Fast on-the-fly Monte Carlo sampling of temperature dependent thermal scattering

Wei Ji
Nuclear Engineering Program
Rensselaer Polytechnic Institute (RPI)

2023 Annual Nuclear Criticality Safety Program
Technical Program Review
February 21, 2023
Team Members and Collaborators

➢ RPI Team Members
 o Wei Ji (PI, Professor, jiw2@rpi.edu)
 o Yaron Danon (Co-PI, Professor)
 o Camden Blake (PhD student)

➢ Collaborators
 o Forrest Brown (retired) – LANL
 o Robert Little – LANL
Acknowledgement

This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
Project Objective and Motivation

- Develop thermal data libraries for MCNP6 to support on-the-fly S(\alpha, \beta) sampling for temperature ranges applicable to nuclear criticality safety

Enhance the physics treatment in MCNP6 so that it can perform fast on-the-fly sampling of S(\alpha, \beta) data at arbitrary temperature
Current Data Storage Format for MCNP6

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature Range [K]</th>
<th># Files</th>
<th>Total Size [MB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>be-beo</td>
<td>293.6 - 1200</td>
<td>8</td>
<td>339.34</td>
</tr>
<tr>
<td>o-beo</td>
<td>293.6 - 1200</td>
<td>8</td>
<td>280.24</td>
</tr>
<tr>
<td>grph</td>
<td>296 - 2000</td>
<td>10</td>
<td>393.99</td>
</tr>
<tr>
<td>grph10</td>
<td>296 - 2000</td>
<td>10</td>
<td>328.88</td>
</tr>
<tr>
<td>grph30</td>
<td>296 - 2000</td>
<td>10</td>
<td>312.08</td>
</tr>
<tr>
<td>h-h2o</td>
<td>283.6 - 800</td>
<td>18</td>
<td>536.1</td>
</tr>
</tbody>
</table>

- Current MCNP ACE file thermal library is large
- Unwieldy for HPC simulations
On-The-Fly (OTF) Data Storage Format

- Small thermal library for select materials
- Adaptive in temperature
- Retains accuracy
- Maintains computational complexity

Single file for a material
Works for any temperature
Only 20-30 MB
From Current Library to On-The-Fly Library

Current library: Each book represents the data for a single temperature for a specific material.

OTF library: Each book represents the date for a specific material for any temperature.
Approaches to Produce OTF Libraries

1. Generate material specific Thermal Scattering Law (TSL) data - $S(\alpha, \beta, T)$.

2. Calculate sampling probability distributions (PDFs and CDFS) on a fine temperature mesh over the applicable range.

3. Apply a regression model to remove temperature dependence from the data.

4. Validation of the regression model
Approaches – Start

- Sample leapr inputs from ENDF/B-VIII.0
- Contains information to evaluate TSL data
 - Phonon spectrum
 - Material parameters
Approaches – Stage 1

- Generate high fidelity TSL data.
 - Utilize NJOY to evaluate TSL on fine grids
 - Alpha, beta, and temperature must be chosen for each material
 - These grids must capture material behavior
Approaches – Stage 1

$S(\alpha, \beta)$ values for graph at 1036 K

Start | Stage 1 | Stage 2 | Stage 3 | Stage 4 | End
Approaches – Stage 1

- Example input grids for graphite
 - Alpha grid: 1E-3 to 38.6 with 1000 points
 - Beta grid: 0 to 80 eV with 2500 points
 - Temperature grid: 296 to 2000 K (every 5 K)
Approaches – Stage 2

- This alone is not enough for sampling. Sampling PDFs and CDFS need to be created.

\[
g(\beta|E, T) = \exp \left(-\frac{\beta}{2} \right) \frac{\int_{\alpha_-}^{\alpha_+} S(\alpha, \beta, T) d\alpha}{\int_{\beta_-}^{\beta_+} \int_{\alpha_-}^{\alpha_+} \exp \left(-\frac{\beta}{2} \right) S(\alpha, \beta, T) d\alpha d\beta}
\]

\[
\hat{h}(\alpha|\beta, T) = \frac{S(\alpha, \beta, T)}{\int_0^{\infty} S(\alpha, \beta, T) d\alpha}
\]

\[
G(\beta|E, T) = \int_{\beta_-}^{\beta} g(\beta'|E, T) d\beta'
\]

\[
\tilde{H}(\alpha|\beta, T) = \int_0^{\alpha} \hat{h}(\alpha|\beta, T) d\alpha'
\]
Approaches – Stage 2

Graph CDFs for Beta at 296 K

Graph CDFs for Alpha at 296 K

Start | Stage 1 | Stage 2 | Stage 3 | Stage 4 | End
Approaches – Stage 3

- Store a single data set for any temperature!

<table>
<thead>
<tr>
<th></th>
<th>CDF_1</th>
<th></th>
<th>CDF_n</th>
<th></th>
<th>CDF_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>$\beta(T)_{1,1}$</td>
<td></td>
<td>$\beta(T)_{1,n}$</td>
<td></td>
<td>$\beta(T)_{1,N}$</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_m</td>
<td>$\beta(T)_{m,1}$</td>
<td></td>
<td>$\beta(T)_{m,n}$</td>
<td></td>
<td>$\beta(T)_{m,N}$</td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_M</td>
<td>$\beta(T)_{M,1}$</td>
<td></td>
<td>$\beta(T)_{M,n}$</td>
<td></td>
<td>$\beta(T)_{M,N}$</td>
</tr>
</tbody>
</table>

- How to define $\beta(T)$ and $\alpha(T)$?

Start | Stage 1 | Stage 2 | Stage 3 | Stage 4 | End
Approaches – Stage 3

- Current technique uses polynomial curve fitting.

- This creates coefficients that can be used to reevaluate the alpha and beta values OTF.

- With simple polynomials, OTF evaluation only adds 10~20% (currently) to the sampling time.
Approaches – Stage 4

- Validation efforts center around randomly sampling the data.
 - Recreate MCNP’s thermal sampling procedure to compare accuracy and computation time.
- More advanced comparisons are planned.
Approaches – Stage 4

Histograms for BeinBeO at 700 K: 1e-01 eV, 1e+06 samples.
Approaches – End

- Final product
 - Single file for each material
 - Small size
 - Used for any temperature
 - Maintains accuracy
 - Not computationally expensive

\[
\beta = \sum_{l} B_i \cdot X_{\beta}(T)
\]

\[
\alpha = \sum_{l} A_i \cdot X_{\alpha}(T)
\]
Current and Future

- Advanced on-the-fly (OTF) strategy driven libraries have been developed for six materials based on ENDF/B-VIII.0.
- Validation of the OTF libraries are being conducted.
- Investigation of the application for neural networks to be used to directly sample scattering data.