1

𝑛𝑦
+

1
𝑛𝑧

(119)

For a cubic array, the surface area-to-volume ratio, n is equal for each side of the array,n = nx = ny = nz. 
Recall that 𝑁 = 𝑛3 or 𝑛 = 3 𝑁:

𝑆𝑐
𝑉𝑐

=
1

2𝑎𝑛

1
𝑛 +

1
𝑛 +

1
𝑛 =

1
2𝑎𝑛

3
𝑛 =

1
2𝑎𝑛

3
3 𝑁 (120)

Now, the shape factor, R, can be calculated by dividing the ratio Snc/Vnc for noncubic arrays by the ratio 
Sc/Vc for cubic arrays: 

𝑅 =

𝑆𝑛𝑐
𝑉𝑛𝑐
𝑆𝑐
𝑉𝑐

=
3 𝑁
3

1
𝑛𝑥

+
1

𝑛𝑦
+

1
𝑛𝑧

(121)

It should be noted that N is independent of the array shape and does not have to be an integer value. 
According to Reference 41, the maximum value that R can have is 5.34. Computationally, if R exceeds 
this value, then it should be assigned a value of 5.34. This limitation is required to avoid criticality with a 
single unit of the array. 

Now that the new shape of the array has been accounted for, c2’  c2
nc can be calculated, which considers 

the increased neutron leakage for the non-cubic array. The following relationship was developed by 
Thomas (Reference 39) to account for the new leakage characteristics for the modified, non-cubic array 
that is valid for U(93.2) metal units, each having a mass of 10.42 kg.

𝑐𝑛𝑐
2 =

4𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑐2

5𝑅―0.672 ― 1 (122)
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where 𝑛𝑛𝑐
𝑧  is the least number of units along an array edge, which is equal to 3 𝑁 or 𝑛𝑧 in the cubic array 

configuration, R is the shape factor (not to exceed 5.34), and 𝑐2 is previously defined. This relationship 
was developed for 10.4 kg, U(93.2) metal units in a 512-unit array (Reference 41) and can be used in 
conjunction with the equivalence relationship derived in Section 7.5 to convert from one type of fissile 
material to another after determining the appropriate values of R and c2

nc. The following equation can be 
used to determine the unit mass required to make a non-cubic array critical.

𝑚1𝑛𝑐 =
𝑚0

𝑐2
𝑐𝑛𝑐

2

𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑚0
𝑚1 ― 1 + 1

=
𝑚0

(5𝑅―0.672 ― 1)
4

𝑚0
𝑚1 ― 1 + 1 (123)

7.6.1 Limiting Surface Density Example Problem 7

Using the methodology presented in Section 7.6 and the results from Example Problem 3-II, calculate the 
critical mass for each array unit required for a water-reflected cubic array of fully enriched U(100) metal 
units in a 8×4×2 array.

Because the noncubic technique is referenced to U(93.2) units, the characteristics of a noncubic array 
with those units must be determined first. As discussed in Section 7.6, the first step is to calculate the 
critical array unit mass for U(93.2) metal units arranged in a cubic arrangement. After this is done, the 
shape factor, R, can be calculated to determine the critical array unit mass for the 842 array for the 
U(93.2) metal units. The last step will involve using the equivalence relationship from Section 7.5 to 
determine the critical array unit mass for U(100) metal units. A calculation of this type must be done in 
these steps because the shape factor for limiting surface density was developed based on experiments 
involving arrays of U(93.2) metal units. This solution will involve the graphical solution discussed 
previously.

Step 1

Assume a 444 cubic array,

n = nx = ny = nz = 4

an = ax = ay = az = 15 in. (38.1 cm).

The following relationship for a cubic array can be used to determine the critical mass per unit to maintain 
the array in a critical condition for U(93.2) metal units. Array information for U(93.2) metal and other 
relevant data are as follows:

mo – 52.1 kg from Table 7-1
c2 – 0.001762 cm–2 from Table 7-1
N – equal to n3 = 64
c – 0.55

Geometry line equation: 

𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2

=
4𝑚

(2 × 38.1 cm)2 1 ―
0.55

64

2
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𝜎(𝑚) = 5.974𝑥10―4 × 𝑚[𝑐𝑚]―2or   
𝜎(𝑚)

𝑚[grams] = 5.974𝑥10―4[𝑐𝑚]―2

Material line: 𝜎(𝑚) = 𝑐2(𝑚0 ― 𝑚) grams
cm2

 

𝜎(𝑚)
𝑚 = 1.762𝑥10―3

52,100
𝑚[grams] ― 1 [cm-2]

Setting the geometry line equal to the material line results in the following:

𝜎(𝑚)
𝑚[grams] = 5.974𝑥10―4[𝑐𝑚]―2 = 1.762𝑥10―3

52,100
𝑚[grams] ― 1 [cm-2]

𝑚[grams] = 38,908 grams

Note that the graphical solution (indicated by the circle on Figure 7-10) illustrates a solution for the array 
critical unit mass at about 38,900 g, which corresponds to a limiting surface density of about 23 g/cm2 
(i.e., s(m) = 23 g/cm2 for m = 38,900 g).

 
Figure 7-10. Transformation of a U(93.2) Metal 4×4×4 Array to an 842 Array
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Step 2

The next step is to compute the shape factor from Eq. (118) and determine 𝑐𝑛𝑐
2  that considers the 

increased leakage due to changing the shape of the array from a cubic (444) to non-cubic in shape 
(842). 

𝑅 =

𝑆𝑛𝑐
𝑉𝑛𝑐
𝑆𝑐
𝑉𝑐

=
3 𝑁
3

1
𝑛𝑥

+
1

𝑛𝑦
+

1
𝑛𝑧

𝑅 =
3 64

3
1
8 +

1
4 +

1
2 = 1.167

With R calculated, the new characteristic constant 𝑐𝑛𝑐
2  for the modified array can be calculated from Eq. 

(119) from Section 7.6.

𝑐𝑛𝑐
2 =

4𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑐2

5𝑅―0.672 ― 1

𝑐𝑛𝑐
2 =

4 × 2
4

1.762𝑥10―3[cm-2]
5 × (1.167)―0.672 ― 1 = 1.005𝑥10―3[cm-2]

Changing the array shape changes the geometry line. The new geometry line is

𝜎(𝑚) =
𝑛𝑧𝑚
(𝑑)2 1 ―

𝑐
𝑁

2

=
2𝑚

(2 × 38.1 cm)2 1 ―
0.55

64

2

𝜎(𝑚) = 2.987𝑥10―4 × 𝑚[𝑐𝑚]―2or   
𝜎(𝑚)

𝑚[grams] = 2.987𝑥10―4[𝑐𝑚]―2

Because the geometric characteristics of the array have changed, the new array unit critical mass, m1nc,) 
can be calculated from Eq. (120).

𝑚1𝑛𝑐 =
𝑚0

𝑐2
𝑐𝑛𝑐

2

𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑚0
𝑚1 ― 1 + 1

=
𝑚0

(5𝑅―0.672 ― 1)
4

𝑚0
𝑚1 ― 1 + 1

𝑚1𝑛𝑐 =
52.1 kg

1.762𝑥10―3[cm-2]
1.005𝑥10―3[cm-2] ×

2
4 ×

52.1 kg
38.9 kg ― 1 + 1

= 40.16 kg

𝑚1𝑛𝑐 =
52.1 kg

5 × (1.167)―0.672 ― 1
4

52.1 kg
38.9 kg ― 1 + 1

= 40.16 kg

This corresponds to the mass of U(93.2) metal units required to keep the 842 array in a critical state 
after the array was transformed from a 444 array (Figure 7-11).
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Figure 7-11. Graphical Solution for an 842 Array with U(100) Metal Units.

The new material line is

Material line: 𝜎(𝑚) = 𝑐𝑛𝑐
2 (𝑚0 ― 𝑚) grams

cm2
 

𝜎(𝑚)
𝑚 = 1.005𝑥10―3

52,100
𝑚[grams] ― 1 [cm-2]

Note that the change in array shape to 2 layers high instead of 4 layers high reduced the slope of the 
geometry line by ½ and decreased the limiting surface density from 91.8 grams/cm2 to 52.36 grams/cm2. 
This increased the mass of a U(93.2) unit from 38.9 kg to 40.2 kg as indicated by the bottom circle on 
Figure 7-11.

Now the equivalence relationship derived in Section 7.5 can be used to determine the unit mass for 
U(100) metal units to maintain the 842 array in a critical state based on the results for a U(93.2) metal 
system. First, the c2

nc value for U(100) metal needs to be calculated because the data from Table 7-2 apply 
to cubic arrays, not a cuboidal, 842, array. The following approach can be taken to calculate c2

nc for the 
842 array of U(100) metal units.
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The ratio of the limiting surface density relationships can be calculated as follows. Note that the variables 
an, m0, nz, c, and N do not change. The unit spacing, fissile material type and number of units in the array 
are the same before and after the transformation from a 444 array to an 842 array.

For the U(93.2) array:

(𝑐𝑛𝑐
2 )8𝑥4𝑥2

𝑈(93.2)
=

4𝑛𝑛𝑐
𝑧

𝑛𝑧

(𝑐𝑐
2)4𝑥4𝑥4

𝑈(93.2)

5𝑅―0.672 ― 1

For the U(100) array:

𝑐′𝑛𝑐
2 8𝑥4𝑥2

𝑈(100)
=

4𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑐′𝑐2 4𝑥4𝑥4
𝑈(100)

5𝑅―0.672 ― 1

Calculate the ratio:

𝑐′𝑛𝑐
2 8𝑥4𝑥2

𝑈(100)
(𝑐𝑛𝑐

2 )8𝑥4𝑥2
𝑈(93.2)

=

4𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑐′𝑐2 4𝑥4𝑥4
𝑈(100)

5𝑅―0.672 ― 1

4𝑛𝑛𝑐
𝑧

𝑛𝑧

(𝑐𝑐
2)4𝑥4𝑥4

𝑈(93.2)
5𝑅―0.672 ― 1

Because the geometric properties of the array will not change for the fissile material transformation from 
U(93.2) to U(100) metal units (i.e., nz

nc = nz
’nc), the previous relationship can be simplified to the 

following ratio of c2 values.

𝑐′𝑛𝑐
2 8𝑥4𝑥2

𝑈(100)
(𝑐𝑛𝑐

2 )8𝑥4𝑥2
𝑈(93.2)

=
𝑐′𝑐2 4𝑥4𝑥4

𝑈(100)
(𝑐𝑐

2)4𝑥4𝑥4
𝑈(93.2)

Rearranging the ratio provides the following result that can be used to calculate the c2
’nc

’ value for the 
U(100) 842 array:

𝑐′𝑛𝑐
2 8𝑥4𝑥2

𝑈(100)
= (𝑐𝑛𝑐

2 )8𝑥4𝑥2
𝑈(93.2)

×
𝑐′𝑐2 4𝑥4𝑥4

𝑈(100)
(𝑐𝑐

2)4𝑥4𝑥4
𝑈(93.2)

𝑐′𝑛𝑐
2 8𝑥4𝑥2

𝑈(100)
= 1.005𝑥10―3[cm-2] ×

1.806𝑥10―3[cm-2]
1.762𝑥10―3[cm-2] = 1.030𝑥10―3[cm-2]

The mass required to maintain criticality of the 842 array with U(100) metal units can now be 
determined using Eq. (111) and equating the surface densities of the noncubic arrays for the U(93.2) 
material and the replacement fissile material.
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𝑚′1𝑛𝑐 =
𝑚′0

𝑐𝑛𝑐
2

𝑐′𝑛𝑐
2

𝑚0
𝑚1𝑛𝑐 ― 1 + 1

This is the mass required to maintain array criticality in an 842 configuration with U(100) metal units. 
Note the primed parameters refer to U(100) while the parameters without primes refer to U(93.2) and m1nc 
is the mass of U(93.2) in the noncubic critical array configuration. 

Substitute the relevant variable values:

m0’ = 45.68 kg for U(100) metal with H/U = 0 (Table 7-1),
c2’nc = 1.03010−3 cm−2 for U(100) metal with H/U=0 for the 8×4×2 array calculated above,
m1nc = 40.16 kg corresponding to the critical unit mass for U(93.2) metal units in the 8×4×2 

array calculated previously,
c2

nc = 1.005×10−3 cm−2 for U(93.2) metal for the 8×4×2 array calculated above, and
m0= 52.1 kg for U(93.2) metal from Table 7-1.

The final result is

𝑚′1𝑛𝑐 =
45.68 kg

1.005𝑥10―3[cm-2]
1.030𝑥10―3[cm-2]

52.1 kg
40.16 kg ― 1 + 1

= 35.41 kg

The graphical solution is illustrated in Figure 7-12.

As the array shape is still 842, the G2 geometry line applies to both U(93.2) and U(100) units. To zoom 
in on the intersection points, the x-axis has been expanded on this figure to show mass values from 30 kg 
to 50 kg. The dashed green line on Figure 7-12 shows the material line for U(100) units in an 842 
array, and the leftmost circle indicates the mass of 35.4 kg required to maintain a critical 842 array 
with the center-to-center spacing of 76.2 cm.
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Figure 7-12. Solution for Limiting Surface Density Example Problem 8

7.6.2 Limiting Surface Density Example Problem 8

This problem will be done in parts to demonstrate the strength of the method for array analyses.
Part 1. Using the limiting surface density method, calculate the spherical critical mass of U(93.2) metal 
required for criticality in a 216-unit water-reflected cubic array (666). The center-to-center spacing 
(2an) of the array units is 38.1 cm. 

Geometry line equation: 

𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2

=
6𝑚

(38.1 cm)2 1 ―
0.55
216

2

𝜎(𝑚) = 3.830𝑥10―3 × 𝑚[𝑐𝑚]―2or   
𝜎(𝑚)

𝑚[grams] = 3.830𝑥10―3[𝑐𝑚]―2

Material line: 𝜎(𝑚) = 𝑐2(𝑚0 ― 𝑚) grams
cm2

 

𝜎(𝑚)
𝑚 = 1.762𝑥10―3

52,100
𝑚[grams] ― 1 [cm-2]

Setting the geometry line equal to the material line results in the following:

𝜎(𝑚)
𝑚[grams] = 3.830𝑥10―3[𝑐𝑚]―2 = 1.762𝑥10―3

52,100
𝑚[grams] ― 1 [cm-2]

𝑚[grams] = 16,416 grams
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See Figure 7-13 for plot of material and geometry lines intersecting at m ≈16,400 g and a surface density 
of s(m) ≈ 64 g/cm2.

Figure 7-13. Solution for the Change from a 666 Array to a 9241 Array

Part 2. What would be the multiplication factor of this array if the units were rearranged into a 
water-reflected 9241 cuboidal array?

The first step is to compute the shape factor and determine cnc
2 and new value for σ(mnc)/mnc that 

considers the increased neutron leakage due to changing the shape of the array from a cubic (666) to 
non-cubic in shape (2491). Using the methodology from Section 7.6 and the example problem in 
Section 7.6.1, the multiplication factor can be calculated.

The shape factor, R, can be calculated as follows:

𝑅 =
3 𝑁
3

1
𝑛𝑥

+
1

𝑛𝑦
+

1
𝑛𝑧

𝑅 =
3 216

3
1

24 +
1
9 +

1
1 = 2.306

With R calculated, cnc
2 can be calculated from this relationship from Section 7.6:

𝑐𝑛𝑐
2 =

4𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑐2

5𝑅―0.672 ― 1

𝑐𝑛𝑐
2 =

4 × 1
6

1.762𝑥10―3[𝑐𝑚]―2

5 × (2.306)―0.672 ― 1 = 6.343𝑥10―4[𝑐𝑚]―2
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Now, calculate the value for ´(m)/m (the new geometry line) so that the new array unit critical mass, m´, 
can be calculated, which can be related to the multiplication factor relationships defined in Section 7.3.1. 

𝜎(𝑚𝑛𝑐)
𝑚𝑛𝑐 =

𝑛𝑛𝑐
𝑧

𝑛𝑧

𝜎(𝑚)
𝑚

𝜎(𝑚𝑛𝑐)
𝑚𝑛𝑐 =

1
6 3.830𝑥10―3[cm-2] = 6.383𝑥10―4[cm-2]

Thus, the slope of the noncubic array geometry line is 1/6 the slope of the cubic array geometry line. 
Substitute this value into the limiting surface density material line expression: 

𝜎(𝑚𝑛𝑐)
𝑚𝑛𝑐 = 𝑐𝑛𝑐

2
𝑚0

𝑚𝑛𝑐 ― 1 = 6.383𝑥10―4[cm-2]

The type of fissile material in the array has not changed. Therefore, m0 = 52.1 kg. Next, solve for mnc:

𝒄𝒏𝒄
𝟐

𝟓𝟐.𝟏 kg
𝒎𝒏𝒄 ― 𝟏 = 𝟔.𝟑𝟖𝟑𝒙𝟏𝟎―𝟒[cm-2]

𝒎𝒏𝒄 =
𝟔.𝟑𝟒𝟑𝒙𝟏𝟎―𝟒[cm-2] × 𝟓𝟐.𝟏 kg

𝟔.𝟑𝟖𝟑𝒙𝟏𝟎―𝟒[cm-2] + 𝟔.𝟑𝟒𝟑𝒙𝟏𝟎―𝟒[cm-2] = 𝟐𝟓.𝟗𝟔𝟖 kg

This result is consistent with the graphical solution shown in Figure 7-14.

The multiplication factor can now be calculated using the relationships in Section 7.3.1. 

𝑘𝑒𝑓𝑓 =
𝑚𝑐𝑢𝑏𝑖𝑐

𝑚𝑛𝑜𝑛𝑐𝑢𝑏𝑖𝑐

1
3

=
16.4 kg
26.0 kg

1
3

= 0.858

Part 3. What 239Pu metal (Pu[0]) mass will result in an array multiplication factor of 0.9 for the 
666 and 9241 arrays? 

This part involves a different type of fissile material than in the last two parts of the problem, a pure 239Pu 
metal system, so one can therefore proceed as in Part 1 for each array type. For the 666 array, the 
critical array unit mass can be calculated as before, using the data from Table 14 for Pu(0) metal.
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Figure 7-14. Solution for Pu(0) metal 6x6x6 Critical Array

𝝈(𝒎) =
𝒏𝒎

(𝟐𝒂𝒏)𝟐 𝟏 ―
𝒄
𝑵

𝟐

=
𝟔𝒎

(𝟑𝟖.𝟏 cm)𝟐 𝟏 ―
𝟎.𝟓𝟓
𝟐𝟏𝟔

𝟐

𝝈(𝒎) = 𝟑.𝟖𝟑𝟎𝒙𝟏𝟎―𝟑 × 𝒎[𝒄𝒎]―𝟐or   
𝝈(𝒎)

𝒎[grams] = 𝟑.𝟖𝟑𝟎𝒙𝟏𝟎―𝟑[𝒄𝒎]―𝟐

𝜎(𝑚) = 𝑐2(𝑚0 ― 𝑚)
grams

cm2

Material line: 𝝈(𝒎)
𝒎 = 𝟒.𝟑𝟓𝟔𝒙𝟏𝟎―𝟑 𝟗,𝟗𝟓𝟎

𝒎[grams]
― 𝟏 [cm-2]

For this case, the geometry line is unchanged. The material line changes due to the change of fissile 
material. 

Equating the geometrical and material line relationships,

𝝈(𝒎)
𝒎[grams] = 𝟑.𝟖𝟑𝟎𝒙𝟏𝟎―𝟑[𝒄𝒎]―𝟐 = 𝟒.𝟑𝟓𝟔𝒙𝟏𝟎―𝟑

𝟗,𝟗𝟓𝟎
𝒎[grams] ― 𝟏 [cm-2]

𝒎[grams] = 𝟓,𝟐𝟗𝟓 grams

Thus, an array unit of 5,295 g of Pu-239 metal creates a critical system in a 6×6×6 array. (see Figure 
7-15.) 
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Figure 7-15. Solution for a Pu(0) Metal 9241 Critical Array

The unit array mass needed to result in a keff of 0.9 can be calculated as follows.

𝑘𝑒𝑓𝑓 =
𝑚𝑘𝑐𝑢𝑏𝑖𝑐

𝑚𝑐𝑟𝑖𝑡𝑐𝑢𝑏𝑖𝑐

1
3

⇒𝑚𝑘𝑐𝑢𝑏𝑖𝑐 = 𝑘3
𝑒𝑓𝑓𝑚𝑐𝑟𝑖𝑡𝑐𝑢𝑏𝑖𝑐 = (0.9)35,295𝑔 = 3,860𝑔

Solving for mkcubic (recall that mcritcubic is the mass of a spherical unit in the critical array while mk
cubic is the 

mass of a spherical unit in a subcritical array with a given keff) gives a mass of 3,860 g.

