ORNL R-matrix Analyses for Non-Fissile Materials within NCSP

Jesse Brown, Chris W. Chapman, Jordan McDonnell, Marco Pigni
Nuclear Data Group, Oak Ridge National Laboratory

Technical Program Review – NCSP: Feb. 20-23, 2023
Nuclear Data Cycle: Foundational Measurements

Motivation

Differential Measurements

Data Evaluations

Evaluated Nuclear Data Files (ENDF)

Nuclear Data Processing

Validation / Applications

Foundation

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>35Cl</td>
<td>2025</td>
</tr>
<tr>
<td>63,65Cu</td>
<td>2023</td>
</tr>
<tr>
<td>176,177,178,179,180Hf</td>
<td>2025</td>
</tr>
<tr>
<td>139La</td>
<td>2023</td>
</tr>
<tr>
<td>88Sr</td>
<td>2023</td>
</tr>
<tr>
<td>181Ta</td>
<td>2023</td>
</tr>
</tbody>
</table>
181Ta

- New capture and transmission data (RPI)
- RRR evaluation (NNL)
- URR evaluation (ORNL)
- Fast evaluation (LANL)

- File assembly in progress
 - NNDC GitLab for details
- Validation ongoing
Strontium evaluation

- **Motivation**
 - Existing R-matrix analysis of 88Sr in the RRR was performed from the fit of ORELA transmission and capture measurements
 - The evaluation work was never included in the ENDF/B-VIII.0 library
 - Resonance parameters taken from Kohler’s paper (Phys. Rev. C62, 055803, 2000) and compared to ENDF/B-VIII.0
 - Overall good agreement with measured data and ENDF/B-VIII.0 except in the low-energy region

- **Action(s):** Calibration of the negative levels and possible extension up 1 MeV (Currently ENDF is up to 300 keV).
Chlorine evaluation

Motivation

- The 35Cl(n,p) cross sections largely underestimated in ENDF/B-VIII.0 library
- Methodology to derive (n,p) data from total cross section developed and preliminary set up of the evaluation procedure
- New measurements are in progress (LANL, OU, nTOF, ...) and needed to updated the (n,p) reaction channel

Action(s): Inclusion of newly measured data when available
Hf – preliminary work

- Evaluation in conjunction with IER-532 (TEX-Hf benchmark)
- Multi-institute collaboration (ORNL, IRSN, NNL)
- Review of resolved and unresolved resonance regions indicate updated evaluations for all isotopes is warranted
 - RRR: can extend upper energy limit by several keV for each isotope
 - URR: affected by changes in RRR and need to include previously unincorporated experimental data
176,177,178,179,180 Hf – preliminary work

- Fast energy region also analyzed; lack of experimental data made comparison difficult

- Evaluation will require new transmission measurements
 - Cannot use samples from JEFF evaluation, so new samples will be required
 - Previous capture measurements from Ware might be useable if suspected experimental contamination can be quantified
The (n, γ) cross section for ^{63}Cu has been increased, in order to agree with recent measurements by Weigand et al (2017).

The Legendre coefficients for both $^{63,65}\text{Cu}$ have been adjusted to fit the measured data reported by Popov (1986) and Smith (1967).
The adjustment to the Legendre coefficients contributes to overall agreement, and the increase in the 63Cu capture cross section reduces the trend in the ZEUS (HMI-006) series with respect to EALF.
The preliminary R-matrix analysis for 139La has fit resonance parameters to new capture and transmission measurements from Guber et al. The maximum energy for the resolved resonance region is under investigation.
Acknowledgements

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy and the Joint Research Center of the European Commission. The isotope(s) used in this research were supplied by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Nuclear Physics.

The entire Nuclear Data Group at ORNL