LANL Nuclear Data for NCSP

Ionel Stetcu T-2, Los Alamos National Laboratory

Collaborators: P. Talou, T. Kawano, G. Hale, M. Paris D. Neudecker (XCP-5)

Outline

- ENDF/B-VIII.0 library officially released on Feb. 2, 2018
- Evaluations of light nuclei
- Evaluations of actinides
 - Prompt fission neutron spectrum (PFNS)
 - Prompt fission gamma spectrum (PFGS), average multiplicity, average total gamma ray energy
 - Probability distributions
 - ✤ TKE
- Performance in benchmarks
- > Summary

Available online at www.sciencedirect.com ScienceDirect

Nuclear Data Sheets 148 (2018) 1-142

Nuclear Data Sheets

ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data

D. A. Brown,¹ M. B. Chadwick,^{2, *} R. Capote,³ A. C. Kahler,² A. Trkov,³ M. W. Herman,¹ A. A. Sonzogni,¹ Y. Danon,⁴ A. D. Carlson,⁵ M. Dunn,⁶ D. L. Smith,⁷ G. M. Hale,² G. Arbanas,⁸ R. Arcilla,¹ C.R. Bates,² B. Beck,⁹ B. Becker,¹⁰ F. Brown,² R. J. Casperson,⁹ J. Conlin,² D. E. Cullen,⁹ M.-A. Descalle,⁹ R. Firestone,¹¹ T. Gaines,¹² K. H. Guber,⁸ A. I. Hawari,¹³ J. Holmes,¹⁴ T. D. Johnson,¹ T. Kawano,² B. C. Kiedrowski,¹⁵ A. J. Koning,³ S. Kopecky,¹⁶ L. Leal,¹⁷ J. P. Lestone,² C. Lubitz,¹⁸ J. I. Márquez Damián,¹⁹ C. M. Mattoon,⁹ E. A. McCutchan,¹ S. Mughabghab,¹ P. Navratil,²⁰ D. Neudecker,² G. P. A. Nobre,¹ G. Noguere,²¹ M. Paris,² M. T. Pigni,⁸ A. J. Plompen,¹⁶ B. Pritychenko, V. G. Pronyaev, 22 D. Roubtsov, 23 D. Rochman, 24 P. Romano, 7 P. Schillebeeckx, 16 S. Simakov, 25 M. Sin, 26 I. Sirakov,²⁷ B. Sleaford,⁹ V. Sobes,⁸ E. S. Soukhovitskii,²⁸ I. Stetcu,² P. Talou,² I. Thompson,⁹ S. van der Marck,²⁹ L Welser-Sherrill,² D. Wiarda,⁸ M. White,² J. L. Wormald,¹³ R. Q. Wright,⁸ M. Zerkle,¹⁴ G. Zerovnik,¹⁶ and Y. Zhu¹³ ¹Brookhaven National Laboratory, Upton, NY 11973-5000, USA ²Los Alamos National Laboratory, Los Alamos, NM 87545, USA ³International Atomic Energy Agency, PO Box 100, A-1400 Vienna, Austria ⁴Rensselaer Polytechnic Institute, Troy, NY 12180, USA ⁸National Institute of Standards and Technology, Gaithersburg, MD 20899-8463, USA ⁶Spectra Tech, Inc., Oak Ridge, TN 37830, USA ⁷Argonne National Laboratory, Argonne, IL 60439-4842, USA ⁸Oak Ridge National Laboratory, Oak Ridge, TN 37831-6171, USA ⁹Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA ¹⁰Gesellschaft f
ür Anlagen und Reaktorsicherheit, Schwertnergasse 1, D-50667 Köln, Germany ¹Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ¹²AWE plc, Reading RG7 4PR, United Kingdom ¹³North Carolina State University, Raleigh, NC 27695, USA 14 Naval Nuclear Laboratory, West Mifflin, PA 15122, USA ¹⁵University of Michigan, Ann Arbor, MI 48109, USA ¹⁶EC-JRC, B-2440 Geel, Belgium ¹⁷Institut de Radioprotection et de Súreté Nucléaire, 92262 Fontenay aux Roses, Cedex, France ¹⁸Naval Nuclear Laboratory, Niskayuna, NY 12309, USA ¹⁹Centro Atómico Bariloche, S. C. de Bariloche, Argentina ²⁰TRIUMF, Vancouver, BC V6T 2A3, Canada ²¹CEA, DEN, DER, SPRC, Cadarache, 13108 Saint-Paul-lèz-Durance, France ²²PI Atomstandart at SC Rosatom, Moscow, Russian Federatio ²³Canadian Nuclear Laboratories, Chalk River, Ontario, Canada ²⁴ Paul Scherrer Institut, 5232 Villigen, Switzerland ²⁵Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz, 1 76344 Eggenstein-Leopoldshafen, Germany ²⁶ University of Bucharest, Bucharest-Magurele, RO-077125, Romania ²⁷Institute for Nuclear Research and Nuclear Energy, BAS, BG-1784 Sofia, Bulgaria ²⁸ Joint Institute for Energy and Nuclear Research, Minsk, Belarus 29 NRG, Westerduinweg 3, 1755 LE Petten, The Netherlands (Received 18 September 2017; revised received 21 November 2017; accepted 14 December 2017)