Thus, for the 666 array, units of 3.86 kg Pu(0) metal array units will result in a keff of 0.9.

For the 9241 array, the calculations in Part 2 can be used in this problem to calculate a new value of 
c2 for this Pu(0) system by using a similar equivalence methodology presented in Section 7.5. The 
calculation in Part 2 involved the calculation of the shape factor R and calculation of the critical array unit 
mass change from a 666 array to a 9241 array. Thus, using the same approach discussed in Section 
7.6, a relationship can be derived to determine a new c2

’nc for the 9241 array for a Pu(0) metal system. 

For the U(93.2) array:

(𝑐𝑛𝑐
2 )9𝑥24𝑥1

𝑈(93.2)
=

4𝑛𝑛𝑐
𝑧

𝑛𝑧

(𝑐𝑐
2)6𝑥6𝑥6

𝑈(93.2)

5𝑅―0.672 ― 1
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For the Pu(0) array

𝑐′𝑛𝑐
2 9𝑥24𝑥1

𝑃𝑢(0)
=

4𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑐′𝑐2 6𝑥6𝑥6
𝑃𝑢(0)

5𝑅―0.672 ― 1

Calculate the ratio of 𝑐′2 9241
𝑈(93.2)

 to 𝑐′2 9241
𝑃𝑢(0)

𝑐′𝑛𝑐
2 9𝑥24𝑥1

𝑃𝑢(0)
(𝑐𝑛𝑐

2 )9𝑥24𝑥1
𝑈(93.2)

=

4𝑛𝑛𝑐
𝑧

𝑛𝑧

𝑐′𝑐2 6𝑥6𝑥6
𝑃𝑢(0)

5𝑅―0.672 ― 1

4𝑛𝑛𝑐
𝑧

𝑛𝑧

(𝑐𝑐
2)6𝑥6𝑥6

𝑈(93.2)
5𝑅―0.672 ― 1

Rearranging the ratio provides the following result that can be used to calculate the c2
’nc

’ value for the 
Pu(0) 9×24×1 array:

𝑐′𝑛𝑐
2 9𝑥24𝑥1

𝑃𝑢(0)
= (𝑐𝑛𝑐

2 )9𝑥24𝑥1
𝑈(93.2)

×
𝑐′𝑐2 6𝑥6𝑥6

𝑃𝑢(0)
(𝑐𝑐

2)6𝑥6𝑥6
𝑈(93.2)

𝑐′𝑛𝑐
2 8𝑥4𝑥2

𝑈(100)
= 6.343𝑥10―4[cm-2] ×

4.356𝑥10―3[cm-2]
1.762𝑥10―3[cm-2] = 1.568𝑥10―3[cm-2]

Based on the fact that the value for (m)/m is constant for the 9241 array calculation in Part 2, the new 
c2

’ value can be used to calculate the critical array mass (Figure 7-16) for the 9241 array for the Pu(0) 
metal system:
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Figure 7-16. Critical Water-Reflected Cubic Arrays of U(93.2) Metal Cylinders with Various Height-to-
Diameter Ratios

The material line can be written as: 

𝜎(𝑚′𝑛𝑐)
𝑚′𝑛𝑐 = 𝑐′2 9𝑥24𝑥1

𝑃𝑢(0)

𝑚′0
𝑚′𝑛𝑐 ― 1

1
cm2

𝜎(𝑚′𝑛𝑐)
𝑚′𝑛𝑐 = 1.568𝑥10―3

9,950 g
𝑚′𝑛𝑐 g ― 1

1
cm2

The geometry line for a 9×24×1 array is 𝜎(𝑚′𝑛𝑐)
𝑚′𝑛𝑐 = 6.383𝑥10―4 1

cm2
 

Equating the material and geometry lines and solving for m’:

𝑐𝑛𝑐
2

9.95 kg
𝑚𝑛𝑐 ― 1 = 6.383𝑥10―4[cm-2]

𝑚𝑛𝑐 =
1.568𝑥10―3[cm-2] × 9.95 kg

6.383𝑥10―4[cm-2] + 1.568𝑥10―3[cm-2] = 7.071 kg
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This mass corresponds to the array unit Pu(0) metal mass required to maintain the 9×24×1 array in a 
critical state. The mass necessary to result in a keff of 0.9 can now be calculated:

𝑘𝑒𝑓𝑓 =
𝑚′𝑘𝑛𝑜𝑛𝑐𝑢𝑏𝑖𝑐

𝑚′𝑐𝑟𝑖𝑡𝑛𝑜𝑛𝑐𝑢𝑏𝑖𝑐

1
3

⇒𝑚′𝑘𝑛𝑜𝑛𝑐𝑢𝑏𝑖𝑐 = 𝑘3
𝑒𝑓𝑓𝑚′𝑐𝑟𝑖𝑡𝑛𝑜𝑛𝑐𝑢𝑏𝑖𝑐 = (0.9)37,071𝑔 = 5,155𝑔

Table 7-2. Summary of Limiting Surface Density Example Problem 8

Pu-239
Array Shape mcrit mk=0.9

6 x 6 x 6 5.295 kg 3.856 kg
24 x 9 x 1 7.071 kg 5.155 kg

Notice that an array of 2491 with 5.155 kg units has a keff = 0.9, while rearranging those same units in a 
666 array would result in a keff = 0.991.

7.7 THE EFFECT OF UNIT SHAPE ON ARRAY CRITICALITY

The limiting surface density method was derived for cubic arrays of U(93.2) metal spheres. If the shape of 
the fissile units in the cubic array were changed to a cylindrical geometry, as the height-to-diameter (H/D) 
ratio changes, then the value for mo or the unreflected critical mass for the fissile material changes due to 
an increase or decrease in neutron leakage. However, over a very well-defined H/D range, 0.3 H/D 3, 
the limiting surface density method will still apply. Outside of this H/D range, more than one line 
segment may be necessary to describe the limiting surface density over a wide range of unit masses. In 
other words, more than one value for the characteristic constant, c2, is necessary to provide an accurate 
representation of the array unit mass or limiting surface density. In this case, data for c2 representing the 
array unit shapes, outside of the previously specified range, may not be available and may need to be 
calculated using the relationship 𝜎(m) = c2(mo-m), as discussed in Reference 39. However, as Figure 7-17 
shows, a conservative estimate of the critical or subcritical unit mass can be made by assuming that the 
material line is straight from 𝜎(0) to the intercept of the x-axis, which corresponds to the green, dashed 
line in the figure. 

For example, for an H/D ratio of 1.0, which falls in the range of applicability of the limiting surface 
density method as discussed above, the method provides an estimate for the critical unit array mass at 
approximately 44 kg of U(93.2) metal. This critical unit array mass increases to about 75 kg to maintain 
the array at a critical state for cylindrical units with an H/D of 0.3 (also within range of applicability). The 
large increase in mass is due to the significant increase in the neutron leakage for H/D shape in the array.

Outside the range of applicability, an array of U(93.2) metal cylinders with an H/D of 0.2 does not result 
in a linear relationship between the unit mass and the limiting surface density. As Figure 7-17 shows, two 
material lines are needed to describe this system with each line having its own characteristic constant 
(slope), c2, value. Unless the c2 value (noted in Figure 7-17 as c2´) for segment #2 for the H/D of 0.2, is 
calculated via the Thomas methodology (Reference 39), the analyst may be stuck. However, because the 
experimental data slopes upward to the ordinate for the H/D = 0.2 case, a line can be extended from 
segment #1 to the abscissa (green dashed line corresponding to segment #1), and the intersection of this 
material line “extension” with the geometry line can be used as a conservative value of the array unit 
mass for a subcritical array. For the U(93.2) metal cylinders shown in Figure 7-17, the conservative array 
unit mass, indicated by the “red dot,” is about 87 kg. If c2´ were known, the actual intersection of the 
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material (segment #2) and geometry lines would result in a critical array unit mass of about 98 kg, as 
shown by the yellow dot. 

Figure 7-17. Density Change in a Critical 444 Array with U(100) Metal Units.

7.8 EFFECT OF A FISSILE UNIT DENSITY CHANGE

The effect of a density change of array units can be determined by a simple calculation to determine a 
new value of the characteristic constant, c2, corresponding to the array unit density change. For example, 
the limiting surface density method can be used to determine the critical array characteristics for a storage 
array of alpha-phase plutonium ingots (  = 19.75 g/cm3) that were replaced with delta-phase plutonium 
ingots ( = 15.75 g/cm3). The core density conversion from Chapter 4 can be used to determine the new 
value for c2 due to the change in density of a fissile material:

𝑚𝜌0
0

𝑚𝜌1
0

=
𝜌1
𝜌0

2
(124)

where m0
ρ1 and ρ1 represent the unreflected critical mass and density, respectively, for the new fissile 

material shape, and m0
ρ0 and r0 represent the unreflected critical mass and density for the original, 

spherical unit. 

The limiting surface density where m = 0, (0) is equal for both cases:

𝜎(0) = 𝜎(0)𝜌 = 𝑐2𝑚𝜌0
0 = 𝑐𝜌1

2 𝑚𝜌1
0

Solving for the new characteristic constant, c2’:
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𝑐𝜌1
2

𝑐2
=

𝑚𝜌0
0

𝑚𝜌1
0

=
𝜌1
𝜌0

2
     OR     𝑐𝜌1

2 = 𝑐2
𝜌1
𝜌0

2
(125)

A simple change in unit density does not result in any other change to the array as long as the unit cell 
volume remains constant. That is, the geometry line for the array is invariant, whereas the material line 
changes along with the density change. The effect of a change in the characteristic constant, c2 to c2

ρ1, will 
result in a corresponding shift in the array unit mass required to maintain a critical array. For a reduction 
in the density of the fissile material, common sense concludes that the array unit fissile mass must 
increase for the array to maintain a critical state. Likewise, if the density of the fissile material increases, 
then the array unit mass is shifted lower to maintain criticality of the array. 

To determine the new fissile array unit mass needed to obtain a critical array configuration at a lower 
fissile density, the “equivalence relationship” from Section 7.5 can be used to compare the NBn

2 
parameters for two critical arrays. The ratio of the limiting surface density relationships can be calculated 
as follows. Note that the variables an, mo and N do not change. The unit spacing, fissile material type and 
number of units in the array are the same before and after the transformation from array units with density 
0 to 1. 

This relationship shows that the mass required to maintain a critical array increases for a reduction in the 
fissile material density and decreases when the density is increased. These trends are illustrated in Figure 
7-18. The following equation describes the effect of a change in array units of the same fissile material 
but with a different density. 

Figure 7-18. Solution for Limiting Surface Density Example Problem 9.
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𝑚𝜌1 =
𝑚𝜌0

𝑚𝜌0

𝑚𝜌0
0

𝜌1
𝜌0

2
+ 1 ―

𝑚𝜌0

𝑚𝜌0
0

(126)

Reference 39 provides additional information about fissile material density changes in array 
configurations. 

7.8.1 Limiting Surface Density Example Problem 9

Using the limiting surface density method, calculate the critical mass for each array unit required for a 
water-reflected cubic array of fully enriched U(100) metal for a 444 array with a center-to-center 
spacing of 30 in. (76.2 cm) due to a change in array density change from 18.74 g/cm3 (limiting surface 
density example problem 3) to 15 g/cm3.

Non-graphical solution from Section 7.4.3:

For a 444 cubic array with the given spacing:

 n = nx = ny = nz = 4
 an = ax = ay = az = 30/2 = 15 in. (38.1 cm)

The following relationship for a cubic array can be used to determine the critical mass per unit, m1, to 
maintain the array in a critical condition for U(100) metal units.

𝑚1 = 𝑚0
1

𝑛𝑧
𝑐2(2𝑎𝑛)2 1 ―

𝑐
𝑁

2
+ 1

where

mo – 45.68 kg from Table 14
nz – 4 from the assumptions specified above
an – 15 in. (38.1 cm) from the assumptions specified above
c2 – 0.001806 cm−2 from Table 7-1
N – equal to n3 = 64
c – 0.55, defined previously

Substituting the values for each variable into the array critical mass relationship provides the following 
result:

𝑚1 = 45.68 kg
1

4
0.001806 cm―2(2 × 38.1 cm)2 1 ―

0.55
64

2
+ 1

𝑚1 = 34.325 kg

Equation (124) is used to calculate the how the array unit critical mass is affected via density change.
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𝑚𝜌1 =
𝑚𝜌0

𝑚𝜌0

𝑚𝜌0
0

𝜌1
𝜌0

2
+ 1 ―

𝑚𝜌0

𝑚𝜌0
0

For this problem, the original fissile unit density was assumed to be 18.74 g/cm3, which is the density of 
U(93.5) metal as indicated in Appendix B.27 Assume for these problems, the fissile units were swapped 
out with the same material at a reduced density (15 g/cm3). 

ρ1 – 15.0 g/cm3 
ρ0 – 18.74 g/cm3

The other variables in the problem stay the same; the geometrical characteristics of the array (nz, N, an) 
are unchanged for this problem. 

𝑚𝜌1 =
34.325 kg

34.325 kg
45.68 kg

15.0 
𝑔

𝑐𝑚3

18.74 
𝑔

𝑐𝑚3

2

+ 1 ―
34.325 kg
45.68 kg

𝑚𝜌1 = 47.020 kg

The new critical mass of an unreflected sphere of U(100) at a density of 15 g/cm3 can be determined from 
Eq. (122):

𝑚𝜌0
0

𝑚𝜌1
0

=
𝜌1

𝜌0

2
   ⇒   𝑚𝜌1

0 = 𝑚𝜌0
0

𝜌0

𝜌1

2
= 45.68 kg

18.74 g/cm3

15 g/cm3

2

= 71.30 kg

The new value of the characteristic constant, c2’ found using Eq. (123), is

𝑐𝜌1
2 = 𝑐2

𝜌1

𝜌0

2
= 0.001806 cm―2

15
𝑔

cm3

18.745
𝑔

cm3

2

= 0.001157 cm―2

These values allow us to plot the new material line that represents 15 g/cm3.

𝜎(𝑚𝜌1)
𝑚𝜌1

= 1.157𝑥10―3
71,300 g

𝑚𝜌1 g ― 1
1

cm2

The geometry line for a 444 array is 𝜎(𝑚)
𝑚 = 5.974𝑥10―4 1

cm2
 as calculated in Section 7.4.3.

7.9 CONCRETE REFLECTED ARRAYS

The limiting surface density method was developed for water-reflected arrays of U(93.2) metal units. For 
various situations, such as one involving a concrete storage vault, it may be more appropriate to consider 
concrete reflection. Depending upon the thickness of concrete considered in the analysis, this may result 
in a reduction or in an increase in the array unit mass required to maintain the array in a critical state. The 

27 Varying the uranium density from 18.74 g/cm3 to 18.9 g/cm3 only affects the critical unit density by about 1%, 
changing from 47.0 kg to 47.5 kg.
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magnitude of the increase or decrease in the reactivity of an array with respect to changing the assumed 
reflector from water to concrete depends upon the overall shape of the array and the type of fissile 
material present in the array. Thomas (Reference 39) has calculated the characteristic constant, c2, for 
various thicknesses of concrete based on Monte Carlo calculations with a 216 unit array of 9 kg U(93.2) 
metal units with a center-to-center spacing of 12.835 cm. Thomas replaced the water reflector with 
concrete of various thicknesses and documented the results in Reference 39, Table 7. This table also 
provides the characteristic constant, c2, for each thickness of concrete. Using the value of c2 for the water 
reflected U(93.2) metal units (1.76210–3 cm–2 from Table 7-1), the ratio of c2 for concrete and water can 
be calculated for each concrete thickness. These ratios are listed in 

Table 7-3. 

Table 7-3 also provides a c2 value from Reference 39 for an array of Pu(94.8) metal units with concrete 
reflection. 

Table 7-3. Comparison of U(93.2) Metal Arrays with Water and Concrete Reflectors 

Concrete Thickness
(cm)

c2 for the 216-unit U(93.2) 
Metal Units Reflected by 

This Thickness of Concrete 
(×10–3 cm-2)

c2 for the 216-unit U(93.2) 
Metal Units Reflected by 

Water 
(×10–3 cm-2)

Ratio of c2 for Concrete 
and Water,

𝒄𝟐(concrete)
𝒄𝟐(water)

10.16 2.007 1.139
12.70 1.694 0.961
15.24 1.432 0.813
20.32 1.240 0.704
25.40 1.156 0.656
30.48 1.128 0.640

30.48 for Pu(94.8) 3.050 1.333
40.64 1.085

1.762

0.616

Using the relationships defined in Section 7.5, the characteristic constant for other fissile materials can be 
calculated. The neutronic characteristics for concrete can vary a great deal (Reference 48) based, 
primarily, on the water content of the concrete. Thomas (Reference 39) used Oak Ridge concrete for the 
calculations to determine the c2 values listed in 

Table 7-3. Oak Ridge concrete has a water content of about 5.53 wt %, whereas the water content ranges 
from 2.97 for Magnuson concrete to 10.99 wt % for Hanford concrete (Reference 48). If the water content 
of the various types on concrete is known, this information should be considered before the 

Table 7-3 data are used in a calculation. 

7.9.1 Limiting Surface Density Example Problem 10

1. Using the limiting surface density method, calculate the critical mass for each array unit 
required for a concrete-reflected cubic array of fully enriched U(100) metal for a 444 array 
with a center-to-center spacing of 30 in. (76.2 cm). Assume that the concrete is the Oak Ridge 
mixture and that there is 30.48 cm (12 in.) of concrete reflection instead of the minimum 20 
cm (7.87 in.) present in the calculations for example problem 3 (Section 7.4.3).
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2. After the critical mass is calculated, determine the multiplication factor for storing 20 kg of 
U(100) units in the 444 array.

Part 1. The limiting surface density method assumes a 200 mm (20 cm) thick water-reflected array 
(Section 7.3). For this concrete-reflected array (30.48 cm thick), the change from a water (minimum 20 
cm thick) to a concrete-reflected array results in a change in the array unit mass required to maintain array 
criticality.

Non-graphical solution

Assume a 444 cubic array:

n = nx = ny = nz = 4
an = ax = ay = az = 15 in. (38.1 cm)

The following variables were defined in Section 7.4.3; however, the value for c2 will have to be adjusted 
for a reflector change from water to concrete:

mo – 45.686 kg from Table 7-1 
nz – 4 from the problem description
an – 15 in. (38.1 cm) from the problem description
c2 – 1.80610–3 cm–2 from Table 7-1 for U(100) metal for a 12 in. thick water reflector
N – equal to n3 = 64
c – 0.55, defined previously

Before the mass is calculated, determine c2
conc corresponding to the concrete reflected array. From 

Table 7-3, the c2 concrete-to-water ratio for 30 cm (12 in.) of Oak Ridge Concrete reflection is 0.640:

𝑐𝑐𝑜𝑛𝑐
2

𝑐ℎ2𝑜
2

= 0.640

Rearrange the equation to solve for the c2 of concrete:

𝑐𝑐𝑜𝑛𝑐
2 = 0.640 × 𝑐ℎ2𝑜

2 = 0.640 × 1.806𝑥10―3cm―2 = 1.156𝑥10―3cm―2

Substituting the values for each variable into the array critical mass relationship provides the following 
result:

𝑚1𝑐𝑜𝑛𝑐 = 𝑚0
1

𝑛𝑧
𝑐𝑐𝑜𝑛𝑐

2 (2𝑎𝑛)2 1 ―
𝑐
𝑁

2
+ 1

𝑚1𝑐𝑜𝑛𝑐 = 45.68 kg
1

4
0.001156 cm―2(2 × 38.1 cm)2 1 ―

0.55
64

2
+ 1

𝑚1𝑐𝑜𝑛𝑐 = 30.116 kg
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This is the mass of U(100) metal required in each array unit to keep the 444 cubic array critical, which 
is about 4.2 kg less U(100) metal per array unit because of the change from a 30 cm (12 in.) water 
reflector to a 30 cm (12 in.) concrete reflector.

Part 2. Now, the multiplication factor can be calculated if one is interested in storing 20 kg U(100) metal 
units in each array location. The resulting keff is calculated below, where m is the desired unit to be stored 
(20 kg) and m' (30.116 kg) is the calculated critical mass in the array as calculated above:

𝑘𝑒𝑓𝑓 =
𝑚𝑘𝑐𝑜𝑛𝑐

𝑚1𝑐𝑜𝑛𝑐

1
3

=
20 kg

30.116 kg

1
3

= 0.872

With 30 cm (12 in.) spacing between units, this array configuration will remain subcritical, although the 
multiplication is about 3% higher for a concrete reflected system than for the same array with water 
reflection.

