

IER-329 CED-2: Final Design for TEX with ²³³U ZPPR Plates and High-Density Polyethylene

TEX-23

W. Zywiec, J. Norris, C. Percher, A. Nelson, D. Heinrichs
Lawrence Livermore National Laboratory

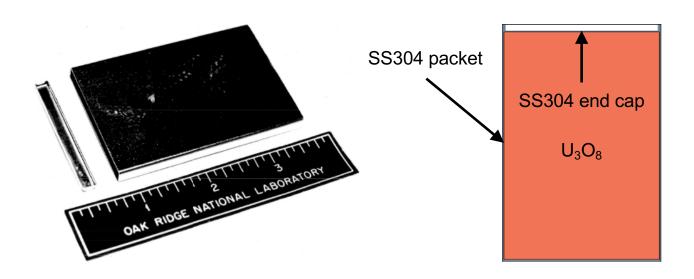
TEX-23 Overview

TEX Goals

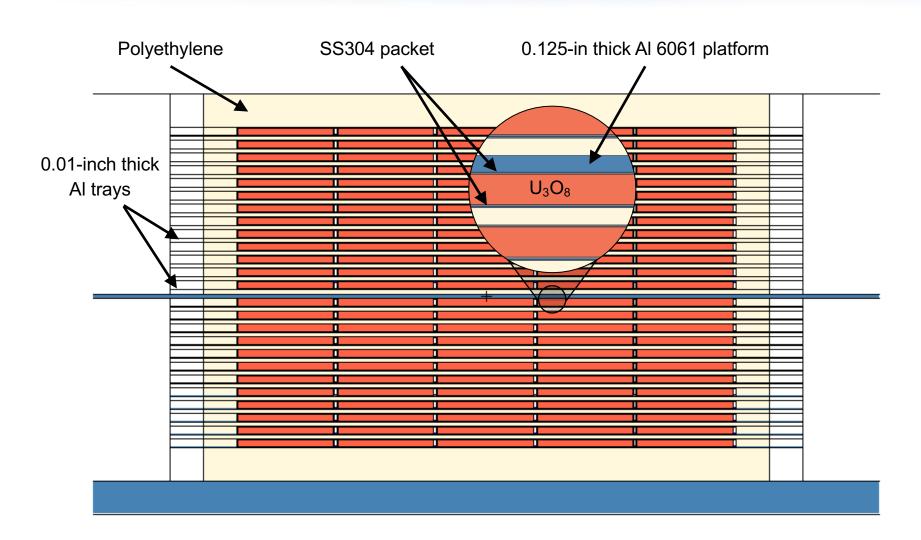
- New critical experiments to address high priority nuclear data needs
- Special emphasis on intermediate energy range
- **TEX-23** IER-329 CED-1 (Completed FY18)
 - 14 critical assemblies for benchmarking ²³³U
- TEX-23 IER-329 CED-2 (In Progress)

TEX-23 Justification

- COG and MCNP calculated results show a downward trend in bias for existing ²³³U benchmarks.
 - For thermal systems, k_{eff} values are over-predicted by 2%.
 - Intermediate systems are under-predicted by up to 4%.
 - Bad nuclear data, bad critical experiments, or both?

