Technical Program Review Nuclear Criticality Safety Program March 27 – 28, 2018 • Oak Ridge, TN, USA

Thermal Scattering Law Research and Development At North Carolina State University

Yuwei Zhu, Colby Sorrell, Cole Manring, Andrew Antony Ayman I. Hawari

> Nuclear Reactor Program Department of Nuclear Engineering North Carolina State University Raleigh, North Carolina, USA

Acknowledgement

The many graduate students, postdocs, and research staff at North Carolina State University

Collaboration with LLNL and Bettis labs

David Heinrichs, Michael Zerkle, Jesse Holmes

Funding

- US NNSA Nuclear Criticality Safety program
- US Naval Nuclear Propulsion Program

FY 2017

□ 10 new TSL evaluations contributed to ENDF/VIII

- 5 first-of-a-kind evaluations
- Modern predictive methods for thermal neutron cross section calculations based on the use of atomistic simulations
 - Ab initio lattice dynamics
 - Molecular dynamics (ab initio and classical)
 - New materials
 - All states of matter (solid, liquid, gas)
 - Imperfect structure
- Implemented a new thermal scattering analysis platform that uses a generalized theoretical approach for TSL calculations.
 - Removed approximations such as incoherent approximation, cubic approximation, atom site approximation and SCT approximation.

Objectives

<mark>Priority Needs</mark> */ Additional Needs	Thermal scattering (Paraffinic Oil, HF, Silicone Oil, UO ₂ F ₂ , PuH ₂ , UH ₃ , Paraffin, U ₃ O ₈ , U ₃ Si ₂ , UC, PuO ₂ , etc.), ²³⁹ Pu, Fe, Cr, ²³⁷ Np, Pb, ⁵⁵ Mn, Ti, ²⁴⁰ Pu/ ²³³ U, Th, Be, ⁵¹ V, Zr, F, K, Ca, Mo, Na, La
Completed Evaluations (FY)	Minor Actinides (13), SiC(17), SiO ₂ (17), C ₅ O ₂ H ₈ (16), CH ₂ (17), Be (17), BeO (17), Graphite (17), UO ₂ (17), UN (17), ${}^{55}Mn (12)$, ${}^{58,60}Ni (14)$, ${}^{180,128,183,184,186}W$ (14), Ca (16), ${}^{59}Co (17)$, ${}^{63,65}Cu(17)$

Objectives

Priority Needs */ Additional Needs	Thermal scattering (Paraffrac Oil, HF, Silicone Oil, UO ₂ F ₂ , PuH ₂ , UH ₃ , Paraffin, U ₃ O ₈ , U ₃ Si ₂ , UC, PuO ₂ , etc.), ²³⁹ Pu, Fe, Cr, ²³⁷ Np, Pb, ⁵⁵ Mn, Ti, ²⁴⁰ Pu/ ²³³ U, Th, Be, ⁵¹ V, Zr, F, K, Ca, Mo, Na, La
Completed Evaluations (FY)	Minor Actinides (13), Sec 17), Size 17), Co H ₈ (16), Co (17), Be (17), Be (17), Be (17), Be (17), Co (17), Gradute (17), Co (17), Co (17), $^{55}Mn (12)$, $^{58,60}Ni (14)$, $^{180,128,183,184,186}W$ (14), Ca (16), $^{59}Co (17)$, $^{63,65}Cu (17)$

Working on light water (H₂O)

Evaluations

Material	Method	Status
Lucite $(C_5H_8O_2)_n$	MD	ENDF/B-VIII.0
Polyethylene (CH ₂) _n	MD	ENDF/B-VIII.0
Beryllium (Be metal)	DFT/LD	ENDF/B-VIII.0
Beryllium oxide (BeO)	DFT/LD	ENDF/B-VIII.0
Silicon carbide (SiC)	DFT/LD	ENDF/B-VIII.0
Silicon dioxide (SiO ₂)	DFT/LD	ENDF/B-VIII.0
Graphite (crystalline)	DFT/LD	ENDF/B-VIII.0
Graphite (nuclear)	MD	ENDF/B-VIII.0
Uranium mononitride (UN)	DFT/LD	ENDF/B-VIII.0
Uranium dioxide (UO ₂)	DFT/LD	ENDF/B-VIII.0
H ₂ O (light water)	MD	On going
Paraffinic Oil	MD	ENDF File 7 ready
FLiBe liquid	MD	ENDF File 7 ready

Evaluations

Material	Method	Status
Lucite $(C_5H_8O_2)_n$	MD	ENDF/B-VIII.0
Polyethylene $(CH_2)_n$	MD	ENDF/B-VIII.0
Beryllium (Be metal)	DFT/LD	ENDF/B-VIII.0
Beryllium oxide (BeO)	DFT/LD	ENDF/B-VIII.0
Silicon carbide (SiC)	DFT/LD	ENDF/B-VIII.0
Silicon dioxide (SiO ₂)	DFT/LD	ENDF/B-VIII.0
Graphite (crystalline)	DFT/LD	ENDF/B-VIII.0
Graphite (nuclear)	MD	ENDF/B-VIII.0
Uranium mononitride (UN)	DFT/LD	ENDF/B-VIII.0
Uranium dioxide (UO ₂)	DFT/LD	ENDF/B-VIII.0
H ₂ O (light water)	MD	On going
Paraffinic Oil	MD	ENDF File 7 ready
FLiBe liquid	MD	ENDF File 7 ready

Methods

A. I. Hawari, "Modern Techniques for Inelastic Thermal Neutron Scattering Analysis," Nuclear Data Sheets, Vol. 118, 172, 2014.

