
Cross Section Evaluation of ²³⁵U, ¹⁶O, and Dy Isotopes in the Resolved Resonance Neutron Region

M.T. Pigni Nuclear Data Criticality Safety Oak Ridge National Laboratory, USA

NCSP Annual Technical Program Review (TPR)

Oak Ridge, TN, March 2018

ORNL is managed by UT-Battelle for the US Department of Energy

Outline

- ²³⁵U (and ²³⁹Pu)
 - Summary of features of the newly evaluated resonance parameters
- ¹⁶O
 - Advanced evaluation methodology in SAMMY
 - * Use of the $B_{\ell} = -\ell$ boundary condition
 - * Inclusion of closed-channel effects
 - * Treatment of the capture channel as particle channel

• Dy isotopes

- Analysis of available experimental data (transmission and capture)
- Resolved resonance evaluation (RRR)
- Future work
- Acknowledgments

Timeline

• FY16/17

- Evaluation work on ²³⁵U and ¹⁶O
- Preliminary work on Dy isotope evaluations
- Presentation of the results at the Nuclear Data Week (CSEWG)

• FY17

- Completion of ²³⁵U evaluation (ENDF/B-VIII.0)
- Evaluation work on ¹⁶O and ^{156,158,160,161,162,163,164}Dy
- Some work on ²³⁹Pu (ENDF/B-VIII.0)
- Development work on neutron multiplicities \bar{v}_p (NDAG presentation)
- Publication work (ND2016 proceedings and Nuclear Data Sheets)

• FY17/18

- Completion of ¹⁶O evaluation
- Completion of ^{156,158,160,161,162,163,164}Dy evaluations

²³⁵U (RRR evaluation) and ²³⁹Pu

No.	Nucleus (I $^{\pi}$)	E _{max}	Method	$J_{3^{-}}$	J_{4^-}
1	²³⁵ U (7/2 ⁻)	2.25 keV	RM	1433	1731

- In the ORNL resonance evaluation in the ENDF/B-VIII.0 library, particular emphasis was devoted to
 - STD-2017 thermal cross sections and the fission integral between 7.8–11 eV
 - Neutron incident energies up to 20 eV for *measurements of* $\alpha = \sigma_{\gamma}/\sigma_f$ (or η)
 - New thermal prompt fission neutron spectra (PFNS) evaluated by the IAEA (Capote/Trkov)
 - Newly evaluated STD-2017 fission average cross sections up 1 keV
- In the covariance analysis, the large number of resonance parameters (about 15,500) led to a related covariance matrix of 1.7 Gb when formatted in an ENDF-compatible file (MT=32 with LCOMP=1)
- Upon request from the IAEA, the resonance covariance file (MT=32) was processed to generate a set of covariance matrices formatted as MT=33
- The covariance file MT=33 is part of the ENDF/B-VIII.0, library but the resonance covariance file (MT=32) should also be stored
- Resonance covariance file MT=32 for ²³⁹Pu was adopted from JEFF-3.2 (SG34) because it is coupled to the resonance parameter evaluation MT=2 submitted in September 2012 to the ENDF repository
- Minor corrections were made (last digits) to the resonance parameter in file 32 to match those in file 2

Motivation (n+¹⁶O RRR evaluation)

- Neutron scattering on oxygen is important in criticality safety applications where oxides are present in significant abundance
- Longstanding issues from measured cross sections on ¹³C(α,n)¹⁶O¹ due to the discrepancies between Bair (1973) and Harissopulos (2005) data sets
- The aim of this work is to provide a set of *resonance parameters* (RP)s as an alternative to the extant point-wise evaluation of oxygen in the ENDF/B-VIII.0 library
- RPs are important in nuclear data evaluation analyses in which measurements were performed on oxide samples or liquid samples that have been dissolved or diluted with solutions containing light nuclei

