Bayesian Evaluation Framework for Imperfect Differential and Integral Data or Models
ORNL ND10 Task FY 2022 Report
Goran Arbanas, Jesse Brown, Andrew Holcomb, Dorothea Wiarda
Nuclear Data Group
Nuclear Criticality, Radiation Transport and Safety Section
Nuclear Energy and Fuel Cycle Division
Oak Ridge National Laboratory

Technical Program Review Meeting,
Motivation and Overview

• ORNL ND-10 Task:
 – advance UQ methods for NCSP
 – Differential Nuclear Data and Integral Benchmarks

• FY 2022 activities:
 – Documentation
 – Conference Presentations and Proceedings

• High level overview of the framework

Note: everything else being the same, consistency with Bayes' theorem in this framework improves the likelihood of success. Reliability of a given evaluations still depends on evaluator’s skill/expertise.
Common assumptions used in Bayesian ND evaluations

1. **Linearity:**
 - all models are linear

2. **Normality:**
 - all probability distribution functions are normal, i.e., Gaussian

3. **Perfection:**
 a) The model provides a perfect description of the measured data
 b) The data are perfect and complete *(including the covariances)*
These assumptions can now be selectively removed or enforced

- **Linearity** and **Normality**:
 - e.g. Metropolis Hastings Monte Carlo (MHMC); known as Bayesian Monte Carlo

- **Perfection**:
 - Evaluator can remove this assumption by specifying posterior expectation values and covariance of deviations between the model and data

Note: everything else being the same, consistency with Bayes' theorem in this framework improves the likelihood of success. Reliability of a given evaluation still depends on evaluator's skill/expertise.
Illustrating a mechanism behind small evaluated uncertainties

• Example: suppose a large number (“N”) of identical measurements
 – Suppose measurements are identical in value as well as uncertainty
 • This enables focus on evaluated covariance/uncertainty since the mean values are unaffected
 – Suppose that the correlation among measurements is set to 0
 – Bayes’ theorem then yields uncertainty \rightarrow 0 as $N \rightarrow$ infinity (illustrated below)
 • Unrealistically small evaluated uncertainties are rectified by inflating them until reasonable
 – The uncertainties are underestimated less apparently for any value of N

• Our Bayesian framework provides tools to address this problem.
Conventional evaluation workflow is not completely Bayesian:

1. Evaluator uses expert judgment to align measured data sets before the evaluation
2. Bayesian evaluation is performed (implicitly) assuming *perfect* data and model
3. Unrealistically small uncertainties are inflated manually afterwards
New framework enables completely Bayesian evaluations:

1. Evaluator estimates the effect of imperfections by setting Bayesian posterior expectation values of deviations as well as their covariances
 - Deviation is defined as a difference between the evaluated data and model
 - Evaluators’ expert judgment (or intuition) now formally recognized within Bayes’ theorem!

2. Bayesian evaluation is now determined by the deviations defined in 1.
 - No need to manually inflate evaluated uncertainties as in Step 3. previously
Illustration cont’d.:

By virtue of setting **NON-zero** constraints on the posterior covariance matrix of deviations between the model and data.
Benefits of a generalized form of the Bayes’ Theorem (BT):

• It could improve evaluations of any data, separately or jointly
 – differential cross sections (SAMMY),
 – integral benchmarks (TSURFER/SAMPLER), …

• Enables *Bayesian Monte Carlo* evaluation of *large data sets*
 – Useful for, e.g., TSL evaluations of SNS data, RRR, …

• Enables *Bayesian* evaluation of:
 – *inconsistent* data sets, and/or
 – *defective* model

• Conventional BT is recovered when imperfections made to vanish
 – A seamless connection to the BT in SAMMY/TSURFER/SAMPLER

• API implementation in the SCALE code system
Promising new applications of our Bayesian framework:

• Foundation for the next generation of Bayesian evaluation tools:
 – TSL: ORNL ND-11
 – TSL + RRR: ORNL ND-9
 – TSL + RRR + IBE: NSR&D

• Machine Learning (ML):
 – revisiting UQ of Bayesian Neural Networks to address small uncertainties!
 – ORNL SEED Money project 2022-23 for nuclear data

• UQ for ML in Proliferation Detection
 – DNN R&D 2024 FOA: Data Science whitepaper submitted…
ORNL ND10 FY2022 Publication summary:

• ORNL/TM-2022/2448 Technical Report

• ANS Winter Meeting 2022:

• ND 2022:
Acknowledgments:

- Nuclear Data Group at ORNL
- Nuclear Criticality Safety Group at ORNL
- Dr. Nancy Larson and Dr. Luiz Leal (ORNL, retired)
- Prof. Yaron Danon (RPI)
- Dr. Mark Williams (ORNL, deceased)
- Prof. Vladimir Sobes (UT)
- Dr. Douglas Bowen (ORNL)
Acknowledgments:

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.