DE LA RECHERCHE À L’INDUSTRIE

Update of CEA DES Criticality-Safety Activities and Perspectives

20 February 2023

TRIPOLI-4® version 12

► Release of the version 12 in November 2022
 - Part of the next CRISTAL criticality-safety package release
 - https://www.cea.fr/energies/tripoli-4

► Main features for criticality
 - History-based keff sensitivities
 ▪ Wielandt or Super-History simulation
 - Generalized Perturbation Theory
 ▪ Sensitivities of reaction rate ratios
 - Stochastic geometry generator (CASTOR)
 - Kinetic simulation
 - Reaction rate and transfer matrix decomposed over real spherical harmonics
 - Use of the MORET Monte Carlo code geometry
 - Temperature stochastic interpolation with Probability Tables

► Side tools
 - MCNP® / TRIPOLI-4® geometry / materials converter
 ▪ https://t4-geom-convert.readthedocs.io/
 - Valjean : tool used for the V&V suite of TRIPOLI-4
Stochastic geometries generator
- Generates realizations of stochastic geometries
 - TRIPOLI-4 geometries input data
- isotropic and homogeneous Poisson tessellations
- Poisson-Box tessellations
- spherical inclusions

Application to criticality safety
- NEA/WPNCS meeting
- Transport in random media (SG-9)
- Parameter being the « size » of the chunks

![Intact UOX or MOX fuel assembly](image1)
![Stochastic tessellations](image2)

![Graph](image3)

Blue = UOX
Red = MOX
Dashed lines = Atomic mix
Dotted line = Reference
Sensitivities and Perturbations

- **Keff sensitivities – Standard perturbation Theory**
 - History-based method
 - Simulate the neutron progeny within each batch
 - Wielandt or Super-history
 - Allow trade-off between memory occupation
 - An example: MIX-SOL-THERM-004
 - 50 GB with the IFP goes down to 3 GB with the super history

- **Generalized Perturbation Theory**
 - Reaction rate ratios
 - Differential Operator Sampling with source effect
 - Verification
 - SCALE6.2.4 & published results
 - UAM – TMI – pincell case, Godiva
 - Application on a more realistic case
 - EOLE reactor core: EPICURE configuration
 - Comparison with APOLLO3 deterministic code

\[R = \frac{\langle \Sigma_f^{Pu239} \phi \rangle_{MOX}}{\langle \Sigma_f^{U235} \phi \rangle_{UOX}} \]
New massively parallel Monte Carlo particle transport code
- Co-developed by CEA and IRSN
- For now, relies on the ACE format for nuclear data

V&V of the neutron collision physics
- Comparison to TRIPOLI-4 and OpenMC
- Verification test: Single isotope sphere
 - 562 isotopes (JEFF-3.3)
 - 9 energies per isotope from 1e-11 to 20 MeV
 - Energy resolve flux
 - Holm-Bonferroni test

Verification of the outgoing distribution sampling
- Comparison to TRIPOLI-4 and OpenMC
- For a given interaction and incident energy E
 - Outgoing energy / cosine distributions
 - Kolmogorov-Smirnov test
TRIPOLI-5

▷ Analysis of the discrepancies
- Reconstruction of some distributions
 ▪ parameters and analytic formula (ENDF format: TRIPOLI-4)
 ▪ pre-computed numerical values (ACE format: TRIPOLI-5/OpenMC)
- Inconsistencies between reaction Q-value and threshold
 ▪ for level scattering interaction
 ▪ TRIPOLI-4 uses the threshold
 ▪ ACE format uses the Q-value
- Missing delayed data for CM249 at 293K, MT 18
 ▪ TRIPOLI-5 used prompt only instead of total (T4/OpenMC)
- Bug in OpenMC for ZR93 at 293K, MT 5
 ▪ Correction integrated in OpenMC in November 2022 (hash 765df 91)
- “Gaps” in the distributions energy grids
 ▪ CR50, CR53, CR54, CS135, HF174 and HF176

