Measurement of the neutron-induced capture-to-fission cross section ratio in 233U at LANSCE

2023 Annual NCSP Technical Program Review

Esther Leal Cidoncha
February 21-23, 2023
Motivation

- Th-U alternative to U-Pu fuel cycle due to its reduced amount of transuranium elements.
- 232Th is more abundant in nature than uranium.
- In the Th fuel cycle the 232Th, transmutes into the fissile isotope 233U.

\[n + ^{232}_{90}Th \rightarrow ^{233}_{90}Th \beta^- \rightarrow ^{233}_{91}Pa \beta^- \rightarrow ^{233}_{92}U \]

- 233U(n,f) produces a large rate of emitted neutrons, enough to maintain the chain reaction.
- For this reason, the Th fuel cycle may be the basis of thermal breeder reactors, being also suitable to use in fast reactors.
- Chemical advantages from thorium vs uranium: higher melting point and thermal conductivity.

Illustration of the thorium fuel cycle.
Motivation

- Experimental $^{233}\text{U}(n,\gamma)$ cross section data in the literature are scarce and were measured decades ago.
- New report [1] suggests that a simultaneous measurement with capture would be useful.
- For ^{233}U fission is around one order of magnitude more likely than capture.
 - Good discrimination between gammas coming from capture and fission is required.
- New measurement proposed at LANL combining NEUANCE and DANCE.

Time-of-flight measurements

p beam (800MeV, 20Hz) → Spallation target

Proton bunch → Collimator → Flight path (20m)

Water moderator

White neutron bunch → "Stable" sample

Detector

Neutron Energy:

\[E_n = m_n c^2 \left(\frac{1}{\sqrt{1 - \left(\frac{v}{c} \right)^2}} - 1 \right) \]

with:

\[v = \frac{L}{T} \]

Flux

\[\text{Flux}_{n} = 3 \times 10^5 \text{ n/s/cm}^2/\text{dec} \]
Detectors

DANCE (Detector for Advanced Neutron Capture Experiments)
- 4πBaF$_2$ γ-ray calorimeter composed by 160 crystals with an inner cavity of 17 cm radius [2].
- Used to measure neutron capture cross section data on small quantities of radioactive isotopes.
- We can measure E_n, E_{sum}, E_{cl}, and M_{cl}, providing more information than with C6D6 detectors.

NEUANCE (NEUtron detector array at dANCE)
- Neutron detector array that consists in 21 stilbene crystals arranged in a cylindrical geometry around the beam pipe [3].
- Used to detect neutrons coming from fission and determine by coincidence with DANCE, the gammas coming from fission.
- NEUANCE detects neutrons with energies above 500 keV (fission neutrons have these energies), therefore **low energy scattered neutrons** that are below this threshold are discriminated.
- Possibility to use a thick target.
- NEUANCE can also detect gammas.

Fission tagging process

- Search for coincidences between the two detectors.
- The DANCE gammas in coincidence with the NEUANCE neutrons are tagged as fission gammas.
- The purpose of tagging is to define the shape of the fission γ-ray spectrum that can be subtracted from the total spectrum.
Background studies

- The background varies with the neutron energy, therefore it is subtracted per En bin.

\[Q \text{ value peak} = 6.845 \text{ MeV} \]

Mcl=(4,5)

En = 300eV

Counts

$E_{\text{tot}} (\text{MeV})$

Los Alamos National Laboratory
Capture-to-fission ratio

The capture-to-fission ratio is given by:

\[\alpha(E_n) \equiv \frac{\sigma_{\gamma}(E_n)}{\sigma_f(E_n)} \]
Capture-to-fission ratio

The capture-to-fission ratio is given by:

$$\alpha(E_n) \equiv \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)}$$

We measure a number of events C_i as a function of the neutron energy associated with process i (fission or capture):

$$C_i(E_n) = \varepsilon_i Y_i(E_n)$$
Capture-to-fission ratio

The capture-to-fission ratio is given by:

\[\alpha(E_n) \equiv \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)} \]

