

IER-329 CED-1: Preliminary Design for TEX with U-233 ZPPR Plates and High-Density Polyethylene

TEX-23

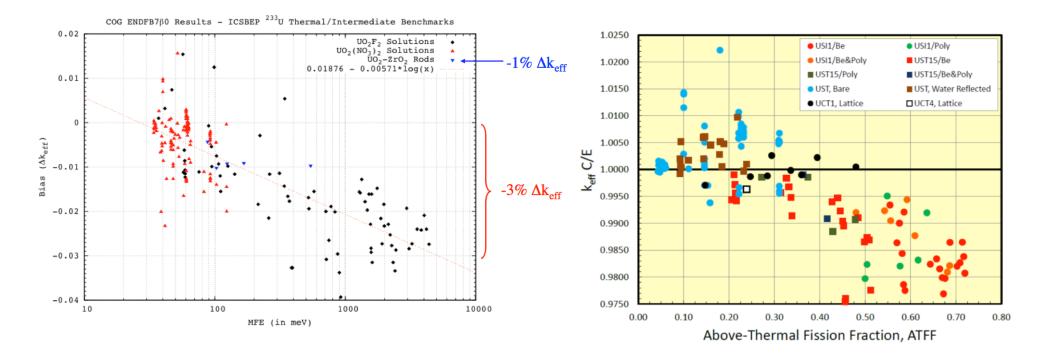
W. Zywiec, J. Norris, C. Percher, A. Nelson, S. Coleman, D. Heinrichs Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory, P.O. Box 808, L-198, Livermore, CA 94551-0808 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Thermal/Epithermal eXperiments (TEX) Overview

TEX Goals

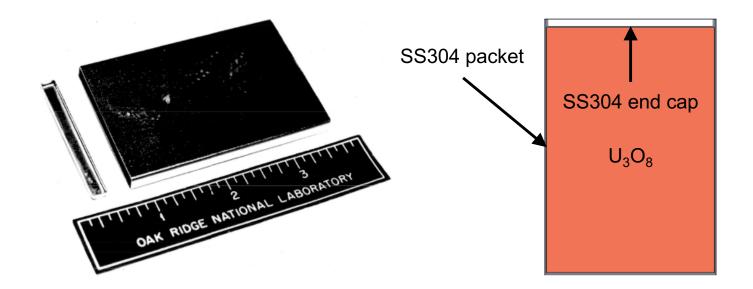
- New critical experiments to address high priority nuclear data needs
- Special emphasis on intermediate energy range
- TEX Preliminary Design (Sep 2012) IER-184 CED-1
 - Showed feasibility for three different fissile systems to create intermediate energy critical assemblies with various diluent materials


• Addendum to CED-1 (Dec 2015) IER-297 CED-1

- Determined optimal thickness of hafnium diluent for TEX-Hf using HEU Jemima plates moderated by polyethylene
- **TEX-Hf** (Jan 2018) IER-297 CED-2
 - 16 critical assemblies for benchmarking hafnium and U-235
- **TEX-23** (In Review) IER-329 CED-1
 - 13 critical assemblies for benchmarking U-233

TEX-23 Justification

- COG and MCNP calculated results show a current downward trend in bias for existing U-233 benchmarks.
 - For thermal systems, k_{eff} values are **over-predicted** by **2%**.
 - Intermediate systems are under-predicted by up to 4%.
 - Bad nuclear data, bad critical experiments, or both?



TEX-23 Models

U-233 ZPPR Plates

- Stainless steel (SS304) packets
- Uranium oxide (U_3O_8 powder) fill
 - Density ~1.62 g/cm³
 - 33 grams ± 2% (~28 grams U-233)
 - Impurities are quantified

TEX-23 Design using Optimus

Optimus

A general-purpose optimization software package that uses machine learning to design critical assemblies.