> We describe the new ENDF/B-VIII.0 evaluated nuclear reaction data library. ENDF/B-VIII.0 fully incorporates the new IAEA standards, includes improved thermal neutron scattering data and uses new evaluated data from the CIBLO project for neutron reactions on ¹H, ¹⁶O, ²⁶Fe, ²⁰²U, ²³⁸U and ²³⁹Pu described in companion papers in the present issue of *Nuclear Data Sheets*. The evaluations benefit from recent experimental data obtained in the U.S. and Europe, and improvements in theory and simulation. Notable advances include updated evaluated data for light nuclei, structural materials, actinides, fission energy release, prompt fission neutron and γ -ray spectra, thermal neutron scattering data, and charged-particle reactions. Integral validation testing is shown for a wide range of criticality, reaction rate, and neutron transmission benchmarks. In general, integral validation performance of the library is improved relative to the previous EXDF/B-VII.1 library.

https://doi.org/10.1016/j.nds.2018.02.001 0090-3752/C 2018 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

Light element evaluations (G. Hale & M. Paris)

- · R-matrix approach gives consistent, simultaneous description of multiple reactions
- We contributed to improved ENDF/B-VIII.0 evaluations for ¹H, ²H, ³He, ⁶Li, ⁹Be, ¹⁰B, ¹²C, ¹³C, ¹⁶O, ¹⁸O

0.30 MeV

0.5

ENDF/B-VIII.0

⁹Be(n,el) angular dist.

0.5

0.55 MeV

0.63 MeV

Evaluation: D. Neudecker et al., NDS 148, p. 293 (2018). Chi-Nu data: M. Devlin et al., NDS 148, p. 322 (2018). Experimental data: D. Neudecker et al., NDS 131 p. 289 (2016)

Chi-Nu data is preliminary

PFNS Ratio to 1.32 MeV Maxwellian 1.7 0.7 0.6 10-2 10^{-} 10 Initial Outgoing Neutron Energy, E (MeV) 2 4 8 10

Second-chance fission

⁶Li-glass PFNS

Liquid Scint. PFNS

ENDE/B-VII 1: 5.0 Me\

ENDF/B-VII.1: 6.0 Me

ENDF/B-VIII.0: 5.0 MeV

ENDF/B-VIII.0: 6.0 MeV

- Changes in ENDF/B-VIII.0: evaluation procedure, physical models and Chi-Nu data
- Clear signatures of multi-chance fission .

²³⁵U(*n*,*f*)

= 5 5-6 0 MeV

Los Alamos National Laboratory

²³⁹Pu(n,f) PFNS evaluation for ENDF/B-VIII.0

- Changes in ENDF evaluation: procedure and models
- Chi-Nu data will be included in the next evaluation
- Pre-equilibrium component clearly observed at several incident energies
- Third-chance fission not as drastic in Chi-Nu data (no dip in average neutron energy)

Incident Neutron Energy (MeV)

Second-chance fission

Chi-Nu data is preliminary

Plots courtesy K.J. Kelly

Pre-equilibrium neutrons

Los Alamos National Laboratory

Prompt Fission Neutron Spectrum Calculated with Fully Deterministic Method, HF³D

HF³D: Hauser-Feshbach Fission Fragment Decay model

- New capability to be used in future evaluations of:
 - PFNS at low outgoing neutron energies
 - Fission fragment yields (independent and cumulative)
- Shape below 1 MeV different from Madland-Nix model
- HF³D result drops quickly above 5 MeV
 - already seen in our previous Monte Carlo works
 - Becker, PRC 87 014617 (2013)
 - Kawano, NPA 913, 51 (2013)