We measure a number of events \(C_i\) as a function of the neutron energy associated with process \(i\) (fission or capture):

\[C_i(E_n) = \varepsilon_i Y_i(E_n) \]

and

\[Y_i(E_n) = \sigma_i(E_n) N_{233U} \Phi_n(E_n) \]
Capture-to-fission ratio

The capture-to-fission ratio is given by:

$$\alpha(E_n) \equiv \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)}$$

We measure a number of events C_i as a function of the neutron energy associated with process i (fission or capture):

$$C_i(E_n) = \varepsilon_i Y_i(E_n)$$

and

$$Y_i(E_n) = \sigma_i(E_n) N_{233U} \Phi_n(E_n)$$

Therefore, the capture-to-fission ratio can be expressed as:

$$\frac{C_\gamma(E_n)}{C_f(E_n)} = \frac{\varepsilon_\gamma Y_\gamma(E_n)}{\varepsilon_f Y_f(E_n)}$$
Capture-to-fission ratio

The capture-to-fission ratio is given by:

\[\alpha(E_n) \equiv \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)} \]

We measure a number of events \(C_i \) as a function of the neutron energy associated with process \(i \) (fission or capture):

\[C_i(E_n) = \varepsilon_i Y_i(E_n) \]

and

\[Y_i(E_n) = \sigma_i(E_n) N_{233U} \Phi_n(E_n) \]

Therefore, the capture-to-fission ratio can be expressed as:

\[\frac{C_\gamma(E_n)}{C_f(E_n)} = \frac{\varepsilon_\gamma Y_\gamma(E_n)}{\varepsilon_f Y_f(E_n)} = \frac{\varepsilon_\gamma \sigma_\gamma(E_n) N_{233U} \Phi_n(E_n)}{\varepsilon_f \sigma_f(E_n) N_{233U} \Phi_n(E_n)} \]
Capture-to-fission ratio

The capture-to-fission ratio is given by:

\[
\alpha(E_n) \equiv \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)}
\]

We measure a number of events \(C_i \) as a function of the neutron energy associated with process \(i \) (fission or capture):

\[
C_i(E_n) = \varepsilon_i Y_i(E_n)
\]

and

\[
Y_i(E_n) = \sigma_i(E_n) N_{233U} \Phi_n(E_n)
\]

Therefore, the capture-to-fission ratio can be expressed as:

\[
\frac{C_\gamma(E_n)}{C_f(E_n)} = \frac{\varepsilon_\gamma Y_\gamma(E_n)}{\varepsilon_f Y_f(E_n)} = \frac{\varepsilon_\gamma \sigma_\gamma(E_n) N_{233U} \Phi_n(E_n)}{\varepsilon_f \sigma_f(E_n) N_{233U} \Phi_n(E_n)}
\]
Capture-to-fission ratio

The capture-to-fission ratio is given by:

\[\alpha(E_n) \equiv \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)} \]

We measure a number of events \(C_i \) as a function of the neutron energy associated with process \(i \) (fission or capture):

\[C_i(E_n) = \varepsilon_i Y_i(E_n) \]

and

\[Y_i(E_n) = \sigma_i(E_n) N_{233U} \Phi_n(E_n) \]

Therefore, the capture-to-fission ratio can be expressed as:

\[\frac{C_\gamma(E_n)}{C_f(E_n)} = \frac{\varepsilon_\gamma Y_\gamma(E_n)}{\varepsilon_f Y_f(E_n)} = \frac{\varepsilon_\gamma \sigma_\gamma(E_n) N_{233U} \Phi_n(E_n)}{\varepsilon_f \sigma_f(E_n) N_{233U} \Phi_n(E_n)} = \frac{\varepsilon_\gamma \sigma_\gamma(E_n)}{\varepsilon_f \sigma_f(E_n)} \]
Capture-to-fission ratio