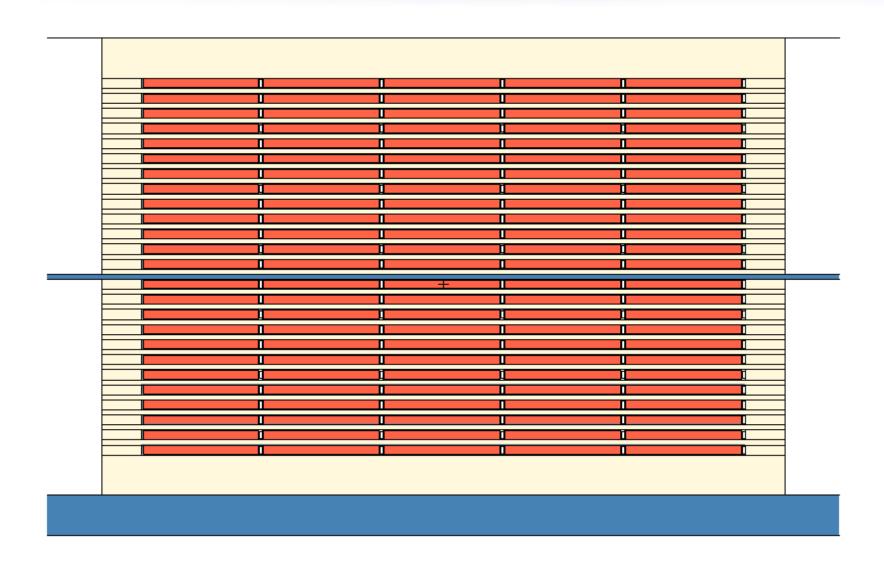


TEX-23 Models


233U ZPPR Plates

- Stainless steel (SS304) packets
- Uranium oxide (U₃O₈ powder) fill
 - Density ~1.62 g/cm³
 - 33 grams ± 2% (~28 grams ²³³U)
 - Impurities are quantified

TEX-23 Design using Optimus (CED-1)



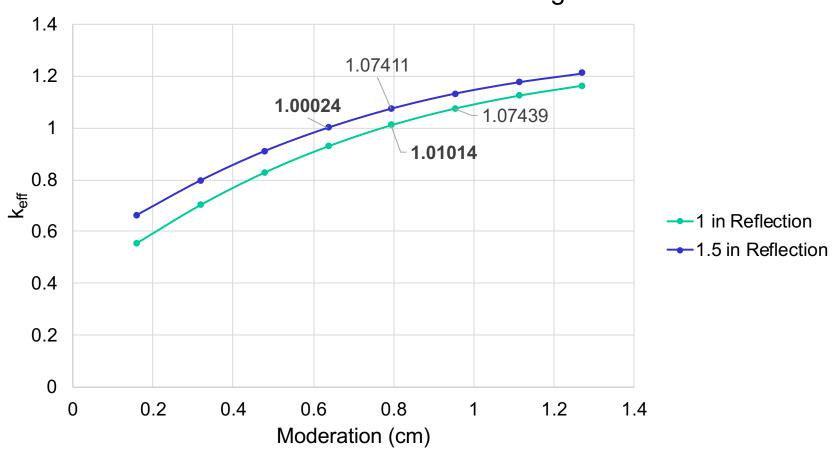
CED-1 Results

P _x	Py	Lz	t _{moderator} (in)	t _{reflector} (in)	H/D	²³³ U Mass (kg)	k _{eff}	Fission Fraction Integral		
								Thermal	Intermediate	Fast
6	4	11	0.3125	1	0.5	7.39	1.0054	0.53	0.41	0.06
6	4	11	0.25	1.5	0.5	7.39	0.9969	0.52	0.42	0.06
6	4	15	0.1875	1.5	0.5	10.08	1.0067	0.46	0.47	0.08
6	4	18	0.1875	1	0.5	12.10	0.9968	0.41	0.51	0.08
6	4	22	0.125	1.5	0.6	14.78	0.9909	0.38	0.52	0.10
6	5	16	0.1875	1	0.4	13.44	1.0006	0.41	0.51	0.08
6	5	25	0.125	1	0.5	21	1.0008	0.32	0.57	0.11
7	4	17	0.1875	1	0.5	13.33	1.0096	0.41	0.51	0.08
7	4	26	0.125	1	0.6	20.38	0.9976	0.32	0.57	0.11
7	5	6	1.875	1	0.7	5.88	1.0334	0.81	0.16	0.03
8	6	13	0.1875	1	0.3	17.47	1.0036	0.41	0.51	0.08
8	6	19	0.125	1	0.3	25.54	1.0037	0.32	0.57	0.11
9	6	13	0.1875	1	0.3	19.66	1.0227	0.41	0.51	0.08
9	6	18	0.125	1	0.3	27.22	1.0032	0.32	0.57	0.11

TEX-23 Design using Optimus (CED-2)