Graphical Solution

Geometry line is unchanged by substitution of reflector material:

𝝈(𝒎) =
𝒏𝒎

(𝟐𝒂𝒏)𝟐 𝟏 ―
𝒄
𝑵

𝟐

=
𝟒𝒎

(𝟐 × 38.1 cm)2 𝟏 ―
𝟎.𝟓𝟓

𝟔𝟒

𝟐

𝝈(𝒎) = 𝟓.𝟗𝟕𝟒𝒙𝟏𝟎―𝟒 × 𝒎[𝒄𝒎]―𝟐or   
𝜎(𝑚)

𝑚[grams] = 5.𝟗𝟕𝟒𝒙𝟏𝟎―𝟒[𝒄𝒎]―𝟐

Material line:

𝝈(𝒎) = 𝑐2(𝑚0 ― 𝑚)
grams

cm2

𝝈(𝒎)
𝒎 = 1.156𝑥10―3

45,680
𝑚[grams] ― 1 [cm-2]

Equating the geometrical and material line relationships:

𝜎(𝑚)
𝑚[grams] = 5.974𝑥10―4[𝑐𝑚]―2 = 1.156𝑥10―3

45,680
𝑚[grams] ― 1 [cm-2]

𝑚[grams] = 30,116 grams

Figure 7-19 shows the critical array unit mass changed from 34.3 kg to about 30.1 kg, which is a 
reduction of about 4.2 kg due to concrete being a better neutron reflector than water. Note that the 
graphical solution (Figure 7-19) illustrates a solution for the array critical unit mass at about 30 kg, which 
corresponds to a limiting surface density of about 18 g/cm2.

Figure 7-19 illustrates this solution. 
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Figure 7-19. Solution for Limiting Surface Density Example Problem 10
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8. SURFACE DENSITY METHOD

8.1 WHAT YOU WILL BE ABLE TO DO

 Determine the center-to-center spacing between fissile units in an array configuration where the array 
dimension in one direction is limited.

 Estimate the required spacing between array units that have irregular shapes, such as equipment items 
with fissile material present, stored on a process floor.

 Perform comprehensive parametric studies on various array parameters (fissile mass, spacing, array 
size, etc.).

8.2 SURFACE DENSITY METHOD OVERVIEW

This method can be used to estimate the required spacing between fissile material units stored in a large 
configuration where the array size in one direction is limited or controlled administratively. For example, 
the surface density method would be valid for a planar array that is limited to stacking the fissile materials 
no more than two units high. This limitation would be controlled at the facility via an engineered or 
administrative control. Information beyond that covered in this section can be found in References 35, 41, 
49, 47, and 50.  

As described by Paxton (Reference 14), “A surface-density "rule of thumb” is convenient for 
distinguishing clearly subcritical arrays of fissionable material from others that may require closer 
examination. This rule is easily applicable to many process arrangements in which each unit is 
substantially subcritical.”

Consider a planar array of fissionable units. The surface density of fissionable material is the mass of the 
units divided by the array of the array based on the unit cells. If that surface density does not exceed a 
reference value for the given fissionable material and unit configuration, then the array will be subcritical. 
Reference surface density values and corresponding unit size limits for selected fissionable materials are 
given in Table 8-1. 

As an illustration, consider 10 kg units of highly enriched uranium metal U(93) in a square array with 36 
cm center-to-center spacing. Review of Table 8-1 shows that the 10 kg unit is less than the maximum unit 
size of 15 kg, so the reference surface density is 13 g/cm2 or 12 kg/ft2. The surface density of the array is 
then:

𝜎 =
mass of unit

area of unit cell =
10 kg

(36 cm)2 ×
1000 g

1 kg = 7.7
𝑔

cm2

So the array surface density of 7.7 g/cm2 is less than the reference value of 13 g/cm2. This indicates the 
array is acceptably subcritical in the given configuration and no further evaluation is necessary. 
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Table 8-1. (from Table VII, pg. 32, Reference 14)

Reference Surface Densities for Selected Fissile Materials
Composition Maximum Unit Size Reference Surface Density

5.0-inch OD cylinder 1.6 ml/cm2 (1.5 liter/ft2)
5.5-inch OD cylinder 1.4 ml/cm2 (1.2 liter/ft2)U(93) solution
6.0-inch OD cylinder 1.2 ml/cm2 (1.1 liter/ft2)

U(93) solution
≤ 50 g U/liter 6.5-inch OD cylinder 3.6 ml/cm2 (3.4 liter/ft2)

U(5) solution 8.0-inch OD cylinder 9.6 ml/cm2 (9.0 liter/ft2)
Stable Pu(NO3)4

solution 4.7-inch OD cylinder 1.4 ml/cm2 (1.3 liter/ft2)

233U solution 4.5-inch OD cylinder 1.3 ml/cm2 (1.2 liter/ft2)
U(93) metal 15 kg U a 13 g/cm2 (12 kg/ft2)
U(93)O2 27 kg U a 12.5 g/cm2 (11.5 kg/ft2)
U(93)F4 50 kg U a 11.5 g/cm2 (10.5 kg/ft2)
U(93)F6 +0.1 HF 50 kg U a 7.5 g/cm2 (7 kg/ft2)
α-phase Pu 3 kg U a 5.5 g/cm2 (5.2 kg/ft2)
δ-phase Pu,

or 233U metal 4.5 kg U a 5.5 g/cm2 (5.2 kg/ft2)

aReduced 5% for container effects

Extension beyond the “rule of thumb” was done by deriving equations based on the limiting surface 
density method, experimental and calculated critical data. The surface density method depends on 
knowing the critical dimensions for a water- reflected infinite slab for the fissile material stored in the 
array. This method projects the fissile material mass of the array units onto an area of a plane (Reference 
35) and compares the resulting surface density to that of the critical surface density for the infinite water-
reflected critical slab for the fissile material in question to determine if the array configuration is safe 
from a criticality safety perspective. Figure 8-1 illustrates this concept. 

The average surface density, 𝜎, is the average when all fissile material is projected onto the largest face. 
This basically means projecting onto a surface, w, where the number of units, nw, is the minimum of (nx, 
ny, nz) with nx being the number of units in the x-direction, etc. 

Again, this formulation of the surface density method (Reference 35) was derived from limiting surface 
density relationships (Reference 38, 44, and 45). Section 7 provides a more comprehensive description of 
the limiting surface density method. The surface density method was developed to determine a center- to-
center spacing that would provide a subcritical configuration. The method applies to individual units 
having a maximum effective multiplication factor, keff, of 0.9, that corresponds to a fraction critical mass 
of 0.73 for unreflected spherical array units. A simplified derivation from Reference 40 for the surface 
density method is shown below. 
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Figure 8-1. Illustration of the Surface Density Method

Begin with the limiting surface density relationship for the array material characteristics: 

𝜎(𝑚) = 𝑐2𝑚0 1 ―
𝑚

𝑚0
(127)

The limiting surface density relationship for the array geometric characteristics can be written as follows: 
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𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2
(128)

The surface density method assumes an infinite planar array that is of finite height (i.e., n units high). 
Thus, the limiting surface density relationships can be modified to reflect this type of array. 

For an infinite planar array (large number of units, N), the relationship that describes the geometric 
characteristics of the array can be modified as follows: 

𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2

=
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
∞

2

=
𝑛𝑚

(2𝑎𝑛)2 (1 ― 0)2 =
𝑛𝑚

(2𝑎𝑛)2
(129)

This relationship can be simplified more by knowing that the quantity 2𝑎𝑛 is the center-to-center spacing 
between array units, d. 

𝜎(𝑚) =
𝑛𝑚
𝑑2 (130)

Solving Eq. (130) for d results in a relationship for the center-to-center spacing as a function of the 
number of units in the finite direction, n, the array unit mass, m, and the limiting value of the surface 
density for the array, 𝜎, which is dependent upon the material characteristics of the array: 

𝑑2 =
𝑛𝑚

𝜎(𝑚)      ⇒     𝑑 =
𝑛𝑚

𝜎(𝑚)
(131)

The next step in the derivation is to calculate the allowed surface density for an infinite planar array. 
Recall that the array material characteristics are described with Eq. (129) from the limiting surface density 
method. The expression is also known as the allowed surface density: 

𝜎(𝑚) = 𝑐2𝑚
𝑚0
𝑚 ― 1 (132)

The fraction of a critical mass, f , present at each location in the array is m/m0. The surface density 
method requires that the fraction critical, f , not exceed a value of 0.73. Using the definition of fraction 
critical, the effective multiplication factor, keff, is defined as follows. 

𝑘𝑒𝑓𝑓 =
𝑚

𝑚0

1
3

= (𝑓)
1
3 (133)

For f = 0.73, the keff is:

𝑘𝑒𝑓𝑓 =
𝑚

𝑚0

1
3

= (0.73)
1
3 = 0.9.
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Thus, each unit in the array must be less than this keff value. This safety margin can be incorporated into 
the allowed surface density for the array (Note the 1/0.73 = 1.37 so 1.37 * m < m0). Rearranging Eq. 
(132) and incorporating the safety margin gives

𝜎(𝑚) = 𝑐2𝑚0 1 ―
𝑚

𝑚0
= 𝑐2𝑚0(1 ― 𝑓)

adding the safety margin:   𝜎(𝑚) = 𝑐2𝑚0(1 ― 1.37𝑓)
(134)

Equation (134) ensures that the fraction critical be less than 0.73. If f were equal to 0.73, the allowed 
surface density for that array would be zero: 

𝜎(𝑚) = 𝑐2𝑚0(1 ― 1.37(0.73)) = 𝑐2𝑚0(1 ― 1) = 0

This means that the surface density method cannot be used to define a safe spacing for this array because 
the multiplication factor for each unit in the array is too high. This method would provide an infinite 
calculational result for the required distance between array units. 

The previous expressions for the allowed surface density can now be modified using experimental and 
calculational data for various infinite planar array configurations. 

Examine the geometrical relationship for the allowed surface density. When m = 0, the allowed surface 
density is that of an infinite water reflected slab. When m = 0:

𝜎(𝑚) = 𝑐2𝑚0 1 ― 1.37
0

𝑚0
= 𝑐2𝑚0.

The allowed surface density when the array unit mass is zero, σ(0), is also denoted σ0.

Now, the expression in Reference 35, Eq. 4.5, defines the allowed surface density, with a coefficient that 
limits the allowed surface density to 54% of the allowed surface density, σ0: 

𝜎(𝑚) = 0.54𝜎0 1 ― 1.37
𝑚

𝑚0
= 0.54𝜎0(1 ― 1.37𝑓). (135)

This coefficient of 0.54 is the product of two factors; one is for the shape of the array, and the second is 
for the reflector material surrounding the array. In Eq. (135), the product 0.54 σ0 is the term that precludes 
the array containing small array units from achieving criticality, and the product 1.37𝑓 precludes the 
array from achieving criticality for large array units. These two products in the relationship for the 
allowed surface density ensure that the resultant center-to-center spacing results will provide an array that 
is subcritical (Reference 40). The center-to-center spacing between array units for the surface density 
method was defined in Eq. (131) as: 

𝑑 =
𝑛𝑚

𝜎(𝑚)

Substitute the expression for the allowed surface density from Eq. (135) to obtain28 the following 
expression for d:

28 The 1.37 in front of the square root sign is the rounded value of the square root of 1/0.536. The 0.54 value in 
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𝑑 =
𝑛𝑚

0.54𝜎0(1 ― 1.37𝑓)
= 1.37

𝑛𝑚
𝜎0(1 ― 1.37𝑓)

(136)

Each of the variables for d is defined below for Thomas’ representation of the surface density method 
(Reference 35): 

𝜎0 – the surface density of the water-reflected infinite slab (g/cm2); 

𝑓 – the ratio of the mass of a unit in the array to the critical mass of the unreflected sphere 
of the same fissile material (must not exceed 0.73 for this method to be applicable); 

n – the number of fissile material units in the direction of the projection onto a wall or the 
floor of the storage location; and 

m – the fissile material mass per array unit (g). 

8.3 APPLICABILITY OF THE SURFACE DENSITY METHOD

The surface density method can be used for a variety of fissile materials and array configurations. The 
surface density method is applicable for the following situations:

 This method, as described above, is applicable to infinite planar arrays reflected by water at least 155 
mm thick (6.1 in.) or its nuclear equivalent (Reference 35, page 96). The reflector cannot be located 
closer to the units in the array than the boundaries of the cells associated with the units. Guidance for 
applying this method with arrays located next to concrete reflectors can be found in Reference 39, 
page 29, and Reference 40, page 8.

 This method can be used in situations where the fissile units have irregular geometries such as where 
equipment that contains fissile materials are stored on a process floor, for example (Reference 16, 
page 78). This method is useful for this situation because the surface density of an infinite, water-
reflected slab bounds the mass of each fissile unit in the array. 

 Perturbations in the reflector materials, array unit shape, and array shape are discussed in greater 
detail in References 35 and 39. The example problems consider arrays with water reflection only. 
Reference 40 provides information about effects of concrete compared to water for the surface 
density method. 

 An engineered or administrative control would be required to limit the number units in one direction. 
For example, an array of fissile units can be stored infinitely on the floor of a facility; however, the 
units can only be stacked in a limited fashion (i.e., finite). If units need to be stored in an unlimited 
fashion, the density analog method may be a better method to use for that situation.

equation 8.9 appears to be the rounded value of the 0.536.
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8.4 SURFACE DENSITY METHOD EXAMPLE PROBLEMS

8.4.1 Surface Density Example Problem 1

Calculate the minimum spacing for a planar array of 2-liter bottles of Pu, with 5-wt. % 240Pu, solution, 
assuming a maximum concentration of 400 gPu/l? The array is assumed to be only one unit high (i.e., no 
stacking). 
The first step in the solution for this problem is to calculate the surface density of a water-reflected 
infinite slab, o, and the value of f, the ratio of the mass of a unit in the array to the critical mass of an 
unreflected sphere of the same material.

The value of s0 can be determined by taking the product of the slab height of an infinite, water-reflected 
slab and the Pu concentration. The water-reflected, infinite slab thickness for a Pu(5)-H2O solution system 
(400 g Pu/L) can be estimated from Figure 8-2 as 2.75 in. or 6.99 cm.

𝜎0 = 6.99 cm ×  400 
g Pu

𝐿  ×  0.001 
𝐿

cm3   =   2.80 
g Pu
cm2

The mass of Pu in each bottle of solution is:

𝑀2L bottle =
2 L

bottle  ×  400 
g Pu

𝐿 = 800 
g Pu

bottle

The critical mass of an unreflected sphere of a mixture of Pu metal and water can be found by multiplying 
the Pu concentration by the spherical critical volume at the maximum concentration (23 L from Figure 
8-3): 

𝑚0 =  400 
g Pu

𝐿 ×  23.0 L = 9,200 g Pu

This is equal to the Pu critical mass for a system with 5wt.% 240Pu from Figure 8-4 for this concentration). 
Next, f needs to be calculated based on the critical mass (9,200 g Pu) of an unreflected sphere of a mixture 
of Pu metal and water with 5 wt. % 240Pu: 

𝑓 =
mass of Pu in 2 L bottle

critical mass, unrefl. Pu (5) - H2O mixture

𝑓 =
800 g Pu

9,200 g Pu  =  0.087
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Figure 8-2. Critical Infinite Slab Thickness of a Mixture of Plutonium and Water. (Reference 7, Figure III.A.5.95-3). 

2.75 
inches
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Figure 8-3. Critical Infinite Slab Thickness of a Mixture of Plutonium and Water. (Reference 7, Figure 
III.A.9.95-3) 

23 Liters

23 Liters
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Figure 8-4. Spherical Critical Mass of an Unreflected Mixture of Plutonium and Water. (Reference 7, Figure III.A.6-2).

9.20 kg
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Knowing o and f, equation 8.10 can be used to determine the center-to-center spacing for an infinite 
array stacked one unit high (n = 1):

𝑑 = 1.37
𝑛𝑚

𝜎0(1 ― 1.37𝑓)

𝑑 = 1.37
1 ×  800 g Pu

2.8 g Pu
cm2 (1 ― 1.37(0.087))

 =  24.7 cm (9.7 inches)

Therefore, as a limit, the center-to-center spacing for this one-unit-high, infinite array of Pu solution 
bottles containing 5 wt. % 240Pu should not be less than 25.4 cm (10 in.) where we have rounded up for 
conservatism.

To summarize, values are for the unreflected critical spherical mass and the mass of a unit in the array. 
These are used to calculate the fraction critical. Then the surface density calculated from the reflected 
critical slab thickness and fissile atom density/concentration is used to calculate the minimum center-to-
center spacing to keep the array subcritical.

8.4.2 Surface Density Example Problem 2

What is the minimum center-to-center spacing for an infinite planar array of plutonium oxide (239PuO2) 
containers loaded with 4,500 grams of Pu per container? Assume that the Pu oxide density is 11.48 g/cm3, 
which is the theoretical density for PuO2, that the Pu is pure 239Pu, and the array is assumed to be only one 
unit high (i.e., no stacking).
This case can be solved using the same procedure as used in the last example problem. Recall that the first 
step in the surface density method is to calculate the surface density of a water-reflected infinite slab, o, 
and then f, the ratio of the mass of a unit in the array to the critical mass of an unreflected sphere of the 
same material

The value of s0 can be determined by taking the product of the slab height of an infinite, water-reflected 
slab and the density of the fissile material (in this case, the Pu). The water-reflected, infinite slab 
thickness for a 239PuO2 system can be determined via Reference 11, Table 16, page 70 that shows 1.60 cm 
for pure 239 PuO2 at a density of 9.96 g Pu/cc. In this example, the Pu density is 10.13 g Pu/cc so the 
critical slab thickness should apply. 

𝜎0 = 1.60 cm ×  11.48 
g PuO2

cm3   =   18.37 
g PuO2

cm2

Next, f needs to be calculated based on the critical mass of an unreflected sphere of 239PuO2. From 
Reference 49, the critical, unreflected spherical mass of 239PuO2 at 11.48 gPuO2/cm3 is about 26,700 g.

𝑓 =
mass of PuO2

critical mass, unrefl. Pu O2 at theoretical density

𝑓 =
4,500 g Pu 
26,700 g Pu  ×  

271.05 g PuO2

239.05 g Pu  =   0.191
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Knowing o and f, equation 8.10 is used to calculate the center-to-center spacing for an infinite array 
stacked one unit high (n = 1):

𝑑 = 1.37
1 ×  5,102 g PuO2

18.37 g PuO2
cm2 (1 ― 1.37(0.191))

 =  26.6 cm (10.5 inches)

Therefore, as a limit, the center-to-center spacing for this one-unit-high, infinite array of 239PuO2 
containers is about 26.6 cm (10.5 in.). If the array were 2 units high (n = 2) and infinite in extent in the 
lateral directions, the center-to-center spacing between containers would increase to about 37.6 cm (14.8 
in.), which is somewhat intuitive because of the presence of additional fissile material in the array. 

The full water reflection makes the limited dimension have zero leakage, making it effectively infinite 
(Figure 8-5). 

Figure 8-5. Illustration of the Surface Density Water Reflection Assumptions.

8.4.3 Surface Density Example Problem 3

What is the minimum center-to-center spacing of an infinite planar array of 4,500 g Pu(5) metal ingots. 
For this problem, assume that the density of the Pu(5) metal ingots is the same as alpha-phase Pu, 19.75 
g/cm3, and that the array is assumed to be only one unit high (i.e., no stacking).
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This case is very similar to the last two example problems. As before, the surface density depends on the 
slab height of an infinite, water-reflected slab. The water-reflected, infinite slab thickness for an alpha-
phase Pu(5) metal system can be determined via Reference 11, Figure 34, as 0.82 cm (0.32 in.). Note that 
the slab thickness is for Pu(3.1) and not Pu(5). Assuming a lower 240Pu content for this case results in 
more of the fissile 239Pu isotope being present; thus, the slab thickness used will be conservative. Now, 
calculate the surface density for the water-reflected, infinite slab.

𝜎0 = 0.82 cm ×  19.75 
g Pu(5)

cm3   =   16.20 
g Pu(5)

cm2

Next, f needs to be calculated based on the critical mass of an unreflected sphere of Pu(5) metal. From 
Figure 8-6, the critical, unreflected spherical mass of Pu metal with 5 wt. % 240Pu at 19.75 gPu/cm3 is 
about 10,300 g.