The capture-to-fission ratio is given by:

$$\alpha(E_n) \equiv \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)}$$

We measure a number of events C_i as a function of the neutron energy associated with process i (fission or capture):

$$C_i(E_n) = \varepsilon_i Y_i(E_n)$$

and

$$Y_i(E_n) = \sigma_i(E_n) N_{233U} \Phi_n(E_n)$$

Therefore, the capture-to-fission ratio can be expressed as:

$$\frac{C_\gamma(E_n)}{C_f(E_n)} = \frac{\varepsilon_\gamma Y_\gamma(E_n)}{\varepsilon_f Y_f(E_n)} = \frac{\varepsilon_\gamma \sigma_\gamma(E_n) N_{233U} \Phi_n(E_n)}{\varepsilon_f \sigma_f(E_n) N_{233U} \Phi_n(E_n)} = \frac{\varepsilon_\gamma \sigma_\gamma(E_n)}{\varepsilon_f \sigma_f(E_n)} = k \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)}$$
Capture-to-fission ratio

The capture-to-fission ratio is given by:

\[\alpha(E_n) \equiv \frac{\sigma_\gamma(E_n)}{\sigma_f(E_n)} \]

We measure a number of events \(C_i \) as a function of the neutron energy associated with process \(i \) (fission or capture):

\[C_i(E_n) = \varepsilon_i Y_i(E_n) \]

and

\[Y_i(E_n) = \sigma_i(E_n) N_{233U} \Phi_n(E_n) \]

Therefore, the capture-to-fission ratio can be expressed as:

\[\frac{C_\gamma(E_n)}{C_f(E_n)} = \frac{\varepsilon_\gamma Y_\gamma(E_n)}{\varepsilon_f Y_f(E_n)} \]

\[= \frac{\varepsilon_\gamma \sigma_\gamma(E_n) N_{233U} \Phi_n(E_n)}{\varepsilon_f \sigma_f(E_n) N_{233U} \Phi_n(E_n)} \]

\[= \frac{\varepsilon_\gamma \sigma_\gamma(E_n)}{\varepsilon_f \sigma_f(E_n)} \]

\[= \frac{k \sigma_\gamma(E_n)}{\sigma_f(E_n)} \]

Hence:

\[\alpha(E_n) \equiv \frac{1}{k} \frac{C_\gamma(E_n)}{C_f(E_n)} \]
Capture-to-fission ratio

- Experimental advantages of the capture-to-fission ratio:
 - It is much simpler and more reliable to determine experimentally as many of the systematic questions:
 - Sample mass
 - Self-shielding
 - Neutron exposure
 will cancel out in an appropriately designed experiment.
Capture-to-fission ratio

- Normalization to ENDF/B-VIII.0 broadened cross section ratio in the neutron energy region suggested by the Luiz Leal and Marco Pigni (8.1-14.7) eV:

![Graph showing capture-to-fission ratio with different data sets compared.](image)
Capture-to-fission ratio

\[\frac{\alpha}{E_n (\text{eV})} \]

This work
Berthomieux 1 (2007)
Berthomieux 2 (2007)
Weston (1968)
ENDF/B-VIII.0 broadened
ENDF/B-VIII.0

\[\frac{\alpha}{E_n (\text{eV})} \]

This work
Berthomieux 1 (2007)
Berthomieux 2 (2007)
Weston (1968)
ENDF/B-VIII.0 broadened
ENDF/B-VIII.0

\[\frac{\alpha}{E_n (\text{eV})} \]

This work
Berthomieux 1 (2007)
Berthomieux 2 (2007)
Weston (1968)
ENDF/B-VIII.0 broadened
ENDF/B-VIII.0

\[\frac{\alpha}{E_n (\text{eV})} \]

This work
Berthomieux 1 (2007)
Berthomieux 2 (2007)
Weston (1968)
ENDF/B-VIII.0 broadened
ENDF/B-VIII.0

Los Alamos
NATIONAL LABORATORY

02/22/23 11
Capture-to-fission ratio

- This work
- Berthomieux 2 (2007)
- Weston (1968)
- JEFF-3.3
- ENDF/B-VIII.0 broadened
- ENDF/B-VIII.0

- This work
- Weston (1968)
- JEFF-3.3
- ENDF/B-VIII.0

- This work
- Hopkins (1962)
- JEFF-3.3
- JENDL-5
- ENDF/B-VIII.0
The capture cross section was calculated by multiplying the capture-to-fission ratio by the ENDF/B-VIII.0 fission cross section.