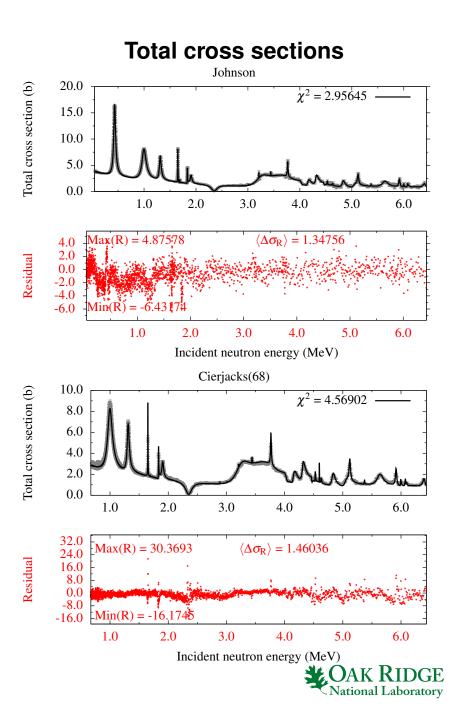
¹Due to the lack of direct experimental data, the ${}^{16}O(n,\alpha)$ cross sections are usually obtained by inverse kinematics from measured data on ${}^{13}C(\alpha,n){}^{16}O$ on the basis of the reciprocity theorem.

Evaluation methodology

- The *R*-matrix SAMMY code was used to generate a set of resonance parameters for n+¹⁶O reactions in the energy range of thermal up to about 6 MeV
- Three advanced major features of the present evaluation are as follows
 - (a) The use of the $B_c = -\ell$ boundary condition commonly used in the formal *R*-matrix theory but rarely used in SAMMY evaluation work. The default option is the energy-dependent boundary condition $B_c = S_c$
 - (b) In order to preserve the **unitary** of the *S*-matrix, the **capture channel** was treated as particle channels whose penetrability factor is set to be unitary in SAMMY input file
 - (c) Closed-channel effects² were included for the (n,α) reaction channel
- The evaluation work builds on a comprehensive resonance analysis that was initiated in FY16 (a),(b)³ and updated through FY17 (c)⁴

³Notes on the consistency of ${}^{16}O(n,\alpha)$ cross sections

⁴ORNL contribution to ENDF/B-VIII.0 and progress on light nuclei evaluations



²For threshold reaction channels as ${}^{16}O(n,\alpha)$, the RPs are sensitive to the cross sections also for incident energies below the energy threshold.

- Normalization to shown theoretical data
 - Bair (73) : 1.248
 - Cierjacks (68) : 1.0293
 - Johnson : 1.000
- Correlation of experimental data estimated at 20%
- Average residual $\left< \Delta \sigma_R \right> < 2$ sigmas

Motivation (DY isotopes evaluation)

- *Historical note*: the name is derived from the Greek "dysprositos" that means hard to get
- Dysprosium is produced in a reactor as a fission product and acts as a neutron absorber in a nuclear fuel or in a reactor control rod
- For its absorbing features, it can be used as a burnable poison to control a reactor
- Having large capture cross sections, Dy isotopes (mainly the ¹⁶⁴Dy isotope) can continuously and effectively absorb neutron for a long time
- Favorable thermophysical properties of dysprosium
- The set of resonance parameters in the ENDF/B-VIII.0 nuclear data library was evaluated by the unfavorable multilevel Breit-Wigner approximation⁵

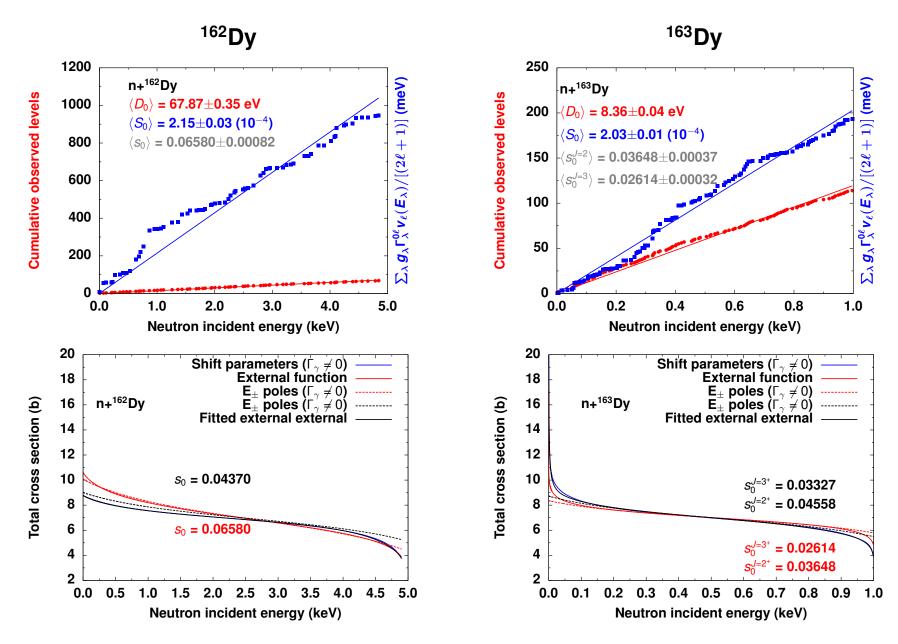
⁵The level matrix is diagonal and the interference effects are neglected.