𝑓 =
mass of Pu(5)

critical mass, unrefl. Pu (5) at 19.75 g/cm3

𝑓 =
4,500 g Pu 
10,300 g Pu   =   0.437

Knowing o and f, the center-to-center spacing can be determined for an infinite array stacked one unit 
high (n = 1):

𝑑 = 1.37
1 ×  4,500 g Pu(5)

16.20 g Pu(5)
cm2 (1 ― 1.37(0.437))

 =  36.0 cm (14.2 inches)

Therefore, as a limit, the center-to-center spacing for this one-unit-high, infinite array of Pu(5) metal ingot 
containers is a little more than 36.0 cm (14.2 in.). If the array were 2 units high (n = 2) and infinite in 
extent in the lateral directions, the required center-to-center spacing between containers would increase to 
about 51 cm (20.1 in.).
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Figure 8-6. Spherical Critical Mass of an Unreflected Mixture of Plutonium and Water. (Reference 7, Figure III.A.6-2).

10.3 kg
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8.4.4 Surface Density Example Problem 4

1. Repeat the previous problem with delta-phase Pu, 15.6 g/cm3. What is the minimum center-
to-center spacing of an infinite planar array of 4,500 g Pu(5) delta-phase metal ingots in a one 
unit high array?

2. Then calculate the maximum delta ingot mass if the center-to-center spacing is 20 cm (7.87 
in.).

This problem involves a change of density from the 19.75 g/cm3 used in the last example to 15.6 g/cm3 in 
this example. Because we are using the same material, but changing the density, we can use the Core 
Density Conversion ratios from Table 4-1.

The critical water-reflected slab thickness from Example Problem 3 was 0.82 cm (0.32 in.). The critical 
water-reflected slab thickness for the new density is calculated as:

𝑡
𝑡0

=
𝜌

𝜌0

―1
=

𝜌0

𝜌 𝑡 = 𝑡0 ×
𝜌0

𝜌 = 0.82 cm ×  
19.75 g/cc
15.6 g/cc = 1.04 cm

Now, calculate the surface density for the water-reflected, infinite slab.

𝜎0 = 1.04 cm × 15.6
g Pu(5)

cm3 = 16.20
g Pu(5)

cm2

Note that the surface density remains unchanged as it is the product of the thickness and the material 
density, and the thickness is inversely proportional to the material density.

Next, f needs to be calculated. Again, we can use the relationship from Table 4-1 to determine the critical 
mass of an unreflected sphere of Pu(5) metal at the new density.

𝑚
𝑚0

=
𝜌

𝜌0

―2
=

𝜌0

𝜌

2
𝑚 = 𝑚0 ×

𝜌0

𝜌

2
= 10,300 gm ×  

19.75 g/cc
15.6 g/cc

2

= 16,500 gm

𝑓 =
mass of Pu(5)

critical mass, unrefl. Pu (5) at 15.6 g/cm3

𝑓 =
4,500 g Pu 
16,500 g Pu   =   0.273

Knowing o and f, the center-to-center spacing can be determined for an infinite array stacked one unit 
high (n = 1):

𝑑 = 1.37
1 ×  4,500 g Pu(5)

16.20 g Pu(5)
cm2 (1 ― 1.37(0.273))

 =  28.9 cm (11.4 inches)

Therefore, as a limit, the center-to-center spacing for this one-unit-high, infinite array of Pu(5) delta metal 
ingot containers is a little more than 28.9 cm (11.4 in.). The smaller spacing makes sense as there is less 
fissile material per unit volume.

Then calculate the maximum delta ingot mass if the center-to-center spacing is 20 cm (7.87 in.).
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We need to rearrange equation 8.10 to solve for mass. After some algebra, we find:

𝑚 =
𝑑2𝜎0

(1.37)2𝑛 + 1.37
𝑑2𝜎0
𝑚0

Using the values for m0, n, and s0 as before and changing the center-to-center spacing to 20 cm, we get a 
mass of:

𝑚 =
(20 cm)2 × 16.20 gPu(5)/cm2

(1.37)2 × 1 + 1.37
(20 cm)2 × 16.20 gPu(5)/cm2

16,500 gPu(5)
= 2,680 gPu(5)

In this case, a reduction of 0.692 in spacing requires a reduction of 0.596 in mass. This is not too 
surprising as the mass is related to the square of the spacing. So, if mass is directly proportional to 
spacing squared, then the mass should be reduced by (0.692)2 = 0.479. However, because of the constant 
(1.37)2 in the denominator, the reduction in mass is somewhat less than expected in relation to the square 
of the spacing.

8.4.5 Surface Density Example Problem 5

Paxton (Reference 51) also describes a smeared density approach to determining acceptable spacing for 
smaller arrays. The smeared thickness is defined as:

expression for d:

Smeared Thickness =  
Volume of Fissionable Material in Array

Area of Array (137)

The criteria for safe spacing is: 

expression for d :

𝑡𝑠𝑎𝑓𝑒 ≤ 0.5 ×  𝑡𝑐 , (138)

where: tsafe = center-to-center spacing of units in array; and
tc = critical thickness for a fully reflected infinite slab of the appropriate fissionable 

material.

Apply this approach to the situation given in Section 6.4.4. That is, calculate the safe spacing for a 10-unit 
array of 10-inch diameter cylinders (schedule 20 pipe) each 6 feet long on a square lattice pattern in two 
rows of five. The cylinders are to contain 4.98% enriched uranyl fluoride of maximum 3.2 g U/cm3 
concentration. The volume of each cylinder is 97.36 liters.

So the smeared thickness is: Smeared Thickness =  
97.36 liters

cyl
 ×  10 cyl

10 cyl ×  d2
 . The critical water reflected slab 

thickness for U(5) solution is 5 inches as shown in Figure 8-7. Substituting these into equation 8.12, we 
get:
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97.36 liters
cyl  ×  10 cyl

10 cyl ×  d2   £0.5 ×  5 inches ,       OR

𝑑2 ≥
97.36 liters ×  103 cm3

liter
2.5 inches ×  2.54 cm

inch
= 15,332 cm2

𝑑 ≥ 123.8 cm  or 48.7 inches
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Figure 8-7. Critical Slab Thickness for U(5)O2-H2O System. (Reference 7, Figure III.B.5-6).

5 inches at 3.2 gU/cm3
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This spacing of 123.8 cm or 48.7 inches compares with 142.2 cm (56 inches) as calculated from the solid 
angle method in Section 6.4.4. In that calculation the keff of 0.796 was used as determined from buckling 
calculations. If the computer calculated keff value of 0.757 is used, then the spacing 120.0 cm (47.25 
inches).

For this situation with a small array of solution cylinders, the smeared density approach appears to give 
reasonable results.
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9. DENSITY ANALOG METHODS

9.1 WHAT YOU WILL BE ABLE TO DO

 Determine the center-to-center spacing between fissile array units stored in array configurations, 
independent of the actual storage arrangement.

 Estimate the required spacing between array units that have irregular shapes, such as equipment items 
with fissile material present stored on a process floor. This method will result in a more conservative 
(cubic arrays only) but efficient required subcritical spacing. 

 Perform comprehensive parametric studies on various array parameters (fissile mass, spacing, array 
size, etc.).

9.2 DENSITY ANALOG METHOD OVERVIEW

This method is useful for addressing criticality limits for fissile materials stored or staged in array 
configurations regardless of the actual storage arrangement. Information beyond that covered in this 
section can be found in References 35, 41, and 47. Like the surface density method, this method was 
derived from experimental and calculated critical data and depicts the number of fissile units or total mass 
of all the fissile units in a critical, reflected array as a function of the average fissile material density in the 
array (Reference 41). This method was developed in the 1940s to consider the storage of weapon capsules 
in various array configurations (Reference 50). This method was modified and improved over the years 
because of inconsistencies between the subcritical measurements (used to derive relationships between 
the various array parameters) and critical array experiments performed in the 1960s. 

This formulation of the density analog method is also like the surface density method because it, too, 
depends on knowing the critical dimensions for a water-reflected infinite slab and the bare, spherical 
critical mass for the fissile material stored in the array. While the surface density method does limit the 
array dimension in one direction, there is no such limitation in the density analog method. The density 
analog method provides a fissile array unit spacing that results in a subcritical arrangement without any 
limitations to the size or shape of the array. In addition to critical conditions for a water-reflected infinite 
slab and the bare, spherical critical mass of the fissile material being stored in the array, the mass of the 
individual units, the number of units in the array, and their unit-to-unit spacing are the key parameters 
needed to apply the method. 

As was the case for the surface density method, the Thomas formulation of the density analog method 
(Reference 35) was derived from limiting surface density relationships (Reference 39, 44, and 45). The 
method applies to individual units having a maximum effective multiplication factor, keff, of 0.9, which 
corresponds to a fraction critical mass of 0.73 for unreflected spherical array units (Section 7.3.1). 

Up to and including equation 8.8, the derivation is the same as given in Chapter 8 for the Surface Density 
Method. Equation 8.8 is repeated here as the beginning of the rest of the derivation of the Density Analog 
Method.

𝜎(𝑚) = 𝑐2𝑚0(1 ― 1.37𝑓). (139)

As before, the factor of 1.37 precludes the array from achieving criticality for large array units (i.e., unit 
keff ≤ 0.9).
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Now c2 m0 is determined as the product of two factors: one is for the shape of the array, and the second is 
for the reflector material surrounding the array. For density Analog, the coefficient is 2.1 σ0 rather than 
0.54 σ0 as found in the Surface Density Method. The difference being that for surface density, the array is 
a limited series of “infinite” planar arrays while the shape can be anything form cubic to single planar for 
density analog. The 2.1 σ0 

𝜎(𝑚) = 2.1𝜎0(1 ― 1.37𝑓). (140)

From equation 8.5, d as the center-to-center spacing is given as a function of the number of units in the 
finite direction, n, the array unit mass, m, and the limiting value of the surface density for the array, 𝜎, 
which is dependent upon the material characteristics of the array:

𝑑 =
𝑛𝑚

𝜎(𝑚)
(141)

For Density Analog, n = N1/3 as the cubic array is the most reactive configuration. Inserting the definition 
of σ(m) from equation 9.2 into equation 9.3 gives;

𝑑 =
3 𝑁𝑚

2.1𝜎0(1 ― 1.37𝑓)
(142)

Equation 9.4 is like equation 4.8 in Reference 35. Each of the variables for d is defined below for 
Thomas’ representation of the density analog method (Reference 35): 

𝜎0 – the surface density of the water-reflected infinite slab (g/cm2); 
𝑓 – the ratio of the mass of a unit in the array to the critical mass of the unreflected sphere 

of the same fissile material (must not exceed 0.73 for this method to be applicable); 
N – the total number of fissile material units in the array; and 
m – the fissile material mass per array unit (g). 

This equation can be used to determine the subcritical limits for array configurations for any shape 
reflected by at least 20 cm-thick water. (Reference 35). A relationship for the number of units as a 
function of unit cell array volume is derived as follows. Starting with equation 9.4 and raising both sides 
of the equation to the 3rd power. 

(𝑑2)3 =
𝑛𝑚

𝜎0(1 ― 1.37𝑓)

3
. (143)

Substitute the definitions for the array unit volume, V = d3, and the number of units in the array, N: 

𝑉2 = 𝑁
𝑚

𝜎0(1 ― 1.37𝑓)

3
. (144)

Solving equation 9.6 for N: 

𝑁 =
𝜎0(1 ― 1.37𝑓)

𝑚

3

𝑉2. (145)
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This is like equation 4.7 in Reference 35. 

9.3 APPLICABILITY OF THE DENSITY ANALOG METHOD

The density analog method can be used for a variety of fissile materials and array configurations. This 
method is applicable for the following situations:

 infinite planar arrays reflected by water at least 200 mm thick or its nuclear equivalent (Reference 
35). Guidance for applying this method with arrays located next to concrete reflectors can be found in 
Reference 41;

 situations where the fissile units have irregular geometries such as when equipment that contains 
fissile materials is stored on a process floor, for example (Reference 14). This method is useful for 
this situation, because the surface density of an infinite, water-reflected slab bounds the mass of each 
fissile unit in the array; 

 Perturbations in the reflector materials, array unit shape and array shape are discussed in greater detail 
in References 35 and 41. The example problems consider arrays with water reflection only; and.

 While the surface density method can be used for square or cubic arrays, the density analog method 
can be used for arrays that have any shape.

9.4 DENSITY ANALOG METHOD EXAMPLE PROBLEMS

The following example problems illustrate the use of the density analog method. The first three example 
problems used to demonstrate the use of the surface density method are also used to demonstrate the use 
of the density analog method. This will allow a direct comparison of both methods.

9.4.1 Density Analog Example Problem 1

Using the density analog method, repeat the example problem in Section 8.4.1 for 222, 444, 
101010, and 100100100 arrays and compare the results. Recall that each unit of the array contains a 
2-liter bottle of Pu(5) solution with a maximum concentration of 400 gPu/l.
From the example problem in Section 8.4.1, the values of o and f are the same, because the system has 
not changed; the only change is in the method used to calculate the center-to-center spacing between 
units. So, the values of o and f are summarized below.

𝜎0 = 2.80
𝑔𝑃𝑢
𝑐𝑚2

𝑓 = 0.087

Knowing o and f, the center-to-center spacing using the density analog method can be determined as 
follows.

Analysis of all four array configurations starts with equation 9.4: 
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𝑑 =
3 𝑁𝑚

2.1𝜎0(1 ― 1.37𝑓)

For the smallest array, 2 × 2 × 2 (8 units):

𝑑 =
3 8 ×  800 g Pu

2.1 × 2.80 g Pu
cm2 (1 ― 1.37 × 0.087)

= 17.6 cm (6.9 in.)

For the next array, 4 × 4 × 4 (64 units):

𝑑 =
3 64 ×  800 g Pu

2.1 × 2.80 g Pu
cm2 (1 ― 1.37 × 0.087)

= 24.9 cm (9.8 in.)

For the middle-size array, 10 × 10 × 10 (1,000 units):

𝑑 =
3 1000 ×  800 g Pu

2.1 × 2.80 g Pu
cm2 (1 ― 1.37 × 0.087)

= 39.3 cm (15.5 in.)

For the largest array, 100 × 100 × 100 (1,000,000 units):

𝑑 =
3 1,000,000 ×  800 g Pu

2.1 × 2.80 g Pu
cm2 (1 ― 1.37 × 0.087)

= 124.3 cm (48.9 in.)

In Section 8.4.1, the surface density method provides a center-to-center spacing between fissile units of 
about 25 cm (9.8 in.). This is for an infinite number of Pu solution bottles in a planar array that is limited 
one unit high with no stacking. In contrast, the density analog results for the 2 × 2 × 2, 4 × 4 × 4, 10 × 10
× 10, and 100 × 100 × 100 arrays demonstrate that, as one would expect, the center-to-center spacing 
would increase as the array got taller indicating the array is more reactive as the number of units in the z-
direction increases. The density analog method is more applicable to finite arrays that contain stacked 
fissile units. The array calculations above bound 8, 1,000 and 1,000,000 units for the 2 × 2 × 2, 4 × 4 × 4, 
101010, and 100 × 100 × 100 arrays respectively. For any number of units in the z-direction less than 
the number in a cubic array, the density analog calculated spacing for the cubic array will be adequate. If, 
for example, there were 500 solution bottles stacked in a 10 × 10 × 5 array configuration, the calculated 
spacing, 39.8 cm (15.7 in.) for the 10 × 10 × 10 array would provide adequate spacing for the units in the 
array. 

9.4.2 Density Analog Example Problem 2

Using the density analog method, repeat example problem in Section 8.4.2 for 2 × 2 × 2, 4 × 4 × 4, 10 ×
10 × 10, and 100 × 100 × 100 arrays. Recall that each container in the array contains Plutonium Oxide 
(239PuO2) loaded with up to 4,500 grams of Pu.
From the example problem in Section 8.4.2, the values of o and f are the same, because the system has 
not changed; only the method used to calculate the center-to-center spacing between units has changed. 
So, the values of o and f are summarized below:
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𝜎0 = 18.37
𝑔𝑃𝑢
𝑐𝑚2

𝑓 = 0.191.

Knowing o and f, the center-to-center spacing using the density analog method can be determined as 
follows. Again, start with the density analog relationship equation 9.4:

𝑑 =
3 𝑁𝑚

2.1𝜎0(1 ― 1.37𝑓)

For the 2 × 2 × 2 array:

𝑑 =
3 8 ×  4,500 g Pu

2.1 × 18.37 g Pu
cm2 (1 ― 1.37 × 0.191)

= 17.8 cm (7.0 in.)

For the 4 × 4 × 4, array:

𝑑 =
3 64 ×  4,500 g Pu

2.1 × 18.37 g Pu
cm2 (1 ― 1.37 × 0.191)

= 25.1 cm (9.9 in.)

For the 10 × 10 × 10 array:

𝑑 =
3 1,000 ×  4,500 g Pu

2.1 × 18.37 g Pu
cm2 (1 ― 1.37 × 0.191)

= 39.7 cm (15.6 in.)

For the 100 × 100 × 100 array:

𝑑 =
3 1,000,000 ×  4,500 g Pu

2.1 × 18.37 g Pu
cm2 (1 ― 1.37 × 0.191)

= 125.7 cm (49.5 in.)

Consider a situation in a fissile material storage area where 1,000 Pu oxide containers are stored in a 50 
× 20 × 1 array. The density analog method for this example recommends a spacing of 39.7 cm (~15.6 
in.) for 1,000 units arranged in a 10 × 10 × 10 array. This result would bound the 50 × 20 × 1 array 
because 1,000 units in a cubic array (10 × 10 × 10) is the most reactive array configuration. Spreading the 
1,000 units out in any other configuration is less reactive than the 10 × 10 × 10 configuration. Therefore, 
the recommended spacing as calculated by the density analog method would be sufficient to maintain a 
subcritical arrangement under normal operating conditions. 

The surface density method for the same problem results in a center-to-center spacing of 26.6 cm (10.5 
in.) for an  ×  × 1 array. If an administrative or engineered control is put into place to prevent the 
stacking of containers, then this method allows a much closer spacing (about 13 cm {5 in.} closer) than 
the density analog recommended spacing. The following conditions could affect which method to 
consider: 
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 Available spacing in the facility, and
 Issues related to implementing a control on the stack height permitted in the storage array.

9.4.3 Density Analog Example Problem 3

Using the density analog method, repeat the example problem in Section 8.4.3 (Surface Density Example 
Problem 3) for 2 × 2 × 2, 4 × 4 × 4, 10 × 10 × 10, and 100 × 100 × 100 arrays. Recall that each fissile 
unit in the array is a 4,500 g alpha-phase Pu(5) metal ingot.
From the example problem in Section 8.4.3, the values of o and f are the same, because the system has 
not changed; only the method used to calculate the center-to-center spacing between units has changed. 
So, the values of o and f are summarized below:

𝜎0 = 16.20 
𝑔𝑃𝑢
𝑐𝑚2

𝑓 = 0.437.

Knowing o and f, the center-to-center spacing using the density analog method can be determined as 
follows. Again, start with the density analog relationship equation 9.4:

𝑑 =
3 𝑁𝑚

2.1𝜎0(1 ― 1.37𝑓)

For the 2 × 2 × 2 array:

𝑑 =
3 8 ×  4,500 g Pu

2.1 × 16.20 g Pu
cm2 (1 ― 1.37 × 0.437)

= 25.7 cm (10.1 in.)

For the 4 × 4 × 4, array:

𝑑 =
3 64 ×  4,500 g Pu

2.1 × 16.20 g Pu
cm2 (1 ― 1.37 × 0.437)

= 36.3 cm (14.3 in.)

For the 10 × 10 × 10 array:

𝑑 =
3 1,000 ×  4,500 g Pu

2.1 × 16.20 g Pu
cm2 (1 ― 1.37 × 0.437)

= 57.4 cm (22.6 in.)

For the 100 × 100 × 100 array:

𝑑 =
3 1,000,000 ×  4,500 g Pu

2.1 × 16.20 g Pu
cm2 (1 ― 1.37 × 0.437)

= 181.6 cm (71.5 in.)



240

The results from Section 6.4.3 for a 100 × 100 × 100 subcritical array is 182 cm (~72 in.). Because of the 
safety margin that is incorporated into the method, the density analog method will provide a larger center-
to-center spacing between array units than the limiting surface density method. A critical array unit 
spacing result from the limiting surface density method is not the most practical guidance to implement. 
However, the keff relationships in Section 7.3.1 can be used to determine the array unit mass for a desired 
multiplication factor.

As one would expect, the Pu metal ingots require more spacing (i.e., 57.4 cm (~22.6 in.) for a 10x10x10 
array) than the Pu solution bottles in Section 9.4.1 (i.e., 39.3 cm (~15.5 in. for a 10x10x10 array) or the 
Pu oxide containers in Section 9.4.2 spacing (i.e., 39.7 cm (~15.6 in. for a 10x10x10 array) because of the 
higher fissile mass that is present.