Validating with LLNL pulsed sphere measurements

Time (ns)

Validating with ICSBEP criticality benchmarks

Benchmark	Experiment	ENDF/B-VII.1	ENDF/B- VIII.0	Comment
PMF001 (Rev. 2)	1.000(2)	0.99978(8)	0.99978(8)	Jezebel
PMF002	1.000(2)	1.00013(8)	1.00139(8)	Dirty Jezebel
PMF006	1.0000(30)	1.00085(10)	0.99985(10)	Flattop-Pu
PMF008	1.0000(6)	0.99762(9)	0.99756(9)	Thor
HMF001	1.000(1)	1.00002(8)	0.99991(8)	Godiva
HMF028	1.0000(16)	1.00299(9)	1.00061(9)	Flattop
IMF001.1	0.9988	1.00025(9)	0.99884(9)	Jemima (1)
IMF007.d	1.0045(7)	1.00447(7)	1.00439(7)	Big ten

Benchmark input decks written by A.C. Kahler, simulated by D. Neudecker

Prompt fission gamma evaluations for major actinides in ENDF/B-VIII.0

□ Updated PFGS and multiplicity for all ²³⁵U(n,f), ²³⁸U(n,f), ²³⁹Pu(n,f)

- □ ENDF/B-VII.1 discontinuity at 1.09 MeV removed in ENDF/B-VIII.0
- PFGS independent on incident energy
- Evaluation based on old and new measurements (thermal)
- All gamma-producing channels explicitly given in ENDF/B-VIII.0

New information on multiplicity probability distribution included in the evaluation

CGMF code (used in evaluations):

- Statistical treatment of decaying FFs
- Very good agreement with measured PFGS, especially at low energies
- Incident neutron energies from thermal to 20 MeV
- o Integration into MCNP will provide correlated fission data

New feature: multiplicity distributions for prompt fission neutrons and gamma rays

- New ENDF format to accommodate P(v), multiplicity-dependent spectra (neutrons and gammas)
- Based on empirical models for neutrons, CGMF+negative binomial model for gammas

- Strong dependence of the multiplicitydependent PFGS
- Multiplicity-dependent spectra not yet included in the evaluation

Summary

- New evaluation released with significant improvements:
 - Total and exclusive cross sections
 - PFNS, nubar
 - PFG properties (explicit channel by channel evaluation)
 - PFN and PFG multiplicity probability distributions
- Improved physics models and improved data have been used
- Criticality benchmark quality preserved despite important changes in evaluations of PFNS, nubar, (fission) cross sections
- CGMF/FREYA integration in MCNP will provide alternatives for correlation data missing from ENDF
- Ongoing work on evaluations for:
 - nubar (resonance region) and PFNS (thermal) for ²³⁵U, ²³⁹Pu
 - $\circ~$ Capture cross sections for $^{234}\text{U},\,^{236}\text{U}$
- Machine learning for nuclear data

Acknowledgements

- This work was supported in part by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
- The development work of CGMF integration within MCNP is supported by the Office of Defense Nuclear Nonproliferation Research & Development (DNN R&D), National Nuclear Security Administration, US Department of Energy.

Additional slides

No incident neutron energy dependence of the PFGS in ENDF/B-VIII.0

- Very little data available for fast neutrons
- CGMF shows a small dependence of neutron incident energy

 Change in PFGS for SF vs neutron induced fission understood in terms of nuclear structure

Total gamma production

- Used to extract average PFG multiplicity for fast neutrons
- Improved evaluation with respect to ENDF/B-VII.1
- Similar results for $^{238}U(n,f)$ and $^{239}Pu(n,f)$
- More data for fast neutrons would be very helpful

Time-Dependence of Prompt γ-Ray Emissions

- ns to µs isomers in fission fragments
- Time information not included in evaluated data files
- Model calculations for ²⁵²Cf, ²³⁵U, ²³⁹Pu
- To investigate: the dependence of the average multiplicity as a function of time for different incident energies (will be soon available in MCNP)

Talou et al, PRC **94**, 064613 (2016)