Status of Dy evaluations

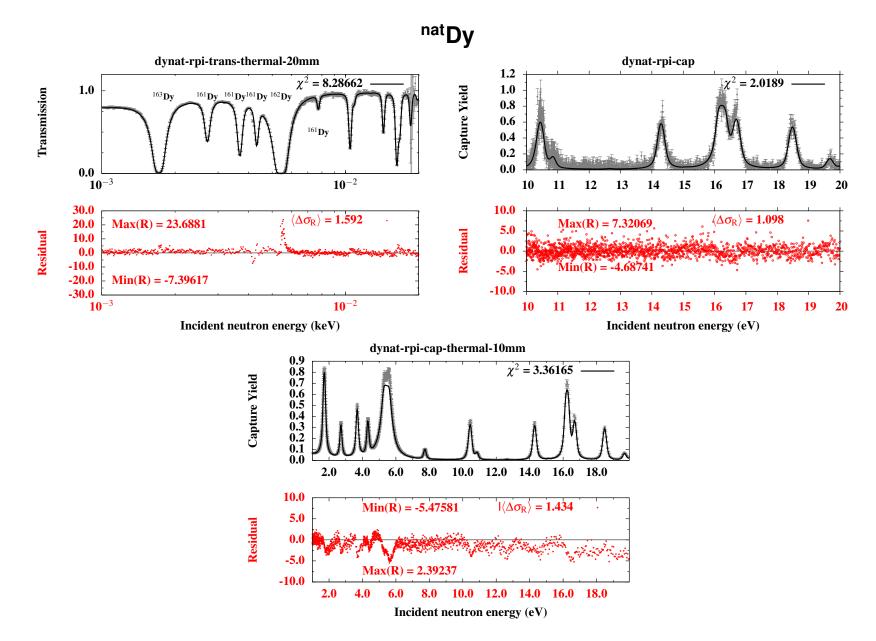
• Current status of Dy evaluations in ENDF/B-VII.1 library

Isotope	Nat. Abnd. (%)	E_{max} (eV)	ℓ_{max}	Levels**	Transmission	(n,γ)
¹⁵⁶ Dy	0.056	100	S	19		
¹⁵⁸ Dy	0.095	90	S	3		
¹⁶⁰ Dy	2.329	2000	р	65	Х	
¹⁶¹ Dy*	18.889	1000	S	253	Х	Х
¹⁶² Dy*	25.475	5000	р	75	Х	Х
¹⁶³ Dy*	24.896	1000	S	114	Х	Х
¹⁶⁴ Dy*	28.260	7000	р	69	Х	Х
^{nat} Dy*	100.00	N/A	s,p	all	Х	Х

(*) Relevant to NCSP

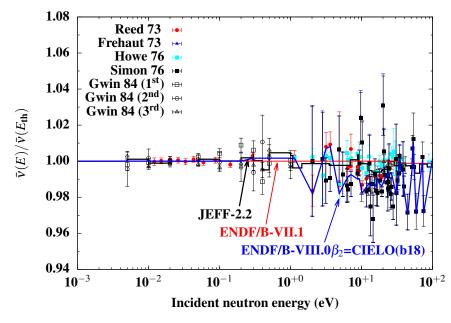

(**) Without negative levels

- Review of old existing Liou's transmission data sets showed several issues
 - The large number and magnitude of negative values found in the ^{160,163,164}Dy total cross sections imply an over correction of the background contribution
 - The measurements were performed on oxide samples (DY₂O₃), but the number of atoms/barn reported seems related to the specific enriched isotope. This affected our ability to correctly calculate the total number of atoms/barn of the sample
 - Several "black" resonances⁶ were reported and no uncertainty analysis was reported