Also, the surface density method for the same problem (Section 8.4.3) results in a center-to-center spacing 
of 36.0 cm (14.2 in.) for an (∞ × ∞ × 1) array. If an administrative or engineered control is put into place 
to prevent the stacking of containers, then the surface density method allows a much closer spacing, more 
than 21.4 cm (8.4 in.) closer, than the density analog recommended spacing for a 10 × 10 × 10 array. 
Again, the array hand calculation method to use for a particular problem depends upon the situation. If 
you can limit the stacking for a given array, then the Surface Density Method will provide a closer 
spacing than the Density Analog Method. However, if you have a limited number of containers or a 
limited floor space, then the Density Analog Method will likely be more applicable.

9.4.4 Density Analog Example Problem 4

Using the Density Analog Method, analyze the situation given in Section 6.4.4. That is, calculate the safe 
spacing for a 10-unit array of 10-inch diameter cylinders (schedule 20 pipe) each 6 feet long on a square 
lattice pattern in two rows of five. The cylinders are to contain 4.98% enriched uranyl fluoride of 
maximum 3.2 g U/cm3 concentration. From ORNL data29 (Reference 38), a bare stainless steel cylinder of 
U(4.98)O2F2 solution was critical with a radius of 19.55 cm and a height of 101.7 cm. 
The first step in the solution for this problem is to calculate the value of f, the ratio of the mass of a unit in 
the array to the critical mass of an unreflected sphere of the same material, and the surface density of a 
water-reflected infinite slab, o.

Because the units to be stored are cylinders with an h/d = 7.2, and the critical information is given for 
cylinders with an h/d = 2.6, we need to do buckling conversions to convert each cylinder to an equivalent 
spherical geometry.

Recall that the geometric buckling for a cylinder is:

𝐵2
𝑔 =

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

.

Now to calculate the material buckling from the experimental information and use an extrapolation 
distance, d, of 2.1 cm from Figure 9-1, the buckling at critical (i.e., material buckling) is:

29 The experiment had an H/X of 496, a U-235 concentration of 0.04487 g 235/ cm3, a uranium concentration of 
0.901 g U/ cm3, and a solution density of 2.020 g/cm3.
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𝐵2
𝑔 =

2.405
𝑟 + 𝑑

2

+
𝜋

𝐿 + 2𝑑
2

,

𝐵2
𝑔 =

2.405
19.55 𝑐𝑚 + 2.1 𝑐𝑚

2

+
𝜋

101.7 𝑐𝑚 + 2 × 2.1 𝑐𝑚
2

= 0.01322 𝑐𝑚–2.
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Figure 9-1. Extrapolation Distance Data for U(5)O2-H2O System. (Reference 7, Figure III.B.10(5)-1).

2.1 cm at 0.901 g U/cm3
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Now calculate the radius of a sphere with the same buckling.

𝜋
𝑅𝑠𝑝ℎ + 𝑑

2
=

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

= 0.01322 cm―2

 Solving the equation for 𝑅𝑠𝑝ℎ :

𝜋
𝑅𝑠𝑝ℎ + 2.1 cm

2
= 0.01322 cm―2⇒𝑅𝑠𝑝ℎ = 25.22 cm

For 10-inch diameter, schedule 20 pipe, the inside diameter is 10.25 inches and the wall thickness is 0.25 
inch, which gives an outside diameter of 10.75 inches. Then, the solution cylinder dimensions are:

𝑟 =
10.25 𝑖𝑛𝑐ℎ𝑒𝑠

2 ×
2.54 𝑐𝑚

𝑖𝑛𝑐ℎ  =  13.0175 𝑐𝑚

𝐿 =  6 𝑓𝑡 ×  
12 𝑖𝑛𝑐ℎ𝑒𝑠

𝑓𝑡 ×
2.54 𝑐𝑚

𝑖𝑛𝑐ℎ  =  182.88 𝑐𝑚

Substitute these values into the geometric buckling relationship for a finite cylinder and using the same 
extrapolation distance of 2.1 cm from Figure 9-1:

𝐵2
𝑔 =

2.405
𝑟 + 𝑑

2

+
𝜋

𝐿 + 2𝑑
2

,

𝐵2
𝑔 =

2.405
13.0175 𝑐𝑚 + 2.1 𝑐𝑚

2

+
𝜋

182.88 𝑐𝑚 + 2 × 2.1 𝑐𝑚
2

= 0.02559 𝑐𝑚–2.

Now calculate the radius of a sphere with the same buckling.

𝜋
𝑅𝑠𝑝ℎ + 𝑑

2
=

2.405
𝑅𝑐𝑦𝑙 + 𝑑

2

+
𝜋

𝐻 + 2𝑑
2

= 0.02559 cm―2

 Solving the equation for 𝑅𝑠𝑝ℎ :

𝜋
𝑅𝑠𝑝ℎ + 2.1 cm

2
= 0.02559 cm―2⇒𝑅𝑠𝑝ℎ = 17.54 cm

To compute fraction critical, we can take the ratios of the equivalent spherical volumes.

𝑉𝑠𝑝ℎ𝑒𝑟𝑒 =
4
3 𝜋𝑟3     for r =  17.54 cm, V =  22.604 liters

for r𝑐𝑟𝑖𝑡 =  25.22 cm, V𝑐𝑟𝑖𝑡 =  67.193 liters.

So 𝑓 =
𝑉

𝑉𝑐𝑟𝑖𝑡
=

22.604 liters
67.193 liters = 0.3364
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The value of s0 can be determined by taking the product of the slab height of an infinite, water-reflected 
slab and the 235U concentration. The water-reflected, infinite slab thickness for a U(5)O2F2 solution 
system (3.2 g U/cm3 = 0.16 g U235/ cm3) can be estimated from Figure 9-2 as 5 in. or 12.7 cm.

𝜎0 = 12.7 cm ×  0.16 
g U235

cm3   =   2.032 
g U235

cm2

The volume of each solution cylinder is:

𝑉𝑐𝑦𝑙 = 𝜋𝑟𝑐𝑦𝑙ℎ𝑐𝑦𝑙 = 𝜋 × (13.0175 cm)2 × 182.88 cm = 97.36 liters

The mass of 235U in each bottle of solution is:

𝑚cyl =
97.36 L

cyl  ×  0.16 
g U235

cm3 ×  
1000 cm3

𝐿 = 15,577 
g U235

cyl

So, the values of f, o, and m are summarized below:

𝑓 = 0.3364

𝜎0 = 2.032 
g U235

cm2

𝑚 = 15,577 
g U235

cyl
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Figure 9-2. Critical Slab Thickness for U(5)O2-H2O System. (Reference 7, Figure III.B.5-6)

5 inches at 3.2 gU/cm3
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Knowing N, m, o, and f, the center-to-center spacing using the density analog method can be determined 
using the density analog relationship equation 9.4:

𝑑 =
3 𝑁𝑚

2.1𝜎0(1 ― 1.37𝑓)

𝑑 =
3 10 ×  15,577 g U235

2.1 × 2.032 g U235
cm2 (1 ― 1.37 × 0.3364)

= 120.8 cm (47.6 in.)

As this is the same situation as for Solid Angle Example Problem 4 (6.4.4) and Surface Density Example 
Problem 5 (8.4.5), we can compare the results for the three methods.

A review of Table 9-1 indicates that all three methods produce very similar values for this problem.

Table 9-1. Comparison of Results from Three Different Methods,

Method Assumptions Center-to Center Spacing (cm)
keff = 0.796 142.2 cm (56 in.)

Solid Angle
keff = 0.757 120.0 cm (47.25 in.)

Smeared Thickness 𝑡𝑠𝑎𝑓𝑒 ≤ 0.5 ×  𝑡𝑐 123.8 cm (48.7 in.)
Density Analog 𝑓 = 0.3364 120.8 cm (47.6 in.)
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10. ESTABLISHING CONFIDENCE IN HAND CALCULATIONAL METHODS

10.1 SUMMARY OF HAND CALCULATIONAL RESULTS

This section summarizes the results of each of the preceding example problems and compare them with 
experimental data, actual dimensions, MCNP or KENO calculations, or a criticality safety handbook. The 
following sections break out the results and comparisons for each single unit and array method. This 
information can also be useful in some cases for the analyst to determine which method may be 
applicable to support criticality safety analyses for fissile material operations.

10.2 CONFIDENCE IN SINGLE UNIT HAND CALCULATIONS

The example problem results presented in Sections 2 through 4 along with the corresponding comparison 
results are summarized in Table 10-1, Table 10-2, and Table 10-3. 

Table 10-1. One-Group and Modified One-Group Diffusion Theory Confidence Comparison.

Section Description of the Problem
Hand 

Calculation 
Result

Comparison Result 
from Reference or 

Code Package

2.6.1

Godiva U(93.5) metal, ( = 18.74 g/cm3) unreflected 
system.
One-group diffusion theory, estimate the spherical 
critical radius.

8.44 cm
8.6 cm (actual)
8.87 cm PARTISN
8.79 cm SCALE 6.1.3

2.6.2

Jezebel delta-phase plutonium, ( = 15.61 g/cm3) 
unreflected system.
One-group diffusion theory, estimate the spherical 
critical radius. Spherical Critical Radius with pure Pu-
239
Spherical Critical Radius with Pu(4.5) and Ga and 
collapsed cross sections

6.93 cm

6.64 cm

6.385 cm (actual)
6.391 cm PARTISN
6.39 cm SCALE 6.1.3

2.6.3

239PuO2 with a density of 1, 3, 5, 7, 9, and 11.46 
g/cm3.
One-group diffusion theory, critical, bare, spherical 
mass.

11.46 g/cm3 – 31 
kg

11.46 g/cm3 – 27.0 kg
PARTISN
11.46 g/cm3 – 27.8 kg
SCALE
Hand calc values about 
12% greater than 
computer in all cases.

2.6.4
Slab tank 239Pu - H2O at 0.1 g Pu239/cm3

Modified one-group diffusion theory, estimate the 
critical slab thickness.

13.12 cm

5.6 in (14.2 cm)
Ref. 7
Figure III.A.5.2
14.1 cm PARTISN
13.8 cm SCALE 6.1.3

2.6.5

Fully enriched uranyl sulfate (UO2SO4) with a 
concentration of 30 g 235U/l (0.03 g/cm3).
Modified one-group diffusion theory, estimate the 
critical infinite cylindrical tank radius.
Repeat for U(14.7)O2SO4 at 0.03 gU235/cm3.

17.36 cm

19.16 cm

17.60 cm, PARTISN
17.52 cm SCALE

19.61 cm PARTISN
19.55 cm SCALE
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Table 10-1. One-Group and Modified One-Group Diffusion Theory Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison Result 
from Reference or 

Code Package

2.6.6

U(5)O2 – H2O at 0.05 g U235 / cm3.
Modified one-group diffusion theory, estimate critical 
spherical radius for bare system.

Repeat for a system reflected with 30 cm of water.

24.4 cm

21.55 cm
Based on reflector 

savings

24.77 cm, Ref. 7
ARH-600,
Fig. III.B.3-4
24.30 cm, PARTISN
24.39 cm SCALE
21.56 cm, Ref. 11
LA-10860, Fig. 15
20.44 cm, PARTISN
20.57 cm SCALE

Conclusions from Comparisons in Table 10-1.

Based on the results shown in Table 10-1, one-group diffusion theory works well in calculations for 
fissile metal systems or dry (H/X < 20) fissile oxide systems. The accuracy of the calculations is quite 
dependent on the cross sections used. Those tabulated in Section 2 work quite well for uranium systems, 
but they tended to overpredict absorption in plutonium systems. A collapsed set of plutonium cross 
sections is provided in Table 2-6 and used in Example Problem 2. These reduced the difference between 
the hand calculated value and the actual Jezebel radius.

For systems with moderators, typically solutions, it was demonstrated that one-group diffusion theory was 
insufficient and not applicable. The application of modified one-group theory provided results sufficient 
for scoping or bounding studies of bare and reflected systems. Although one-group and modified one-
group diffusion theory calculations take significant time, it is suggested this be done for new systems due 
to the significant physical insight that is gained from these analyses.

Table 10-2. Buckling Conversion Confidence Comparison.

Section Description of the Problem
Hand 

Calculation 
Result

Comparison Result 
from Reference or 

Code Package

3.5.1

ICPP Process Accident 1978, volume of 315.5 liters 
uranyl nitrate solution {U(82)O2(NO3)2} in bare 
cylinder with H/D=1.75 and a mass of 6.08 kg U-235.
Use buckling conversion to determine the equivalent 
spherical mass involved in the accident

4.41 kg

4.34 kg, Table 9, pg. 58. 
Reference 6.

4.38 kg PARTISN
4.39 kg SCALE
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Table 10-2. Buckling Conversion Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison Result 
from Reference or 

Code Package

3.5.2

Pu(5) metal – water mixture at 20 g Pu(5) / liter:

1. Buckling conversion for water-reflected, critical 
radius for a cylindrical tank with height = 20 cm.

2. Buckling Conversion for water-reflected, infinite 
cylinder radius

3. Fractional Leakage bare cylinder, r=42.9 cm, H=25 
cm.

4. Water-reflected, critical height for a cylindrical tank 
with radius = 15 cm.

5. Water-reflected, critical height for a cylindrical tank 
with a 15 cm diameter cylinder.

rcrit = 31.1 cm

r∞ = 14.24 cm

radial = 0.20
axial = 0.80

hcrit = 38.3 cm

subcritical

28.1 cm PARTISN
28.8 cm SCALE

13.79 cm PARTISN
14.02 cm SCALE

Radial = 0.204
Axial = 0.796
(From PARTISN)

34.2 cm PARTISN
34.8 cm SCALE

subcritical

3.5.3

Unreflected, deep well of Pu(5) metal-water solution 
with concentration of 200 gPu/l .

Buckling conversion for critical spherical radius

Buckling conversion for critical solution height in deep 
well, 129.54 cm in length, 35.56 cm in width..

17.38 cm

18.32 cm

16.99 cm PARTISN
17.29 cm SCALE

17.69 cm PARTISN
18.25 cm SCALE

3.5.4

Two cylindrical, unfavorable geometry tanks: one 
filled with a U(93.5)-water mixture while the second 
tank is filled with a Pu(5) metal-water mixture.

1. Determine critical solution height for each fissile 
material at a fissile concentration of 100 gX/l.

2. Determine the critical solution height for each fissile 
material with a concentration of 150 gX/l.

3. Determine the critical solution height for each fissile 
material with a concentration of 50 gX/l.

100 g/l: (U)
H=18.1 cm

100 g/l: (Pu)
H=19.2 cm

150 g/l: (U)
H=16.7 cm

150 g/l: (Pu)
H=19.0 cm

50 g/l: (U)
H=23.3 cm

50 g/l: (Pu)
H=21.1 cm

100 g/l:PARTISN
H≈18.15 cm (U)
H≈18.78 cm (Pu)
100 g/l:SCALE
H≈17.63 cm (U)
H≈19.00 cm (Pu)

150 g/l:PARTISN
H≈16.89 cm (U)
H≈18.78 cm (Pu)
150 g/l:SCALE
H≈16.40 cm (U)
H≈18.77 cm (Pu)

50 g/l:PARTISN
H≈22.84 cm (U)
H≈20.66 cm (Pu)
50 g/l:SCALE
H≈22.30 cm (U)
H≈20.60 cm (Pu)
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Table 10-2. Buckling Conversion Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison Result 
from Reference or 

Code Package

3.5.5

U(93.5)-water mixture at 100 g fissile/liter.
Parametric study on H/D for an unreflected cylinder. 
Use H/D values of ∞, 10, 5, 2, 1, 0,9238, 0.7, 0.5, 0.25, 
and 0 (i.e., infinite slab thickness).

See Table 3-3 in text for results and comparison with 
PARTISN values.

H/D = 1
Radius = 15.2 cm
Height = 30.4 cm

H/D = 1
Radius = 15.5 cm
Height = 31.0 cm

PARTISN

3.5.6
Discussion of surface area change in Mayak 1958 
process accident. See text No Calculations

Conclusions from Comparisons in Table 10-2.

Based on the results shown in Table 10-2, buckling conversion provides a reasonably accurate method of 
examining the effect of geometry change on system behavior. The first example problem in section 3.5.1 
provides the equivalent spherical critical mass for the configuration involved in the 1978 ICPP accident. 
This allows one to compare that value with critical mass graphs as found in Reference 11 to see how 
much excess reactivity might be involved for a given fissile solution in a given geometry.

The second example problem in section 3.5.2 evaluates different geometries and associated leakage 
fractions for a Pu(5) metal-water mixture. The values rom buckling conversion are higher than those 
obtained from the computer calculations. In this case, it seems that the starting point from ARH-600, 
Reference 7 seems to be slightly higher than actual. As all the buckling conversion process is related to 
the starting condition, this causes the dimensions to be slightly larger than actual. However, it should be 
noted that estimates of axial and radial leakage fractions are quite close to those calculated in the 
computer analyses. For the higher concentration Pu(50 metal-water mixture in section 3.5.3, the buckling 
conversion values are quite close to those calculated by SCALE. PARTISN with the Hansen-Roach cross 
section set seems to slightly overpredict absorption for these under moderated systems (H/X about 125, 
while optimum moderation has an H/X of about 880).

Example problem 4 examines systems with U(93.5) and Pu(5) solutions. The values from buckling 
conversion are quite close to those determined by neutron transport calculations. The important take-away 
from this problem is that at the same fissile concentration, plutonium solutions are not always more 
reactive than uranium solutions. Example problem 5 in section 3.5.5 shows that the results of a buckling 
conversion parametric study on cylinder H/D from an infinite cylinder to an infinite slab produces similar 
results to those from computer calculations.

The last example problem provides a description of the effect of change in surface area and geometric 
buckling as solution in a large container is tipped to be poured. Although not a direct application of 
buckling conversion, it does show how a significant change in geometry and associated leakage area can 
lead to an upset condition. This illuminates how buckling conversion can be used to examine effects of 
geometry changes in process systems.
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Table 10-3. Core-Density Method Confidence Comparison.

Section Description of the Problem Hand Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

4.4.1
Pu(4.5) metal system. Calculate critical spherical, 
unreflected mass as changed from delta phase (15.6 g/cm3) 
to alpha phase with a density of 19.8 g/cm3.

10.43 kg
Or 10.61 kg

10.4 kg
(Ref. 7, Fig. 
III.A.6-2)

4.4.2
U(93.5) metal-H2O system. Calculate critical spherical, 
unreflected mass as changed to a density of 10.0 
g/cm3from an initial density of 18.9 g/cm3.

15.14 cm
10.46 cm

(Ref. 7, Fig. 
III.B.9(93.5)-2)

4.4.3

U(92.94)O2 powder system. Calculate the critical radius 
for a spherical, unreflected system with a density of 6 
g/cm3, assuming that the initial density for this system was 
10.845 g/cm3.

29.65 cm 29.62 cm 
PARTISN

4.5.4

For 239PuO2 system: calculate the critical mass for s 
spherical, unreflected systems (examine densities of 1, 3, 
5, 7, and 9 g/cm3, assuming that the initial density for this 
system was 11.46 g/cm3.

Compare the results to the results calculated in Section 
2.6.3 (Diffusion Theory Example Problem 3).

1 g/cm3 – 4080 kg
3 g/cm3 – 453 kg
5 g/cm3 – 163 kg
7 g/cm3 – 83 kg
9 g/cm3 – 50 kg

11.46 g/cm3 – 32 kg

Results are 
essentially the 

same as the 
critical mass 

estimates from 
Section 2.6.3.

4.5.5
U(93.5)O2 water-reflected. Calculate the spherical critical 
mass for a density of 5.0 g/cm3 if the oxide had an initial 
density of 10.85 g/cm3.

162.4 kg 162.4 kg
PARTISN

4.5.6

Pu(5) metal system, water-reflected. Calculate spherical 
critical mass for a density of 15.61 g/cm3 and for 19.8 
g/cm3.

Repeat for a density of 19.8 g/cm3.from a density of 15.61 
g/cm3 

8.31 kg

5.88 kg

8.24 kg
PARTISN 8.17 

8.30kg
SCALE 6.1.3

5.76 kg
PARTISN 8.17 

5.79kg
SCALE 6.1.3
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Conclusions from Comparisons in Table 10-3.

First, in section 4.4.2, the comparison of critical, spherical unreflected radius with the handbook data 
shows a significant discrepancy. This is indicative of the misapplication of core density conversions to 
systems containing hydrogen, which changes the neutron spectrum. In the Core Density Conversion 
method, changes in material density are assumed to have little impact on the neutron energy spectrum. 
However, in systems with hydrogen, this assumption is usually not correct. This example problem 
illustrates the importance of checking all calculations with other methods or published data.