- Developed by the Nuclear Criticality Safety Division at Lawrence Livermore National Laboratory
- Simple to use for designing TEX and other critical/subcritical experiment designs
- Efficiently finds optimal critical assembly designs
- Acts as a code wrapper for COG and MCNP
- Written in Python
- Also currently being used to perform scoping calculations in support of criticality safety analysis

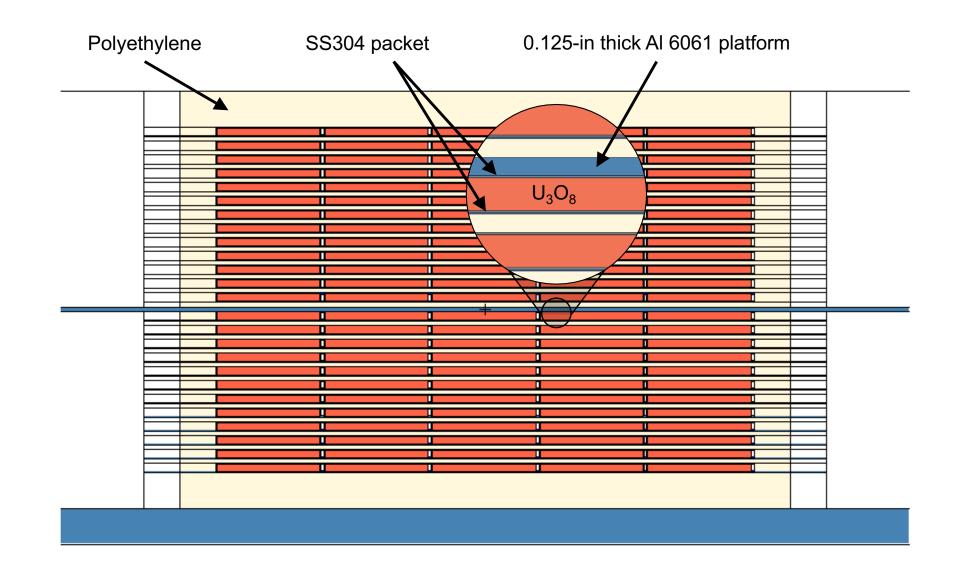
TEX-23 Design using Optimus

- Generate U-233 ZPPR plate model
- Specify degrees of freedom:

 P_x = number of U-233 ZPPR plates along the x-axis

- P_{y} = number of U-233 ZPPR plates along the y-axis
- L_z = number of U-233 ZPPR plate layers (z-axis)
- Define objective function:

k_{eff} = 0.99 to 1.025


Maximize thermal energy or intermediate energy fission fraction

• Other rules:

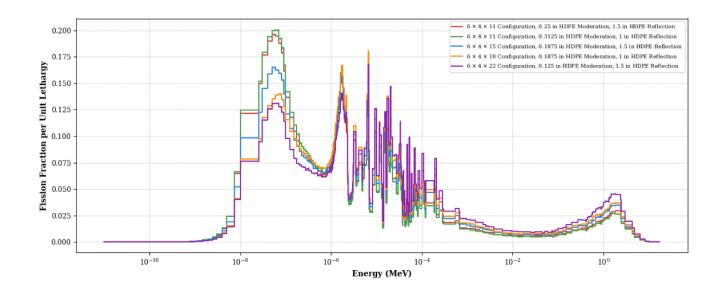
 $P_x \times P_y \times P_z \le 1,743$ (maximum number of U-233 ZPPR plates) $t_{reflector} = 1$ or 1.5 inches