▷ As a summary
- With the Holm-Bonferroni test with rejection probability $\alpha = 0.001$
- TRIPOLI-5®/TRIPOLI-4®: 91.7% of success rate
 ▪ Data are processed differently
- TRIPOLI-5®/OpenMC: 99.9% of success rate, 6 failures (false negative)
 ▪ Use the exact same ACE files
New criticality handbooks (2022)

- **New criticality handbooks**, 44 years after the aging “Maubert”
- **Permissible** ($k_{\text{eff}}=0.95$) and **critical** values → 2 handbooks
- Latest criticality code package and calculation options of CRISTAL V2
- Several **fissile media** studied:
 - Uranium homogeneous media with enrichment from 1.5% to 93.5%
 - Uranium heterogeneous media with enrichment from 1% to 10%
 - Plutonium media with ^{240}Pu content from 0 to 25%
 - Mixed media with Pu content from 2.5% to 40%
 - Actinides
 - Some results for polyethylene and graphite moderators, and also for 25 non standard reflectors
 - Homogeneous poisoning (B, Cd, Gd)
- Both are **published, free** for downloading
- Translation in **English** ongoing

https://rebrand.ly/ebsk7xw
New criticality handbooks (2022)

- **New criticality handbooks**, 44 years after the aging “Maubert”
- **Permissible** ($k_{\text{eff}} = 0.95$) and **critical** values → 2 handbooks
- Latest criticality code package and calculation options of CRISTAL V2
- Several **fissile media** studied:
 - Uranium homogeneous media with enrichment from 1.5% to 93.5%
 - Uranium heterogeneous media with enrichment from 1% to 10%
 - Plutonium media with ^{240}Pu content from 0 to 25%
 - Mixed media with Pu content from 2.5% to 40%
 - Actinides
 - Some results for polyethylene and graphite moderators, and also for 25 non standard reflectors
 - Homogeneous poisoning (B, Cd, Gd)
- Both are **published**, **free** for downloading
- Translation in **English** ongoing
- **iOS** and **Android** app in development to embed these handbooks on a portable device

https://rebrand.ly/ebsk7xw
Modelling of **criticality accidents** occurring in metallic fissile systems, and beginning **beyond prompt-criticality**

- In the chosen configurations, the fissile material has a **simple shape**
 - sphere, cylinder
 - directly combining equations associated with **different fields of physics**:
 - neutronics, thermodynamics, thermomechanics

Purpose: Getting, as simply as possible, the order of magnitude of parameters depicting the way some **solid fissile systems evolve**, during **power bursts**.
- Application: Godiva-I, CALIBAN
Sensitivity and uncertainty analysis

- Calculation and comparison of k_{eff} sensitivity to nuclear data

- Calculation, access and comparison of propagated nuclear data uncertainty

- Calculation of bias due to nuclear data, and the associated posterior uncertainty using assimilation/transposition method (GLLSM)

Validation of GLLSM: confidence level on the results

CRISTAL V2.1 : towards a new deterministic calculation scheme

Optimization between C-E improvement and calculation time

- Nuclear data library: based on JEFF3.1.1 with different probability tables processing
- Refinement of energy meshes
- New Self shielding treatment
- Harmonization of spatial meshes

Needs of experimental results for experimental validation of:

- Intermediate enriched uranium (between 10 % and 20 %)
- Low moderated U, Pu, U+Pu
Two-week Criticality Safety Engineers course

A senior criticality safety engineer and officer @ CEA/Cadarache, attended the NCSP Two-week Criticality Safety Engineers Course @ NATM/NFO and SNL (August 8-19, 2022)

The feedback is excellent:
- the first week allows a direct view on the US Criticality Safety regulation and approach, with a lot of valuable exchanges with US colleagues working on installations,
- the second week is also a very interesting experience: calculations are combined with fuel manipulation and the experimental setup of the core.

We are very thankful for this opportunity and would like to propose another candidate for the 2-week CSE course (August 7-18, 2023).
Thank you for your attention