In example 1, section 4.5.1, the comparison results indicate the applicability of the method to plutonium 
metal systems. In example 3, section 4.5.3, the closeness of the values indicates that for uranium oxide 
systems, the core-density conversion process is applicable and provides useful results.

For plutonium oxide as in section 4.5.4, the values are self-consistent depending on the value of the initial 
critical mass. This indicates applicability of the core density conversion method to plutonium oxide 
systems.

Sections 4.5.5 and 4.5.6 involve water-reflected systems, which rely on determination of the functional 
exponent. For the oxide problem, the calculated critical mass was right on the value determined by 
PARTISN, while for the plutonium metal system, the calculated value was about 1.5% higher than that 
determined from a SCALE calculation. This indicates that the Core Density Conversion method can be 
used for initial scoping calculations with both oxide and metal systems reflected with water.

10.3 CONFIDENCE IN ARRAY HAND CALCULATIONS

The example problem results presented in Sections 6 through 9 along with the corresponding comparison 
result are summarized in Table 10-4 through Table 10-7.

Table 10-4. Solid Angle Method Confidence Comparison.

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

6.4.1

Calculate the allowable solid angle for a 331 array of 
aluminum containers filled with a U(4.89)O2F2 and water 
mixture with a hydrogen-to-235U (H/X) ratio of 524.
The pitch is 76.52 cm and edge-to-edge (ETE) spacing is 60.96 
cm.

Subcritical

Subcritical
Reflected array 
SCALE 6.1.3

keff = 
0.6465±0.0013

6.4.2 Reexamine the example problem in Section 8.4.1 with array 
units spaced 30.48 cm ETE, instead of 60.96 cm. Subcritical

Subcritical
Reflected array 
SCALE 6.1.3

keff = 
0.6462±0.0012
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Table 10-4. Solid Angle Method Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

6.4.3

Store plutonium solution (Pu(4)O2) in a 3x3x1 unreflected 
planar array of 4-liter spherical bottles. The bottles are spaced 1 
foot apart under normal conditions in fixed storage locations. 
The plutonium solution concentration can vary significantly 
over the range 20 gPu/l to 200 gPu/l. Will this storage 
arrangement be safe over this concentration range?

Subcritical

Subcritical
Reflected array of 
Pu(4)O2 at 0.20 g 
Pu/cm3 SCALE 

6.1.3 keff = 
0..8181±0.0013

6.4.4

U(4.98)O2F2 solution in a 5x2x1 square lattice array of 10-inch 
diameter cylinders (schedule 20 pipe) each 6 feet long. 
Maximum 3.2 g U/cm3 concentration.
Use the solid angle criterion to estimate a safe spacing for this 
configuration.

Cylinder
keff = 0.757

120.0 cm
47.25 inches

SCALE 6.13.
keff = 

0.7939±0.0013
Bare array

SCALE keff = 
0.8475±0.0013
Reflected array

6.4.5

1. Alpha-phase Pu(4.5) metal ingots (L/D=1) 4,500 gram units 
spaced 30 cm apart in a 3x3x1 array. Use the Solid Angle 
Method to determine acceptable.

2. What if the ingots have an L/D = 7; how does that affect the 
spacing? 

Subcritical even 
with concrete 

reflection

Also, subcritical 
even with 
concrete 
reflection

Subcritical
Reflected array 
SCALE 6.1.3

keff = 
0.6465±0.0013

6.4.6

U(4.98)O2F2 solution along corner wall array of 10-inch 
diameter cylinders (schedule 20 pipe) each 6 feet long. 
Maximum 3.2 g U/cm3 concentration.
Use the solid angle criterion to estimate a safe spacing for this 
configuration.

Edge-to-edge
33.5 inches

85.1 cm

Subcritical
Reflected array 
SCALE 6.1.3

keff = 
0.6462±0.0012

Conclusions from Comparisons in Table 10-4.

The solid angle method produces conservative spacings, which are limited to a minimum of 30 cm edge-
to-edge (ETE). In many cases, this may be too conservative for the application, but it provides a good 
starting point for further analyses with neutron transport codes. Although the solid angle approach may 
not provide final array dimensions, its use provides significant insight into the physical interactions of 
units in the array. Comparing solid angles for various array positions will indicate those positions that 
dominate the neutron interactions among units to provide a first cut at the importance of each array 
location. This method was developed as a quick, empirical means of evaluating interaction among small 
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numbers of moderated fissile units and provides good information on neutron behavior for such 
situations.

Table 10-5. Limiting Surface Density Method Confidence Comparison.

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

7.4.1

For 222, 4x4x4, 101010 and 100100100 arrays, what is 
the minimum center-to-center spacing of plutonium oxide 
(239PuO2) containers loaded with 4,500 grams of Pu per 
container? Assume that the Pu oxide density is 11.48 g/cm3, 
which is the theoretical density for PuO2, and the Pu is pure 
239Pu

222
Not Applicable

444
21.4 cm

101010
35.7 cm

100100100
114.7 cm

SCALE 6.1.3
444

20.16 cm, keff = 
1.0006±0.0013

SCALE 6.1.3
101010

34.36 cm, keff = 
1.0007±0.0013

7.4.2

1. Using the limiting surface density method, determine the 
minimum center-to-center spacing for 4×4×4 and 101010 
arrays of 4,500 g Pu(5) metal ingots.

2. Calculate the center-to-center spacing that would give a keff = 
0.8 for a 10x10x10 array of the 4,500 g Pu(5) metal ingots.

444
25.4 cm

101010
42.4 cm

101010
115 cm

SCALE 6.1.3
444

25.4 cm, keff = 
0.9993±0.0012

SCALE 6.1.3
101010

42.4 cm, keff = 
0.9999±0.0013

SCALE 6.1.3
101010

142 cm, keff = 
0.8006±0.0012

SCALE 6.1.3
101010

115 cm, keff = 
0.8155±0.0012
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Table 10-5. Limiting Surface Density Method Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

7.4.3

1. Using the limiting surface density method, calculate the 
critical mass for each array unit required for a water-reflected 
cubic array of fully enriched U(100) metal for a 4×4×4 array 
with a center-to-center spacing of 30 in. (76.2 cm).

2. After the critical mass is calculated, determine the 
multiplication factor for storing 20 kg of U(100) units in the 
4×4×4 array.

Part 1
34.3 kg

Part 2
keff = 0.835

SCALE 6.1.3
444

34.3 kg, keff = 
1.0015±0.0014

SCALE 6.1.3
444

20 kg, keff = 
0.8457±0.0011

7.4.3 - II

1. Using the graphical method, what would be the effect on 
critical array unit mass if the U(100) metal was adjusted to a 
more realistic material such as highly enriched uranium, 
U(93.2)?

2. After the critical mass is calculated, determine the 
multiplication factor for storing 20 kg of U(93.2) units in the 
4x4x4 array.

Part 1
38.91 kg

Part 2
keff = 0.801

SCALE 6.1.3
444

38.41 kg, keff = 
1.0012±0.0012

SCALE 6.1.3
444

20 kg, keff = 
0.8204±0.0011

7.4.4

1. Using the limiting surface density method, calculate the 
critical mass for each array unit required for a water-reflected 
cubic array of 5 kg Pu(5.2) metal units in a 4x4x4 array with a 
center-to-center spacing of 30 in. (76.2 cm).

2. After the critical mass is calculated, determine the 
multiplication factor for storing 5 kg of Pu(5.2) units in the 
4x4x4 array.

Part 1
9.04 kg

Part 2
keff = 0.821

SCALE 6.1.3
444

9.08 kg, keff = 
1.0004±0.0012

SCALE 6.1.3
444

5 kg, keff = 
0.8348±0.0011

7.4.5

Based on the results of the last example problem in Section 7.4.4 
(Limiting Surface Density Example Problem 4), calculate the 
required array unit mass that results in a multiplication factor of 
0.9 using the same limiting surface density relationships.

6.584 kg

SCALE 6.1.3
444

6.437 kg, keff = 
0.9008±0.0012

7.5.1
Use the equivalence relationship derived in Section 7.5 to 
confirm the results of the example problem 4 from Section 7.4.4 
for Pu(5.2) metal units in a 4×4×4 array.

9.032 kg
9.035 kg from 

example 4
section 7.4.4.
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Table 10-5. Limiting Surface Density Method Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

7.6.1

Using the methodology presented in Section 7.6 and the results 
from Example Problem 3-II, calculate the critical mass for each 
array unit required for a water-reflected cubic array of fully 
enriched U(100) metal units in a 8x4x2 array.

35.41 kg

SCALE 6.1.3
842

35.41 kg, keff = 
0.9994±0.0012

7.6.2

Part 1. Using the limiting surface density method, calculate the 
spherical critical mass of U(93.2) metal required for criticality in 
a 216-unit water-reflected cubic array (6x6x6). The center-to-
center spacing (2an) of the array units is 38.1 cm. 

Part 2. What would be the multiplication factor of this array if 
the units were rearranged into a water-reflected 9241 cuboidal 
array?

Part 3. What 239Pu metal [Pu(0)] mass will result in an array 
multiplication factor of 0.9 for the 666

and the 9241 arrays?
 

Part 1
16.4 kg

Part 2.
keff = 0.858

Part 3a
3.86 kg

Part 3b
5.16 kg

SCALE 6.1.3
666

15.9 kg, keff = 
1.0007±0.0011

SCALE 6.1.3
9241

16.4 kg, keff = 
0.8755±0.0012

SCALE 6.1.3
6x6x6

3.736 kg, keff = 
0.9001±0.0013

SCALE 6.1.3
101010

4.95 kg, keff = 
0.9007±0.0013

7.8.1

Using the limiting surface density method, calculate the critical 
mass for each array unit required for a water-reflected cubic 
array of fully enriched U(100) metal for a 4x4x4 array with a 
center-to-center spacing of 30 in. (76.2 cm) due to a change in 
array density change from 18.9 g/cm3 (limiting surface density 
example problem 3) to 15 g/cm3.

47.5 kg

SCALE 6.1.3
444

46.6 kg, keff = 
1.0005±0.0014
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Table 10-5. Limiting Surface Density Method Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

7.9.1

1. Using the limiting surface density method, calculate the 
critical mass for each array unit required for a concrete-reflected 
cubic array of fully enriched U(100) metal for a 4×4×4 array 
with a center-to-center spacing of 30 in. (76.2 cm). Assume that 
the concrete is the Oak Ridge mixture and that there is 30.48 cm 
(12 in.) of concrete reflection instead of the minimum 20 cm 
(7.87 in.) present in the calculations for example problem 3 
(Section 7.4.3).

2. After the critical mass is calculated, determine the 
multiplication factor for storing 20 kg of U(100) units in the 
4×4×4 array.

Part 1
30.1 kg

Part 2
keff = 0.872

SCALE 6.1.3
444

30.5 kg, keff = 
1.0010±0.0012

SCALE 6.1.3
444

20 kg, keff = 
0.8738±0.0012

Conclusions from Comparisons in Table 10-5.

Predictions of spacing required for critical arrays are conservative. Values for critical array from limiting 
surface density create keff values that are less than one (i.e., subcritical arrays). Calculations of masses for 
given keff values produce masses that are non-conservative with the actual keff values being about 2 to 3% 
above the expected values. Mass estimates are also non-conservative with actual masses being about 2 to 
4% less than the hand calculation value. This means a higher keff for the estimated mass. The limiting 
surface density method covers most cases for analysis of arrays, but it requires a number of calculations. 
The values provided are usually within a few percent of the actual values, but they are not always on the 
conservative side. However, these calculations are more than sufficient as starting points in the design of 
array. One advantage of the limiting surface density method is the visual representation provided by the 
graphs of the material and geometry lines. These provide an understanding of the effects of parameter 
changes such as noncubic arrangement, different fissile material, and water versus concrete reflection. 

Table 10-6. Surface Density Method Confidence Comparison.

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

8.4.1

Calculate the minimum spacing for a planar array of 2-liter 
bottles of Pu, with 5 wt % 240Pu, solution, assuming a maximum 
concentration of 400 gPu/l? The array is assumed to be only one 
unit high (i.e., no stacking). 

24.7 cm
SCALE 6.1.3

24.7 cm,
keff = 

0.8888±0.0012



258

Table 10-6. Surface Density Method Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

8.4.2

What is the minimum center-to-center spacing for an infinite 
planar array of plutonium oxide (239PuO2) containers loaded with 
4,500 grams of Pu per container? Assume that the Pu oxide 
density is 11.48 g/cm3, which is the theoretical density for PuO2, 
that the Pu is pure 239Pu, and the array is assumed to be only one 
unit high (i.e., no stacking).

26.6 cm

SCALE 6.1.3
26.6 cm,

keff = 
0.8663±0.0013

8.4.3

What is the minimum center-to-center spacing of an infinite 
planar array of 4,500 g Pu(5) metal ingots. For this problem, 
assume that the density of the Pu(5) metal ingots is the same as 
alpha-phase Pu, 19.75 g/cm3, and that the array is assumed to be 
only one unit high (i.e., no stacking).

What is the minimum spacing for an array that is two units high 
(e.g., one unit on top of a second unit)

36.0 cm

2 layers
@51.0 cm

SCALE 6.1.3
36.0 cm,

keff = 
0.9034±0.0014

SCALE 6.1.3
51.0 cm,

keff = 
0.9203±0.0013

8.4.4

1. Repeat the previous problem with delta-phase Pu, 15.6 g/cm3. 
What is the minimum center-to-center spacing of an infinite 
planar array of 4,500 g Pu(5) delta-phase metal ingots in a one 
unit high array?

2. Then calculate the maximum delta ingot mass if the center-to-
center spacing is 20 cm (7.87 in.).

28.9 cm

2.683 kg
@ 20cm

SCALE 6.1.3
28.9 cm,

keff = 
0.8887±0.0014

SCALE 6.1.3
20 cm,
keff = 

0.8679±0.0013

8.4.5

Apply the smeared density approach to the situation given 
in Section 6.4.4. That is, calculate the safe spacing for a 
10-unit array of 10 in. diameter cylinders (schedule 20 
pipe) each 6 ft long on a square lattice pattern in two rows 
of five. The cylinders are to contain 4.98% enriched 
uranyl fluoride of maximum 3.2 g U/cm3 concentration. 
The volume of each cylinder is 97.36 liters.

123.8 cm
48.7 in.

SCALE keff = 
0.7909±0.0013

Bare array

SCALE keff = 
0.8450±0.0012
Reflected array

Conclusions from Comparisons in Table 10-6.

As indicated by the computer analyses, all the spacings calculated with the surface density method are 
well subcritical. The keff values seem to be between 0.86 and 0.91 for an infinite single layer planar array 
reflected by 30 cm of water on the top and bottom. When a two-layer system was analyzed (8.4.3), the keff 
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went up to 0.9203 for the calculated spacing. Analyses for 3-, 4-, and 5-layer systems at the appropriate 
calculate spacings showed keff leveling off at about 0.925 (i.e., from 0.09207±0.0012 to 0.9243±0.0012 to 
0.9235±0.0012)—all appropriately subcritical. The surface density method will provide a bounding 
estimate of center-to-center spacing for arrays limited in one direction. 

Table 10-7. Density Analog Method Confidence Comparison.

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

9.4.1

For 222, 4x4x4, 101010 and 100100100 arrays, what is 
the minimum center-to-center spacing of 2-liter bottles of Pu, 
with 5 wt % 240Pu, solution, assuming a maximum concentration 
of 400 gPu/l? 

222
17.6 cm

444
24.9 cm

101010
39.3 cm

SCALE 6.1.3
222

17.6 cm, keff = 
08623±0.0012

SCALE 6.1.3
444

24.9 cm, keff = 
0.9258±0.0015

SCALE 6.1.3
101010

39.3 cm, keff = 
0.9530±0.0012

9.4.2

Using the density analog method, repeat example problem in 
Section 8.4.2 for 2 × 2 × 2, 4 × 4 × 4, 10 × 10 × 10, and 100 ×
100 × 100 arrays. Recall that each container in the array contains 
plutonium oxide (239PuO2) loaded with up to 4,500 grams of Pu.

222
17.8 cm

444
25.1 cm

101010
39.7 cm

SCALE 6.1.3
222

17.8cm, keff = 
08322±0.0012

SCALE 6.1.3
444

25.1 cm, keff = 
0.8957±0.0012

SCALE 6.1.3
101010

39.7 cm, keff = 
0.9260±0.0012
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Table 10-7. Density Analog Method Confidence Comparison (continued).

Section Description of the Problem
Hand 

Calculation 
Result

Comparison 
Result from 
Reference or 

Code Package

9.4.3

Using the density analog method, repeat the example problem in 
Section 8.4.3 (Surface Density Example Problem 3) for 2 × 2 × 2, 
4 × 4 × 4, 10 × 10 × 10, and 100 × 100 × 100 arrays. Recall that 
each fissile unit in the array is a 4,500 g alpha-phase Pu(5) metal 
ingot.

222
25.7 cm

444
36.3 cm

101010
57.4 cm

SCALE 6.1.3
222

25.7 cm, keff = 
0.8673±0.0013

SCALE 6.1.3
444

36.3 cm, keff = 
0.9027±0.0012

SCALE 6.1.3
101010

57.4 cm, keff = 
0.9144±0.0013

9.4.4

Using the Density Analog Method, analyze the situation given in 
Section 6.4.4. That is, calculate the safe spacing for a 10-unit 
array of 10 in. diameter cylinders (schedule 20 pipe) each 6 feet 
long on a square lattice pattern in two rows of five. The cylinders 
are to contain 4.98% enriched uranyl fluoride of maximum 3.2 g 
U/cm3 concentration. From ORNL data (Reference 38), a bare 
stainless steel cylinder of U(4.98)O2F2 solution was critical with a 
radius of 19.55 cm and a height of 101.7 cm. 

120.8 cm

SCALE keff = 
0.7956±0.0011

Bare array

SCALE keff = 
0.8454±0.0014
Reflected array

Conclusions from Comparisons in Table 10-7.

As indicated by the computer analyses, all of the spacings calculated with the density analog method are 
well subcritical. Because the evaluations are based on cubic arrays, the computed keff values represent the 
highest values for the given number of units. Note that as the number of units increase, the keff associated 
with the density analog spacing also increases. For eight units, the keff values seem to be between 0.83 and 
0.87, while for 1,000 units the keff values are between 0.91 and 0.95. Of course, there is a realistic limit 
for the number of units that can be stacked, so it is unlikely that a 10×10×10 cubic array would be stacked 
to a height of almost 19 ft (574 cm). Again, the density analog method is easier to use when dealing with 
a specific number of units, whereas the surface density method usually provides more realistically 
achievable results when there are either administrative or physical limits on the number of units that can 
be stacked.

The result from the last example problem from Section 9.4.4 is compared with results from solid angle 
method and the smeared thickness method in Table 9-1. That summary indicates all three methods 
produce very similar results for the fissionable material in the configuration analyzed.
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10.4 COMPARISON OF THREE ARRAY TECHNIQUES ON THREE PLUTONIUM ARRAYS

Three plutonium arrays—Pu(5) solution, PuO2 powder, and Pu(5) metal ingots—were analyzed using 
limiting surface density, surface density, and density analog methods. This analysis highlighted the 
similarities and differences among the three techniques. The first significant difference is that the spacing 
from the limiting surface density method is for a critical array, whereas the spacings obtained from the 
other two methods are for subcritical arrangements. The second difference is the array configuration 
evaluated by the three methods. Limiting surface density analyzes a specific configuration and can be 
used on both cubic and non-cubic arrays to determine the critical spacing. The surface density method 
applies to infinite planar arrays whose height (stacking of units) is limited by either a physical control or 
an administrative control. The density analog method is applied to arrays with a given number of units 
with the bounding configuration being a cubic or near cubic arrangement of the units.

Table 10-8 shows the results from the analysis of the three plutonium arrays using the three different 
array techniques. All configurations were analyzed using continuous energy ENDF-7 cross sections with 
SCALE 6.1.3.

Table 10-8. Comparison of Three Methods.

Description of the Problem Limiting Surface 
Density Surface Density Density Analog

Spacing of 2-liter bottles of Pu, with 5 wt % 
240Pu, solution, assuming a maximum 
concentration of 400 gPu/l? 

Not Analyzed

∞  ∞  1

24.7 cm,
keff = 

0.8888±0.0012

444
24.9 cm

keff = 
0.9258±0.0015

101010
39.3 cm

keff = 
0.9530±0.0012

Spacing for containers of Plutonium Oxide 
(239PuO2) loaded with up to 4,500 grams of Pu.

444
20.16 cm

keff = 
1.0006±0.0013

101010
34.36 cm

keff = 
1.0007±0.0013

∞  ∞  1
26.6 cm,

keff = 
0.8663±0.0013

444
25.1 cm

keff = 
0.8957±0.0012

101010
39.7 cm

keff = 
0.9260±0.0012
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Table 10-8. Comparison of Three Methods (continued).