Computational Capabilities

□ Hybrid mini cluster - 16 nodes

- 312 CPU cores
- 22 computational GPU
- Expanding.....
- Parallel computations
 - Atomistic simulations
 - TSL analysis
 - Neutronic simulations
 - System design

VASP, PHONON, LAMMPS NJOY, MCNP, Serpent, GEANT4, McStas, PARET, RELAP, COMSOL

Graphite

Ideal "crystalline" graphite

consists of planes (sheets) of carbon atoms arranged in a hexagonal lattice. Covalent bonding exits between intraplaner atoms, while the interplaner bonding is of the weak Van der Waals type. The planes are stacked in an "abab" sequence.

- Hexagonal Structure
- 4 atoms per unit cell
- a = b = 2.46 Å
- c = 6.7 Å
- Density = 2.25 g/cm³

Reactor graphite consists of

ideal graphite crystallites (randomly oriented) in a carbon binder. It is highly porous structure with porosity level ranging between 10% and 30%.

Nuclear Graphite (SEM at NCSU) Density = 1.5 – 1.8 g/cm³

Nuclear/Reactor Graphite

Silicon Carbide(SiC)

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY. 56, 801 (1995).

Uranium Dioxide (UO₂)

- 1) G. Dolling, R. A. Cowley, and A. D. B. Woods, "The crystal dynamics of Uranium Dioxide," Can. J. Phys., 43, 8 (1965) 1397
- 2) J. W. L. Pang, A. Chernatynskiy, B. C. Larson, W. J. L. Buyers, D. L. Abernathy, K. J. McClellan, and S. R. Phillpot, "Phonon density of states and anharmonicity in UO2," Phys. Rev. B, 89, (2014) 115132

Uranium Nitride (UN)

- 1) G. Dolling, T. M. Holden, E. C. Evenson, W. J. L. Buyers, and G. H. Lander, "Phonon dispersion relation of uranium nitride above and below the Neel temperature," International Conference on Lattice Dynamics, Paris, Frances, September 5-10 (1977).
- 2) A. A. Aczel, G. E. Granroth, G. J. MacDougall, W. J. L. Buyers, D. L. Abernathy, G. D. Samolyuk, G. M. Stocks, and S. E. Nagler, "Quantum oscillations of nitrogen atoms in uranium nitride," Nature Communications, 3 (2012)

Lucite $(C_5O_2H_8)_n$

Exp. Data: G. SIBONA et al., Anna. Nucl. Energy, 18, 689 (1991). 2)

Heavy Paraffinic Molecular Materials

Full Law Analysis Scattering System Hub

FLASSH

FLASSH Features

Feature	FLASSH	NJOY
Incoherent approximation	No	Yes
Cubic approximation	No	Yes
Atom site approximation	No	Yes
Short collision time approximation	No	Yes
Gaussian approximation	Yes	Yes
Harmonic approximation	Yes	Yes
Parallel processing	Yes	No
GUI	Yes	No

One-phonon Corrected $S(\alpha, \beta)$ Be Metal

FLASSH GUI

Guide the user through input items by input file logic

FLASSH GUI

×

OK

	5 errors have been found in the the following file:
Documents	C:/Users/Yuwei Zhu/Desktop/FLASSH/FLASSH_beta2/Projects/ Be_BeO_one_phonon\Control.txt
	1) Problem encountered on line 15 of the input file: Line has 1 items too many. The extras have been deleted.
FLASSH: Be_BeO_one_phon	2) Problem encountered on line 19 of the input file: Line has 1 items too many. The extras have been deleted.
Project Create Run Plot	3) Problem encountered on line 25 of the input file: Line has 1 items too many. The extras have been deleted.
	4) Problem encountered on line 26 of the input file: Line has 1 items too many. The extras have been deleted.
FLA	5) Problem encountered on line 27 of the input file: Line has 1 items too many. The extras have been deleted.
	ОК
▼ LEIP LABORATORIES F	ull Law Analysis
) 00000 s	Scattering System Hub

Warning

Please note that the problematic data will not be read. You may edit the input file and reopen it, or you may edit this window directly. Input file syntax checking
Warning about input file error

Light Water (H₂O) – FY 2018

Static view of hydrogen-bond network in liquid H₂O:

Red atoms are oxygen, white atoms are hydrogen and hydrogen-bonds are shown as dashed green lines (<3.0 Å)

Light Water (H₂O) – FY 2018

Doppler Broadening – FY 2018

- Density of States for Uranium in UO₂
 - Comparison of the DOS for the current ENDF/B-VIII.0 with the historical ENDF/B-VII.1
- Doppler Broadening of Absorption Resonances
 - Using the ENDF/B-VIII.0 DOS and the effective temperature calculated using the same DOS, the resulting Doppler broadened absorption resonances at 70K are displayed.
 - Differences in the resulting Doppler broadened cross sections using the crystal lattice model with the current and historical ENDF/B DOS are on the order of 5% (~200 barns).

Summary

- □ 10 new TSL evaluations contributed to ENDF/VIII
 - 5 first-of-a-kind evaluations
- Modern predictive methods for thermal neutron cross section calculations based on the use of atomistic simulations
 - Ab initio lattice dynamics
 - Molecular dynamics (ab initio and classical)
 - New materials
 - All states of matter (solid, liquid, gas)
 - Imperfect structure
- FLASSH is a new thermal scattering analysis platform that uses a generalized theoretical approach for TSL calculations.
 - Removed approximations such as incoherent approximation, cubic approximation, atom site approximation and SCT approximation.
- Progress on FY 2018 tasks