The broadened cross section was used in the Resolved Resonance Region.

Remember that this is not an independent measurement of the capture cross section.
Statistical Model Calculation

- Statistical model calculations were performed by I. Stetcu, T. Kawano and A. Lovell with the CoH3 code [4] from 1 keV to 5 MeV (Energy for which only the first fission chance is involved).
- This code combines the coupled-channels optical model and the statistical Hauser-Feshbach model calculations by performing the Engelbrecht-Weidenmüller transformation of the penetration matrix.
- Different values of the average γ-ray width have been tried by adjusting the M1 γ-ray strength function for the scissors mode.
- Mughabghab gives 40 meV.
- To reproduce the data from Hopkins it had to be reduced to 24 meV.
- A smaller value would be needed to reproduce this work.

Conclusions

- New measurement at LANSCE combining DANCE and NEUANCE at the end of 2020 and 2021.
- Two samples of 10 mg and 20 mg of ^{233}U have been prepared at LANL by Evelyn M. Bond (December 2020).
- Data analysis has been finished and results of the capture-to-fission ratio on ^{233}U in the neutron energy region from 0.7 eV to 250 keV have been provided.
- The focus was to provide data from 1-300 keV. We are providing data from 0.7 eV to 1 keV in addition.
- The result has been normalized to the ENDF/B-VIII.0 broadened capture-to-fission cross section ratio in the neutron energy region recommended by the Luiz Leal and Marco Pigni, between 8.1 and 14.7 eV.
- This is the first measurement of the capture-to-fission ratio between 2 - 30 keV.
- The data show some small differences in the RRR with the evaluation though the general trend is consistent.
- In the URR this data show a smaller capture-to-fission ratio than the evaluation from 10 to 150 keV.
Acknowledgements

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

The 233U was supplied by DOE/SC Isotope Program.

Thanks to our collaborators:

Aaron Couture, Evelyn M. Bond, Todd A. Bredeweg, Cathleen Fry, Toshihiko Kawano, Amy E. Lovell, Gencho Rusev, Ionel Stetcu, and John Ullmann
Los Alamos National Laboratory

Luiz Leal
Institut de Radioprotection et de Sûreté Nucléaire (France)

Marco T. Pigni
Oak Ridge National Laboratory
The 30 mg of 233U were supplied from Oak Ridge National Laboratory (ORNL).

Material composition:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Atom (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233U</td>
<td>99.9843</td>
</tr>
<tr>
<td>234U</td>
<td><0.0002</td>
</tr>
<tr>
<td>235U</td>
<td>0.0017</td>
</tr>
<tr>
<td>236U</td>
<td>0.0004</td>
</tr>
<tr>
<td>238U</td>
<td>0.0134</td>
</tr>
</tbody>
</table>

Two samples have been prepared by Evelyn M. Bond at LANL.

- 20 mg
- 10 mg
PSD NEUANCE

- Neutrons & gammas separation using the plot (long-short)/long vs long.

- Clear discrimination between fission neutrons and γ-rays.
DANCE calibrations

- Intrinsic radioactivity of BaF$_2$ used to calibrate the DANCE crystals.
- Using the Alpha-decay chain of the 226Ra present in the BaF$_2$.
 - 226Ra (4.8 MeV)
 - 222Rn (5.5 MeV)
 - 218Po (6.0 MeV)
 - 214Po (7.7 MeV)
NEUANCE calibrations

- Calibration using gamma sources:
 - 22Na (511 keV and 1274.537 keV).
 - 137Cs (661.657 keV).
 - 88Y (898.047 keV and 1836.090 keV).