Description of the Problem Limiting Surface 
Density Surface Density Density Analog

Spacing for array of 4,500 g alpha-phase Pu(5) 
metal ingots.

Limiting Surface Density was also analyzed for 
spacing that gave keff= 0.8

444
25.4 cm

keff = 
0.9993±0.0012

101010
42.4 cm

keff = 
0.9999±0.0013

101010
115 cm
keff = 

0.8155±0.0012

∞  ∞  1
36.0 cm

keff = 
0.9034±0.0014

∞  ∞  2
51.0 cm

keff = 
0.9203±0.0013

444
36.3 cm

keff = 
0.9027±0.0012

101010
57.4 cm

keff = 
0.9144±0.0013

All three methods seem to provide realistic values for the configurations and conditions analyzed. Note 
that the spacings provided by surface density for a one-high infinite planar array are close to those from 
Density Analog for a 444 array. This shows the effect of leakage in the z-direction for the planar array.

10.5 ADDITIONAL CONFIDENCE COMPARISON RESULTS FOR ARRAYS

Some calculations were performed to demonstrate the usefulness of the hand calculation techniques. 
These calculations are summarized in Table 10-9. To examine the various array methods, array 
experiments from a benchmark evaluation, HEU-MET-FAST-023 (Reference 35) and HEU-MET-FAST-
026 (Reference 36), were used to provide a comparison between the array hand calculational methods and 
the experimental benchmarks. This primer provides many more array examples. Cubic array experiments 
were used in the comparison with U(93.2) metal units. 

Table 10-9. Array Hand Methods Comparison Table.

Array Hand Method Comparison –
Unit Center-to-Center Spacing (cm)

Experimental Benchmark 
Considered Surface 

Density 
Method

Density 
Analog 
Method

NBN
2

Method

Solid 
Angle 

Method

Experimental 
Center-to-Center 

Spacing
HEU-MET-FAST-023
Case 22, 444, 10.5 kg U Metal 
(93.2), 15.2 cm Paraffin Reflector

63.1
(24.8 in.)

31.8
(12.5 in.)

21.9
(8.6 in.) NA 23.8

(9.4 in.)

HEU-MET-FAST-026
Case 10, Exp b-10, 333, 15.4 kg U 
Metal (93.2), 15.2 cm Paraffin 
Reflector

77.5
(30.5 in.)

39.0
(15.4 in.)

25.3
(10.0 in.) NA 25.7

(10.1 in.)
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Table 10-9. Array Hand Methods Comparison Table (continued).

Array Hand Method Comparison –
Unit Center-to-Center Spacing (cm)

Experimental Benchmark 
Considered Surface 

Density 
Method

Density 
Analog 
Method

NBN
2

Method

Solid 
Angle 

Method

Experimental 
Center-to-Center 

Spacing
HEU-MET-FAST-026
Case 22, Exp c-12, 333, 20.5 kg U 
Metal (93.2), 15.2 cm Paraffin 
Reflector

101.4
(39.9 in.)

51.1
(20.1 in.)

31.4
(12.4 in.) NA 30.6

(12.0 in.)

HEU-MET-FAST-026
Case 32, Exp d-10, 333, 24.7 kg U 
Metal (93.2), 15.2 cm Paraffin 
Reflector

127.7
(50.3 in.)

64.3
(25.3 in.)

37.1
(14.6 in.) NA 36.5

(14.4 in.)

HEU-MET-FAST-026
Case 9, Exp b-9, 333, 15.4 kg U 
Metal (93.2), 15.2 cm Paraffin 
Reflector

77.5
(30.5 in.)

39.0
(15.4 in.)

25.3
(10.0 in.) NA 25.2

(9.9 in.)

HEU-MET-FAST-026
Case 21, Exp c-11, 333, 20.5 kg U 
Metal (93.2), 15.2 cm Paraffin 
Reflector

101.4
(39.9 in.)

51.1
(20.1 in.)

31.4
(12.4 in.) NA 30.2

(11.9 in.)

HEU-MET-FAST-026
Case 21, Exp d-9, 333, 24.7 kg U 
Metal (93.2), 15.2 cm Paraffin 
Reflector

127.7
(50.3 in.)

64.3
(25.3 in.)

37.1
(14.6 in.) NA 36.0

(14.2 in.)

10.6 CONCLUSIONS

Close examination of the comparisons summarized in the Section 10 tables clearly shows that the results 
provided by the various hand calculational methods discussed in this primer provide very good results 
when compared with actual dimensions, SCALE 6.1.3 results, or experimental benchmarks. Thus, hand 
calculations can be very effective tools for a criticality safety practitioner as a calculational tool to provide 
information for controls or limits for process operations or as a starting point for more complex 
calculations. The primer can assist the criticality safety practitioner in learning the various methods and 
understanding their applicability and limitations.



264

11. REFERENCES

1. Duderstadt, James J., and Louis J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, New 
York, (1976), pp. 196-216.

2. Lamarsh, John R. and Anthony J. Baratta, Introduction to Nuclear Engineering, 3rd Edition Prentice 
Hall Publishing Company, Upper Saddle River, NJ, Reading, PA, (2001), pp. 230-297.

3. Wescott, C.H., “Effective Cross Section Values for Well-Moderated Thermal Reactor Spectra,” 
AECL-1101, (January 1962).

4. Busch, R. D., “A Primer for Criticality Calculations with DANTSYS,” Los Alamos National 
Laboratory report LA-13265 (August 1997).

5. Argonne National Laboratory, Reactor Physics Constants, Argonne National Laboratory document 
ANL-5800, 2nd Edition (July 1963). 

6. McLaughlin, T.P., S.P. Monahan, N.L. Pruvost, V.V. Frolov, B.G. Ryazanov, V.I. Sviridov, “A 
Review of Criticality Accidents: 2000 Revision,” 
http://www.csirc.net/10_Library/00_Reports/13638/la-13638.pdf, Los Alamos National Laboratory 
Report LA-13638 (May 2000).

7. Carter, R. D., G. R. Kiel, and K. R. Ridgway, “Criticality Handbook Vol. I, II, and III,” Atlantic 
Richfield Hanford Co. Report ARH-600 (1968).

8. Jarvis, G. A., G. A. Linenberger, J. D. Orndoff & H. C. Paxton, “Two Plutonium-Metal Critical 
Assemblies,” Nuclear Science and Engineering, 8:6, (December 1960), 525-531, DOI: 
10.13182/NSE60-A25840G.

9. Bell, G.I., J.J. Devaney, G.E. Hansen, C.B. Mills, and W.H. Roach, “Los Alamos Group-Averaged 
Cross Sections,” Los Alamos Scientific Laboratory report LAMS-2941 (September 1963).

10. Busch, R.D., and S.M. Bowman, “KENO V.a Primer: A Primer for Criticality Calculations with 
SCALE/KENO V.a Using GeeWiz,” Oak Ridge National Laboratory report ORNL/TM-2005/135, 
(December 2005).

11. Paxton, H. C., and N. L. Pruvost, “Critical Dimensions of Systems Containing 235U, 239Pu, and 233U, 
1986 Revision,” Los Alamos National Laboratory report LA-10860-MS (July 1987

12. Paxton, H. C., J. T. Thomas, D. Callahan, and E. B. Johnson, “Critical Dimensions of Systems 
Containing U235, Pu239 and U233,” Los Alamos Scientific Laboratory and Oak Ridge National 
Laboratory report TID-7028 (June 1964).

13. Lutz, H.F., edited by H.J. Kroopnick, “Nuclear Criticality Safety Assessment Calculations: Part III. 
Calculating Nuclear Criticality in Single Units,” Lawrence Livermore National Laboratory, M-164 
Part 3, (June 1987).

14. Paxton, H. C., “Criticality Control in Operations with Fissile Material,” Los Alamos Scientific 
Laboratory report LA-3366 (Rev), (November 1972).

15. Soodak, H. and E.C. Campbell, Elementary Pile Theory, John Wiley and Sons, New York, (1950).

16. Knief, R. A., Nuclear Criticality Safety, Theory and Practice, American Nuclear Society, La Grange 
Park, IL, (1985).

17. U.S. Atomic Energy Commission, “Reactor Handbook – Volume 1 – Physics,’” AECD-3645, 
Declassified Edition, (February 1955).

http://www.csirc.net/10_Library/00_Reports/13638/la-13638.pdf


265

18. Sjöstrand, N.G., “Calculation of the Geometric Buckling for Reactors of Various Shapes,” 
Aktiebolaget Atomenergi, AE-1, Stockholm, Sweden, (1958).

19. Murray, R.L., T.J. Hirons, Reith, R.J., and O.J. Smith, “Geometric Buckling of Polygonal Reactors,” 
Nucl. Sci. Eng., 34:1, pg. 86-87, (1968), DOI: 10.13182/NSE68-A19370.

20. Vega, R.M., T.K. Lane, J.A. Miller, and N.F. Schwers, “Reactivity Effects at the Mayak Production 
Association, January 2, 1958, Criticality Accident Using Serpent 2 and Openfoam,” SAND2015-
4236C, Sandia National Laboratories, 2015.

21. O’Dell, R. D., “Critical Size and Mass Relations as Function of Density,” Los Alamos National 
Laboratory, unpublished data, (March 1992).

22. Stratton, W. R., “Criticality Data and Factors Affecting Criticality of Single Homogeneous Units,” 
Los Alamos Scientific Laboratory, LA-3612 (July 1964).

23. NEA, "International Handbook of Evaluated Criticality Safety Benchmark Experiments", 
NEA/NSC/DOC(95)/03, OECD-NEA, Paris, France (2018).

24. Cullen, D.E., “Mass and Density, Criticality Relationships,” Lawrence Livermore National 
Laboratory report, UCRL-ID-143496, (April 2001).

25. Fermi, E. “Critical Mass Measurements for a 25 Sphere in Tu and WC Tampers,” Part B – 
Interpretation, Los Alamos Scientific Laboratory report, LA-442, (October 30, 1945).

26. Paxton, H.C., “Critical Masses of Fissionable Metals as Basic Nuclear Safety Data,” Los Alamos 
Scientific Laboratory Report LA-1958 (January 1955).

27. Pruvost, N.L. and H.C. Paxton, “Nuclear Criticality Safety Guide,” Los Alamos National Laboratory 
Report LA-12808, (1996).

28. Paxton, H.C, “Bare Critical Assemblies of Oralloy at Intermediate Concentrations of U-235,” Los 
Alamos Scientific Laboratory Report LA-1671 (July 1954).

29. Neuer, J.J, “Critical Assembly of Uranium Metal at an Average U-235 concentration of 16-1/4%,” 
Los Alamos Scientific Laboratory Report LA-2085 (January 1957).

30. Peterson, R.E., “Lady Godiva: An Unreflected Uranium-235 Critical Assembly.” Los Alamos 
Scientific Laboratory Report LA-1614 (September 1953).

31. Hunt, D. C., “A Review of Criticality Safety Models Used in Evaluating Arrays of Fissile Materials,” 
Nucl. Technol. 30, 138-165 (1976).

32. C. L. Schuske, D. Dickinson & S. J. Altschuler (1974) Surface Density Method Employing Unit 
Shape Factor (s/v) for the Storage of Fissile Materials, Nucl. Technol., 23:2, 157-176, DOI: 
10.13182/NT74-A31449 (1974).

33. Hunt, D. C., and D. Dickinson, “Comparative Calculational Evaluation of Array Criticality Models,” 
Nucl. Technol. 30, 190-214 (1976).

34. Henry, H. F., J.R. Knight, and C.E. Newlon, “General Application of a Theory of Neutron 
Interaction,” Oak Ridge Gaseous Diffusion Plant Report K-1309, November 15, 1956.

35. Thomas, J T. Ed., “Nuclear Safety Guide TID-7016/Revision 2,” U. S. Nuclear Regulatory 
Commission report NUREG/CR-0095 and ORNL/NUREG/CSD-6 (1978). 

36. Tang, J.S., “Investigation of the Solid Angle Method Applied to Reflected Cubic Arrays,” Oak Ridge 
National Laboratory Report, ORNL/CSD/TM-13, October 1976.

37. Thomas, J. T., “An Evaluation of the Solid Angle Method Used in Nuclear Criticality Safety,” Oak 
Ridge National Laboratory Plant report NUREG/CR-2223, ORNL/CSD/TM-158, RC, June 1982.



266

38. Webster, J. W., and E.B. Johnson, “Criticality of a Single Unit of Aqueous Uranyl Fluoride Solution 
Enriched to 5% in U-235,” Oak Ridge National Laboratory Report ORNL-TM-1195, July 1965.

39. Thomas, J. T., “Generic Array Criticality – An Analytical Representation of Reflected Arrays of 
Fissile Units,” Oak Ridge Y-12 Plant report Y-CDC-13, UCC-ND (1973).

40. Williams, W. H., University of New Mexico Short Course, Notes for the Surface Density and Density 
Analogue Methods Course Module, 1985.

41. Thomas, J. T., “Surface Density and Density Analogue Models for Criticality in Arrays of Fissile 
Materials,” Nucl. Sci. Eng., 62, 424(1977).

42. Stover, T. E., J. S. Baker, M. D. Ratliff, G. C. Mitschelen, Limiting Surface Density Method Adapted 
to Large Arrays of Heterogeneous Shipping Packages with Non-linear Responses, Nucl. Sci. Eng. 
190, 178 (2018).

43. Evans, M. C., and J. R. Bowe, “Applications of the Limiting Surface Density Method to Transport 
and Storage of Special Nuclear Materials,” Proceedings of a Topical Meeting, Jackson, Wyoming 
(1985), American Nuclear Society report ISBN:89448-119-3, pp. 307-321.

44. Thomas, J. T., “Uranium Metal Criticality, Monte Carlo Calculations and Nuclear Criticality Safety,” 
Oak Ridge Y-12 Plant report Y-CDC-7, UCC-ND (1970).

45. Thomas, J. T., “The Criticality of Cubic Arrays of Fissile Material,” Oak Ridge Y-12 Plant report Y-
CDC-10, UCC-ND (1971).

46. Thomas, J. T., “The Effect of Reflector Location on Array Criticality,” Oak Ridge Y-12 Plant report 
NUREG/CR-1616, ORNL/NUREG/CSD/TM-16, UCC (1980).

47. Thomas, J. T., “Remarks on Surface Density and Density Analog Representation of Array 
Criticality,” Trans. Am. Nucl. Soc., 22, 299 (1975).

48. Monahan, S. P., “The Neutron Physics of Concrete Reflectors”, 5th International Conference on 
Nuclear Criticality Safety, Albuquerque, NM (1995).

49. O'Dell, R. D., and D. K. Parsons, “Pu Oxide Critical Mass Estimates,” ESH-6-94-289 memorandum, 
Los Alamos National Laboratory, ESH-6 Criticality Safety Group (December 1994).

50. Paxton, H. C., “Capsule Storage and Density Analog Techniques,” Los Alamos Scientific Laboratory 
report LA-5930-MS (May 1975).

51. Paxton, H.C., “Density-Analog Techniques,” Proceedings of the Livermore Array Symposium, 
CONF-680909, pages 6-11, (September 1968).



A-1

APPENDIX A. DERIVATION OF THE LIMITING SURFACE DENSITY 
METHOD



A-2

APPENDIX A. DERIVATION OF THE LIMITING SURFACE DENSITY METHOD

The limiting surface density (LSD) method, first developed by Joseph Thomas of Oak Ridge National 
Laboratory (ORNL), is discussed at length in References A1–A5. The LSD method was developed based 
on combining diffusion theory and density analog concepts into a new method to examine array 
criticality. Diffusion theory can of course be used to equate the geometric bucking for a homogeneous 
single unit to the material buckling for a critical system to determine the dimensions for the critical unit. 
For an array, the effective multiplication factor is given by the following:

𝑘𝑒𝑓𝑓 =
𝑘∞

1 + 𝑀2𝐵2
A-1

The infinite multiplication factor represents the effective multiplication factor for an infinite array. For an 
infinite array, the 𝑘∞ is only dependent upon the material properties of the array. M2 is the neutron 
migration area and B2 represents the array buckling. In an infinite array, if M2B2 is held constant when the 
geometrical properties of an array are changed, then the array neutron leakage and effective multiplication 
factor will remain unchanged [A1]. Further, the migration area in this infinite array configuration is 
proportional to the inverse square of the array density, 1/2, which is also proportional to the number in 
the units in the array, N, based on the density analogue technique, thus M2  N. For the geometric 
buckling, an equation can be modified from that for a single unit to be applicable for a finite array 
configuration:

𝐵2 = 𝐵2
𝑁 =

𝜋2

4(𝑛𝑥𝑎𝑥
𝑛 + 𝜆)2 +

𝜋2

4 𝑛𝑦𝑎𝑦
𝑛 + 𝜆 2 +

𝜋2

4(𝑛𝑧𝑎𝑧
𝑛 + 𝜆)2 A-2

where

𝑛𝑥, 𝑛𝑦, and 𝑛𝑧 = number of array units in the x, y and z directions

𝑎𝑥
𝑛, 𝑎𝑦

𝑛, and 𝑎𝑧
𝑛 = “half-cell” dimensions (or half of the center-to-center spacing of the units in 

the x, y, and z directions

𝜆 = array extrapolation length.

For cubic arrays, which is the preference of Thomas’ LSD method, 𝑛𝑥= 𝑛𝑦 = 𝑛𝑧= 𝑛 and 𝑎𝑥
𝑛 = 𝑎𝑦

𝑛 = 𝑎𝑧
𝑛 = 

𝑎𝑛, so equation A-2 becomes

𝐵2 = 𝐵2
𝑁 =

3𝜋2

4(𝑛𝑎𝑛 + 𝜆)2 A-3

Thus, the form of this equation that considers the product, M2B2, for a large array configuration is

𝑁𝐵2
𝑁 =

3𝑁𝜋2

4(𝑛𝑎𝑛 + 𝜆)2 =
3𝑁𝜋2

4𝜆2 + 8𝜆𝑛𝑎𝑛 + 4𝑛2𝑎2
𝑛

A-4

After some algebraic manipulations [A6], the 𝑁𝐵2
𝑁 expression is provided by equation A-5 as follows, 

which is the near-final form of the LSD equation derived by Thomas:
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𝑁𝐵2
𝑁 =

𝑛3𝜋2

(2𝑎𝑛)2 1 ― 4𝜆2𝑁𝐵2
𝑁

𝑁3𝜋2

2

A-5

The expression 4𝜆2𝑁𝐵2
𝑁

3𝜋2
 is treated as a constant in Thomas’ method, denoted as c, that has been evaluated 

by Thomas from a series of Monte Carlo calculations for critical array configurations and has a value of 
0.55 ± 0.18. 

𝑁𝐵2
𝑁 =

𝑛3𝜋2

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2
A-6

To arrive at Thomas’ final form of the LSD method, Eq. (A-6) must be related to the array surface 
density, which is essentially array unit mass divided by the area. As discussed in the LSD chapter in this 
document, the array unit mass is projected onto a plane that has a particular surface area. Per Reference 
B6, the surface area of a unit mass projected onto a plane must include the extrapolation distance, 𝜆, for 
the array unit. The surface density can now be described as

𝜎(𝑚) =
𝑚𝑎𝑠𝑠
𝑎𝑟𝑒𝑎 =

𝑚𝑁
(𝑛2𝑎𝑛 + 2𝜆)2 =

𝑚𝑁
4(𝑛𝑎𝑛 + 𝜆)2 A-7

This surface density expression can be related to the geometric buckling for the array by rearranging 
equation A-4 and multiplying the expression by the array unit mass, m, as follows:

𝜎(𝑚) =
𝑚𝑁𝐵2

𝑁
3𝜋2 =

𝑚𝑁
4(𝑛𝑎𝑛 + 𝜆)2

A-8

The surface density, 𝜎(𝑚), can now be put into the final form derived by Thomas:

𝜎(𝑚) =
𝑛𝑚

(2𝑎𝑛)2 1 ―
𝑐
𝑁

2
A-9
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APPENDIX B – MULTIPLICATION FACTOR VERSUS FRACTION OF CRITICAL MASS

This appendix provides multiplication factor data for various systems to provide calculation support for 
using the various hand calculation methods discussed in this primer. Some of this information is extracted 
from Reference B1, which provides critical mass and multiplication factor data for the following metals 
and solutions:

 Highly Enriched Uranium (HEU) and plutonium (Pu) metal, bare and water reflected, 
and

 HEU and plutonium solution, bare and water reflected.