CED-2 Changes

- Removed interstitial aluminum sheets
- Adjusted uranium impurities
- For each of the 14 critical assembly configurations identified in CED-1, parametric calculations were performed


CED-2 Changes

- Removed interstitial aluminum sheets
- Adjusted uranium impurities
- For each of the 14 critical assembly configurations identified in CED-1, parametric calculations were performed
 - Varied polyethylene moderation
 - Varied polyethylene reflection

CED-2 Preliminary Results

6 x 4 x 11 ²³³U ZPPR Plate Configurations

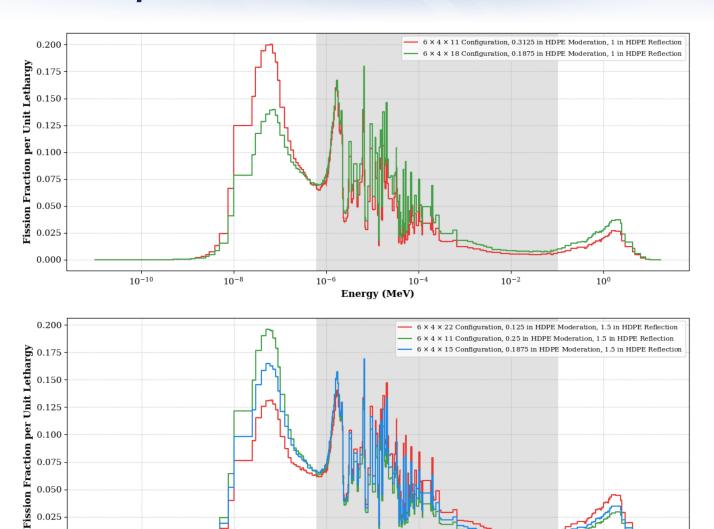
CED-2 Preliminary Results

²³³U Fission Spectra

0.000

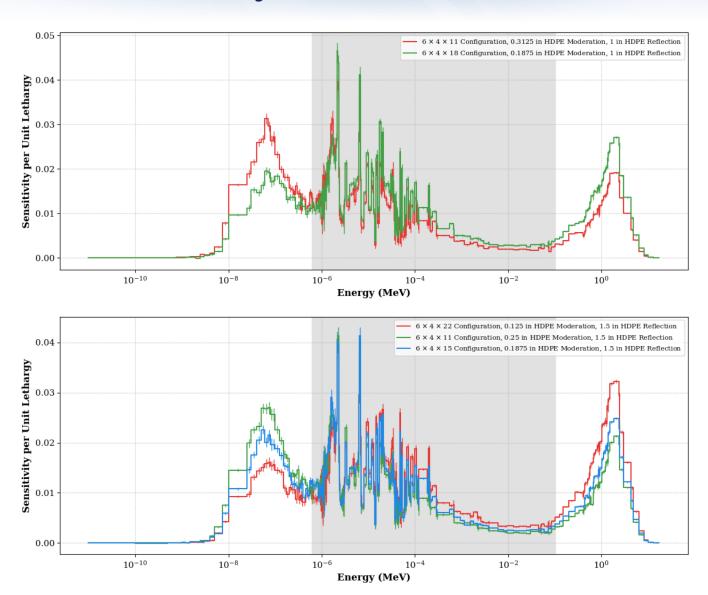
 10^{-10}

 10^{-8}


10-6

 10^{-4}

Energy (MeV)


10-2

100

²³³U Fission Sensitivity

CED-2 Preliminary Results

- Removing interstitial aluminum sheets and adjusting impurities did not significantly change the results
 - k_{eff} went up 0.001-0.003
 - 233U fission spectra did not change
 - 233U fission and capture sensitivity changes were minimal

Continuing Work on CED-2

FY18

- Completed CED-1
- Started CED-2
- Removed interstitial aluminum sheets
- Adjusted uranium impurities
- Vary polyethylene moderation and reflection

FY19

- Vary uranium oxide mass ± 0.66 grams
- Vary uranium oxide density
- Vary stainless steel cladding thickness and impurities
- Analyze spacing
- Send CED-2 out for review
- Complete CED-2