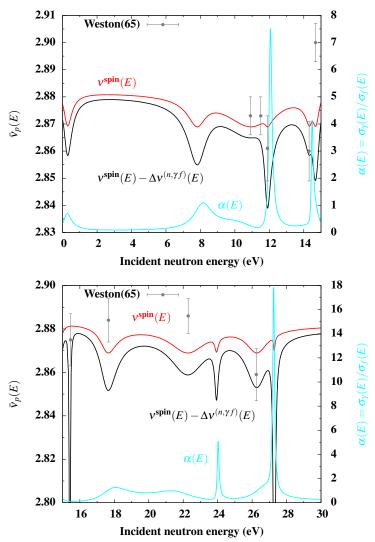

⁶Energy levels for which there is no transmission of neutrons or, vice versa, the neutron absorption is maximum.

External functions determination

Preliminary results on ^{nat}Dy


Neutron multiplicities \bar{v}_p (NDAG)

Fort's formalism


 One can define and compute the fluctuating behavior of prompt neutrons based on the competition of (n, γf) and direct fission (n, f) processes and spin effect,

$$\bar{\nu}_p(E) = \nu^{\text{spin}}(E) - \Delta \nu^{(n,\gamma f)}(E)$$
(1)

- This work was motivated by the difficulties in ²³⁵U evaluation to quantify the \bar{v}_p fluctuations (see below)
- It is important to quantify the coupling between RRR and \bar{v}_p evaluation to improve performance in the benchmarks and uncertainty quantification

Spin effect and $(n, \gamma f)$ reaction

The \bar{v}_p of ²³⁹Pu in the incident neutron energy up 30 eV plotted together with spin effect component. Calculations performed with SAMMY and based on Fort's formalism.

Publications related to NCSP

- ND2016 : "Validation of W Cross Sections in the Neutron Energy Region up to 100 keV" 146, 06010 (2017)
- ND2016 : "n+²³⁵U Resonance Parameters and Neutrons Multiplicities in the Energy Region below 100 eV" 146, 02011 (2017)
- ND2016 : "The CIELO collaboration: Progress in international evaluations of neutron reactions on Oxygen, Iron, Uranium and Plutonium" **146**, 02001 (2017)
- ND2016 : "Evaluation of the neutron induced reactions on ²³⁵U from 2.25 keV up to 30 MeV 146, 02029 (2017)
- Nuclear Data Sheets (Special issue 2018) : "The CIELO Collaboration Summary Results: International Evaluations of Neutron Reactions on Oxygen, Iron, Uranium and Plutonium"
- Nuclear Data Sheets (Special issue 2018) : "The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data"
- Nuclear Data Sheets (Special issue 2018) : "Evaluation of Neutron-induced Reactions on ²³⁵U and ²³⁸U targets up to 30 MeV"

Conclusions and future work

- There have been major contributions to the ENDF/B-VIII.0 library focused on resolved resonance evaluations of ^{182,183,184,186}W, ²³⁵U evaluations and one of ⁴⁰Ca. Other work related to NCSP was on the ^{63,65}Cu.
- Ongoing resonance work includes ¹⁶O and the set of Dy isotopes (end of FY18). Other ongoing resonance work is on Gd isotopes.
- First attempt to couple resonance evaluation to fluctuations in the \bar{v}_p was initiated (NDAG) and ORNL seed money proposal was drafted
- Future work on ²³⁹Pu is planned to improve agreement with plutonium critical experiments (also connected to the work on \bar{v}_p)
- A report on dysprosium evaluation work is planned
- A journal paper on ¹⁶O evaluation is planned for submission

Acknowledgments

This work was supported by the US Department of Energy (DOE), Nuclear Criticality Safety Program (NCSP) funded and managed by the National Nuclear Security Administration for DOE.

Thank you!