The critical masses for these systems from reference B-1 are provided in Tables B-1 and B-2. For these 
analyses, the following definitions are used:

 HEU: U(93.5) metal at 18.74 g/ cc

 Pu(4.5): Pu(4.5) with 1 wt.% Ga, metal alloy density = 15.61 g/cc

 Pu(20): Pu(20) with 1 wt./o Ga, metal alloy density = 15.7 g/cc

 Pu: Pu(4.5) unalloyed metal, density = 19.6 g/cc

 HEU Solution: U(93.5) metal-water mixture at various HEU concentrations

 Pu Solution: Pu(4) metal-water mixtures at various Pu concentrations

 F: Fraction of Critical Mass of Pu or HEU.

This information is used to determine the multiplication factor, keff, estimate based upon the fraction of 
critical mass that may be in a fissile material operation. Empirical formulae are provided to calculate this 
estimate. In addition to these systems, information on LEU solutions (i.e., U(5) metal-water mixtures at 
various U-235 concentrations) has been provided. This was not part of O’Dell’s original report but is 
calculated for this publication. All the critical mass data, infinite multiplication factors, and effective 
multiplication factors have been recalculated for this report using PARTISN and Hansen-Roach cross 
sections.

HEU and Pu Metal Systems

Table B-1 provides critical mass data for spherical fissile metal systems. Water reflected systems are 
those with full water reflection (i.e., 30 cm). Figures B-1 and B-2 provide the multiplication factor data as 
a function of the fraction of critical mass for the HEU and Pu metal systems. Figure B-1 is for bare 
systems while Figure B-2 is for water reflected systems. and Pu metal systems. The keff values for the 
metal systems compare well to the empirical values.
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Table B-1.  Metal Sphere Critical Masses
Critical Mass (kg)30

Material Unreflected Water Reflected
HEU 53.8 24.4
Pu(4.5) 16.9 8.4
Pu(20) 19.0 9.9
Pu(4.5) 10.6 5.9

According to Reference B1, a reasonable estimate of the keff for HEU and Pu metals for both bare and 
water reflected configurations could be calculated with the following relationship: keff ≈ F0.3, where F is 
the fraction of critical mass for this system equal to the ratio of the actual fissile mass present to the 
critical mass for the material present (Table B-1).

This formula makes sense based on Reference B2. Thomas indicates that 𝑘𝑒𝑓𝑓 = 𝑟
𝑟𝑐𝑟𝑖𝑡

𝑠
 where s is 0.917 

for U(93.2) and 0.916 for Pu(5.2). As the radius is proportional to volume0.333, and mass is proportional to 
volume, then F s/3. So, 𝑘𝑒𝑓𝑓 ≈ 𝐹0.306 or very close to the 0.3 found by O’Dell.

Figure B-1 shows the multiplication factor as a function of fraction critical for plutonium metal systems, 
both bare and reflected. As can be seen in the figures all curves lie very close to and some on top of the 
approximation. keff ≈ F0.3, which is indicated by the red curve. The reflected system curves are slightly 
above the approximation.

30 Critical mass values in this table are for total Uranium and total Plutonium.
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Figure B-1.  k-effective versus Fraction Critical for Plutonium Metals.
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Figure B-2 shows the multiplication factor as a function of fraction critical for high-enriched uranium 
(HEU) metal systems, both bare and reflected. As can be seen in the figures the bare curve lies very close 
to the approximation:  keff ≈ F0.3, which is indicated by the red curve. The reflected curve is above the 
approximation and in fact follows the relationship, keff ≈ F0.274.

Figure B-2.  k-effective versus Fraction Critical for HEU Metal.

Solutions Systems

O’Dell provides the information shown in Tables B-2 and B-3 for critical masses for spherical fissile 
solution systems. Table B-2 provides the information for Pu(4)-water solutions at 4 different Pu 
concentrations. Again, water reflected systems are those with full water reflection (i.e., 30 cm).
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Table B-2. Pu Solution Sphere Critical Masses
Critical Mass (kg)Material Concentration

(g/liter) Unreflected Water Reflected
Pu(4) 20 1.08 0.68
Pu(4) 30 1.05 0.60
Pu(4) 50 1.28 0.66
Pu(4) 200 3.97 1.80

Table B-3 provides the information for HEU-water (U(93.5)-H2O) solutions at 4 different uranium 
concentrations. Again, water reflected systems are those with full water reflection (i.e., 30 cm).

Table B-3. HEU Solution Sphere Critical Masses
Critical Mass (kg)Material Concentration

(g/liter) Unreflected Water Reflected
HEU 20 3.24 2.356
HEU 30 1.84 1.17
HEU 50 1.60 0.90
HEU 200 3.19 1.45

O’Dell then looks at a similar relationship to estimate the keff for HEU and Pu solutions for, again, bare 
and water-reflected configurations: keff ≈ F0.25, where F is the fraction of critical mass. However, as 
shown in Figure B-3 (for bare Pu(4) solutions) and Figure B-4 (for bare HEU solutions), there is a 
significant variation from the empirical fit. For this reason, it was decided to reanalyze the behavior of 
solution system k-effectives.
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Figure B-3.  k-effective versus Fraction Critical for Pu(4) Solutions.

Note: the 50 g Pu/L and the 200 g Pu/L curves are almost identical.
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Figure B-4.  k-effective versus Fraction Critical for HEU Solutions.

Examining the variation in curves for the Pu(4) solutions (figure B-3) indicates that there must be some 
parameter that causes one curve to have a significant different slope than another (e.g., 20 g Pu/L 
concentration versus 50 g Pu/L concentration) while two curves have almost identical behavior (e.g., 50 g 
Pu/L and 200 g Pu/L). Evaluations of the four different concentrations showed that the infinite 
multiplication factor, k∞, appeared to play a major role. Table B-4 gives k∞ for each of the four Pu(4) 
solution concentrations, and for each of the four U(93.5) solution concentrations. Table B-4 also provides 
updated critical mass values.31

31 Although Reference B-1 provided values for total uranium mass, it is more typical to report values for U-235. 
Thus, Table B-4 has the critical mass values for HEU solutions reported in kg U-235, and concentrations for 
HEU solutions are g-U235/liter.
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Table B-4. Solution Sphere Critical Masses and k∞
Critical Mass (kg)32

Material Concentration
(g/liter)

k∞
from ARH-600 Unreflected Water 

Reflected
Pu(4) 20 1.445 1.09 0.68

Pu(4) 30 1.571 1.06 0.60

Pu(4) 50 1.671 1.29 0.67

Pu(4) 200 1.715 4.03 1.83

U(93.5) 20 1.26 2.71 1.93
U(93.5) 30 1.44 1.69 1.06
U(93.5) 50 1.63 1.54 0.86
U(93.5) 200 1.87 3.21 1.45

Note the significant difference in k∞ between 20 g Pu /L Pu(4) solution (1.445) and 50 g Pu / L Pu(4) 
solution (1.671), while the values are very close for 50 g Pu /L Pu(4) solution (1.650) and 200 g Pu / L 
Pu(4) solution (1.715). Thus, the variation in curve shape and slope may be the result of a variation in the 
leakage fraction of each system.

From diffusion theory and as discussed Buckling Conversion, Chapter 3, equation 75, shows the 
relationship between keff and the bucklings:

𝑘𝑒𝑓𝑓 =
1 + 𝐵2

𝑚𝑀2

1 + 𝐵2
𝑔𝑀2 (B.1) 

32 As noted in footnote 4, most tables and figures in the literature report uranium solution concentrations and 
critical masses in relation to U-235 content, critical mass values in this table are for U-235 and the solution 
concentrations are in grams U-235 per liter. The plutonium solution concentrations and critical masses are for 
total plutonium.
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We can use the diffusion theory definition of 𝑘∞ = 1 + 𝐵2
𝑚𝑀2 to create equation B.2.

𝑘𝑒𝑓𝑓 =
𝑘∞

1 + 𝐵2
𝑔𝑀2 (B.2)

Now we need to relate fraction critical to the bucklings.

F =
𝑚

geom
𝑚

crit
  =   

𝜌𝑉𝑔𝑒𝑜𝑚

𝜌𝑉𝑐𝑟𝑖𝑡
=

𝑉𝑔𝑒𝑜𝑚

𝑉𝑐𝑟𝑖𝑡

𝐵2
𝑚

𝐵2
𝑔

=

𝜋
𝑅𝑐𝑟𝑖𝑡

2

𝜋
𝑅𝑔𝑒𝑜𝑚

2 =
𝑅𝑔𝑒𝑜𝑚

𝑅𝑐𝑟𝑖𝑡

2

   for large radii, 
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𝑔𝑒𝑜𝑚

𝑉
2
3
𝑐𝑟𝑖𝑡
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𝑚
𝐵2

𝑔
≈ F0.667

 (B.3)

The assumption has be made that the ratio of extrapolated radii is approximately equal to the ratio of 
physical radii. This means that the extrapolation distance is very small compared to the radii, which is a 
reasonable assumption for solution systems. Now returning to equation B.2 and doing some manipulation, 
we find a relationship between keff, k∞, and fraction critical.

𝑘𝑒𝑓𝑓 =
𝑘∞

1 + 𝐵2
𝑔𝑀2

     divide both top and bottom by (𝑘∞ ― 1)

𝑘𝑒𝑓𝑓 =
𝑘∞/(𝑘∞ ― 1)
1

(𝑘∞ ― 1) +
𝐵2

𝑔𝑀2

(𝑘∞ ― 1)

now(𝑘∞ ― 1) = 𝐵2
𝑚𝑀2,

so𝑘𝑒𝑓𝑓 =
𝑘∞/(𝑘∞ ― 1)

1
(𝑘∞ ― 1) +

𝐵2
𝑔𝑀2

𝐵2
𝑚𝑀2

=
𝑘∞/(𝑘∞ ― 1)

1
(𝑘∞ ― 1) +

𝐵2
𝑔

𝐵2
𝑚

 (B.4)

From eqn. B.3, 
𝐵2

𝑔

𝐵2
𝑚

= F―0.667,so  𝑘𝑒𝑓𝑓 =
𝑘∞/(𝑘∞ ― 1)
1

(𝑘∞ ― 1) + F―0.667

and multiplying by (𝑘∞ ― 1),𝑘𝑒𝑓𝑓 =
𝑘∞/(𝑘∞ ― 1)

1
(𝑘∞ ― 1) +

(𝑘∞ ― 1)F―0.667

(𝑘∞ ― 1)

𝑘𝑒𝑓𝑓 =
𝑘∞/(𝑘∞ ― 1)

1
(𝑘∞ ― 1) +

(𝑘∞ ― 1)F―0.667

(𝑘∞ ― 1)

=
𝑘∞

[1 + (𝑘∞ ― 1)F―0.667]

so𝑘𝑒𝑓𝑓 = 𝑓(𝑘∞,F)     and for a given 𝑘∞,  𝑘𝑒𝑓𝑓 = F𝑠

 (B.5)
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Looking at plots of keff versus F, we see that a single exponent for F , such as 0.25 as shown in Figures 
B-3 and B-4, will not cover all the solution concentrations. So, for various values of k∞, the exponent for F 
was determined with the behavior shown in figure B-5.

Figure B-5.  k-effective versus Fraction Critical for various k∞ values.

In evaluating the empirical fits, it was determined that for fraction critical values less than 0.3, there was 
wide variation in the goodness-of-fit (this was likely due to the small system sizes that conflicted with the 
assumption that extrapolation distance was small compared to the system radius). So empirical fits were 
applied to the data for fraction critical values from 0.3 to 1.2. For the bare solution systems, it was 
determined that:

𝑠 = ― 0.2784 𝑘2
∞ +1.1768𝑘∞ ― 0.8649so𝑘𝑒𝑓𝑓 = 𝐹𝑠for a given 𝑘∞ (B.6)

LEU Solution Systems

For this publication, critical mass values for low enriched uranium (LEU) solutions (U(5)O2-H2O) and 
infinite multiplication factors have been calculated and are presented in Table B-5.
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Table B-5..LEU Solution Sphere Critical Masses and k∞

Critical Mass (kg U-235)
Material Concentration

(g U-235/liter)

k∞
from ARH-600,
Reference B3 Unreflected Water 

Reflected

U(5)O2 20 1.129 6.33 4.84

U(5)O2 30 1.268 3.40 2.29

U(5)O2 50 1.388 3.07 1.83

U(5)O2 70 1.430 3.69 2.08

U(5)O2 100 1.443 5.09 3.01

It was found that the LEU bare solution systems also followed the empirical fit given as equation 3.6. For 
values of fraction critical greater than or equal to 0.30, the empirically determined keff was within 1 % of 
the calculated value for solution concentrations from 0.02 g U235 /cc through 0.10 g U235/cc..

Reflected Solution Systems

Although all three bare solution systems (Pu(4)-H2O, U(93.5)-H2O, and U(5)O2-H2O) followed the same 
empirical fit, this was not the case for the reflected systems. For these systems, a reflected polynomial 
was calculated by creating a second-order polynomial fit to the plot of (sbcalc – srefl) versus k∞, which gave 
an equation of the form: 𝛥𝑠 = 𝑐𝑘2

∞ +𝑑𝑘∞ +𝑒 . Then the empirical fit for the reflected exponent, srefl, is:

𝑠𝑟𝑒𝑓𝑙 = 𝑠𝑏𝑓𝑖𝑡 ― 𝛥𝑠 = ( ―0.2784 ― 𝑐)𝑘2
∞ + (1.1768 ― 𝑑)𝑘∞ + ( ―0.8649 ― 𝑒) 

(B.7)

The fits for the reflected systems are:

𝑃𝑢(4) ― 𝐻2𝑂:𝑠𝑟𝑒𝑓𝑙 = ―0.6234𝑘2
∞ + 2.1042𝑘∞ ― 1.5258     and    𝑘𝑒𝑓𝑓 = 𝐹𝑠

 (B.8)
𝑈(93.5) ― 𝐻2𝑂:𝑠𝑟𝑒𝑓𝑙 = ―0.3077𝑘2

∞ + 1.1732𝑘∞ ― 0.8410     and    𝑘𝑒𝑓𝑓 = 𝐹𝑠
 (B.9)

𝑈(5)𝑂2 ― 𝐻2𝑂:𝑠𝑟𝑒𝑓𝑙 = ―0.4240𝑘2
∞ + 1.4661𝑘∞ ― 1.0276     and    𝑘𝑒𝑓𝑓 = 𝐹𝑠

 (B.10)

With these fits, all of the empirically determined keff values for fraction criticals of 0.3 or greater are 
within 1 % of the calculated values.

The adequacy of a single fit for bare systems results from leakage (and hence k∞) being the dominant 
process. However, when reflection is added to the systems, the neutron energy spectrum is changed, so 
each of the three, reflected solution systems requires an individual empirical fit.
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Solution System Plots

For the three types of solutions systems, plots of keff versus fraction critical are provided to demonstrate 
variation from a simple keff ≈ F0.25 fit.

Pu(4)-H2O Solutions

Shown in Figure B-6 is the plot for a bare plutonium solution system while Figure B-7 is the plot for a 
plutonium solution system reflected with 30 cm of water.

Figure B-6.  keff vs. Fraction of Critical Mass: Bare Pu(4) Solution
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Figure B-7.  keff vs. Fraction of Critical Mass: Reflected Pu(4) Solution
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U(93.5)-H2O Solutions

Shown in Figure B-8 is the plot for a bare uranium solution system while Figure B-7 is the plot for a 
uranium solution system reflected with 30 cm of water.

Figure B-8.  keff vs. Fraction of Critical Mass: Bare U(93.5) Solution
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Figure B-9  keff vs. Fraction of Critical Mass: Reflected U(93.5) Solution
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LEU Solution Systems

This information was not part of O’Dell’s original report but is calculated for this publication. Figures B-
10 and B-11 provide the multiplication factor data as a function of the fraction of critical mass for low-
enriched uranium (LEU) solutions of varying concentrations. Figure B-10 is for bare systems while 
Figure B-11 is for water reflected systems. 

Figure B-10.  keff vs. Fraction of Critical Mass: Bare LEU Solution
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In Figure B-11, note the 70 gU235/L curve is hidden under the 100 gU235/L curves, also note that all 
three higher concentration systems (i.e., 50 gU235/L, 70 g U235/L, and 100 gU235/L) are very close 
throughout the entire range of fraction critical values. 

Figure B-11.  keff vs. Fraction of Critical Mass: Water Reflected LEU Solution
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Example Problem – Determine the keff for bare and reflected uranium systems with a fraction 
critical = 0.5. Compare the results for: Uranium Metal (18.74 gU/cc), HEU Solution (0.05 
gU235/cc), and LEU Solution (0.05 gU235/cc).

For Uranium Metal, Table B-1 gives a critical mass of 53.8 kg U for a bare system and a critical mass of 
24.4 kg U for a reflected system. For metals, the keff ≈ F0.3, so:

𝑘𝑒𝑓𝑓 ≈ F0.3with  F = 0.5,𝑘𝑒𝑓𝑓 ≈ (0.5)0.3 = 0.812 
Notice that this is the same for both bare and reflected. However, it was noted that reflected uranium 
metal systems tend to follow a slightly different relationship where keff ≈ F0.274, so:

𝑘𝑒𝑓𝑓 ≈ F0.274with  F = 0.5,𝑘𝑒𝑓𝑓 ≈ (0.5)0.274 = 0.827 
The computer calculated values are 0.821 for the bare system (mass = 26.9 kg U(93.5)) and 0.844 for the 
reflected system (mass = 12.2 kg U(93.5)); a difference of about 1% for the bare system and 2% for the 
reflected system.

For HEU Solutions at 0.05 gU235/cc, Table B-4 gives k∞ = 1.63, a critical mass of 1.54 kg U235 for a 
bare system and a critical mass of 0.86 kg U235 for a reflected system. For the HEU systems, values are 
reported based on U-235 content. For bare solutions, the exponent is given by equation B.7: 

𝑠 = ― 0.2784 𝑘2
∞ +1.1768𝑘∞ ― 0.8649 

With k∞ = 1.63:

𝑠 = ―0.2784(1.63)2 + 1.1768(1.63) ― 0.8649 = 0.314

𝑘𝑒𝑓𝑓 ≈ F0.314with  F = 0.5,𝑘𝑒𝑓𝑓 ≈ (0.5)0.314 = 0.804 

This compares with a computer calculated value of 0.814 for the bare solution system (mass = 0.77 kg U-
235). For reflected HEU systems, the exponent is given by equation B.9: 

𝑠 = ―0.3077𝑘2
∞ + 1.1732𝑘∞ ― 0.8410

With k∞ = 1.63:
𝑠 = ―0.3077(1.63)2 + 1.1732(1.63) ― 0.8410 = 0.254

𝑘𝑒𝑓𝑓 ≈ F0.254with  F = 0.5,𝑘𝑒𝑓𝑓 ≈ (0.5)0.254 = 0.839 

This compares with a computer calculated value of 0.847 for the reflected solution system (mass = 0.43 
kg U-235).



B-20

For LEU Solutions at 0.05 gU235/cc, Table B-5 gives k∞ = 1.388, a critical mass of 3.07 kg U235 for a 
bare system and a critical mass of 1.83 kg U235 for a reflected system. For bare solutions, the exponent is 
given by equation B.7:

𝑠 = ―0.2784𝑘2
∞ + 1.1768𝑘∞ ― 0.8649

With k∞ = 1.388

𝑠 = ―0.2784(1.388)2 + 1.1768(1.388) ― 0.8649 = 0.232

𝑘𝑒𝑓𝑓 ≈ F0.232with  F = 0.5,𝑘𝑒𝑓𝑓 ≈ (0.5)0.232 = 0.851 

This compares with a computer calculated value of 0.854 for the bare solution system (mass = 1.535 kg 
U-235). For reflected LEU systems, the exponent is given by equation B.10: 

𝑠 = ―0.4240𝑘2
∞ + 1.4661𝑘∞ ― 1.0276

With k∞ = 1.388:

𝑠 = ―0.4240(1.388)2 + 1.4661(1.388) ― 1.0276 = 0.190

𝑘𝑒𝑓𝑓 ≈ F0.190with  F = 0.5,𝑘𝑒𝑓𝑓 ≈ (0.5)0.190 = 0.877 

This compares with a computer calculated value of 0.879 for the reflected solution system (mass = 0.915 
kg U-235).

The k∞ values were obtained from the tables in this Appendix based on Reference B3. For systems other 
than those described here, k∞ values can be obtained from Handbooks such as Reference B3 to allow the 
calculation of keff for systems other than those described here.

SUMMARY - Perhaps the most notable result of these analyses is the extreme nonlinearity of keff as a 
function of F. In particular, for low values of F (less than 0.2 of a critical mass), keff rises very quickly to 
values of 0.5 to 0.7. Note also that a keff of 0.9 is obtained with less than 70% of a critical mass.
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