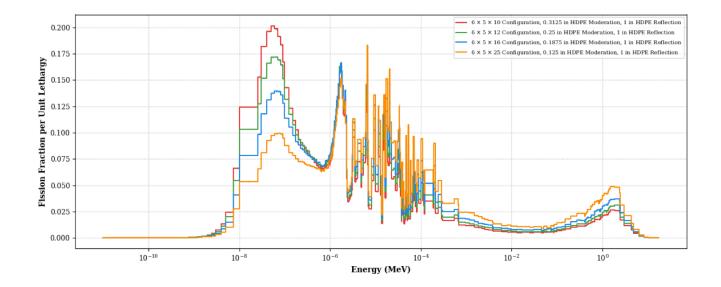
TEX-23 Design using Optimus

TEX-23 Results

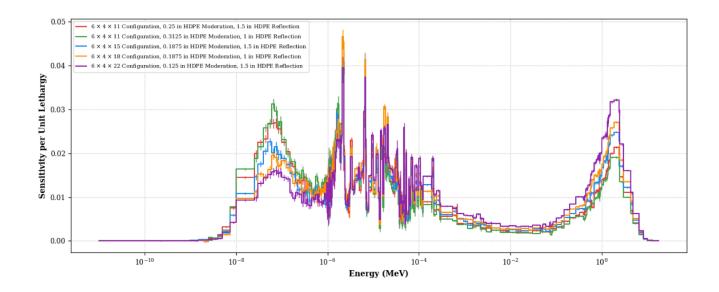
• No fast (unmoderated) critical assemblies were found.

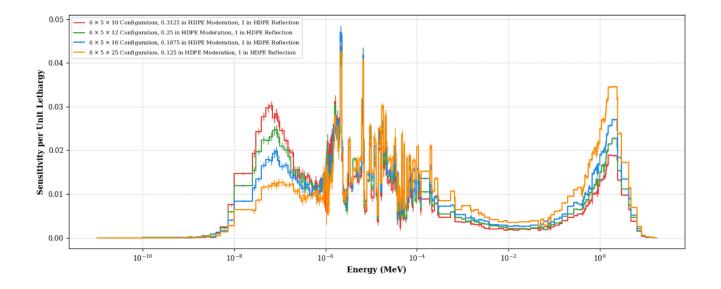
- Uranium oxide powder has a relatively low density.
- This was an expected result.
- Highest fast fission fraction: ~0.16
- More than 4,916 configurations were modeled and analyzed using Optimus.
- 14 critical assembly configurations were selected for further study in CED-2.
 - Five 6×4, two 6×5, three 7×4, one 7×5, two 8×6, and two 9×6 configurations were selected.
 - Highest thermal fission fraction: ~0.81
 - Highest intermediate fission fraction: ~0.57




TEX-23 Results

P _x	Py	Lz	t _{moderator} (in)	t _{reflector} (in)	k _{eff}	Fission Fraction Integral		
						Thermal	Intermediate	Fast
6	4	11	0.3125	1	1.0062	0.53	0.41	0.06
6	4	11	0.25	1.5	0.9971	0.52	0.42	0.06
6	4	15	0.1875	1.5	1.0076	0.46	0.47	0.08
6	4	18	0.1875	1	0.9972	0.41	0.51	0.08
6	4	22	0.125	1.5	0.9911	0.38	0.52	0.10
6	5	16	0.1875	1	1.0012	0.41	0.51	0.08
6	5	25	0.125	1	1.0012	0.32	0.57	0.11
7	4	17	0.1875	1	1.0107	0.41	0.51	0.08
7	4	26	0.125	1	0.9983	0.32	0.57	0.11
7	5	6	1.875	1	1.0339	0.81	0.16	0.03
8	6	13	0.1875	1	1.0043	0.41	0.51	0.08
8	6	19	0.125	1	1.0035	0.32	0.57	0.11
9	6	13	0.1875	1	1.0229	0.41	0.51	0.08
9	6	18	0.125	1	1.0031	0.32	0.57	0.11


TEX-23 Results: U-233 Fission Spectra



TEX-23 Results: U-233 Fission Sensitivity

TEX-23 Recap and Plans for CED-2

- No fast (unmoderated) critical assemblies were found.
 - Uranium oxide powder has a relatively low density.
 - This was an expected result.
 - Highest fast fission fraction: ~0.16
- 14 critical assembly configurations were selected for further study in CED-2.
 - Highest thermal fission fraction: ~0.81
 - Highest intermediate fission fraction: ~0.57
- CED-2 will include more detailed analysis of U-233 ZPPR plate dimensional tolerances, component spacing, and uranium oxide powder composition.
- The input decks are pre-built and ready for Optimus to continue running more detailed calculations.