
Los Alamos NATIONAL LABORATORY EST.1943

FY2018 Preparation for the NeSO Subcritical Experiment

NCSP Technical Program Review 2019

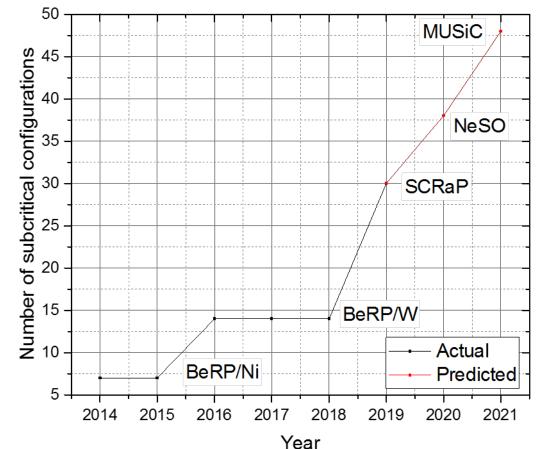
Cutler, Jesson Hutchinson March 26th, 2019

Alex McSpaden, Theresa

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNS/

LA-UR-19-22288

EST.1943


Outline

- Motivation
- What is NeSO?
- Status at Beginning of FY18
- Preliminary Measurements
- Composition Troubles
- Current and Future Work

Motivation

- Limited ICSBEP benchmarks related to Neptunium
- Help validate ²³⁷Np nuclear data, and subcritical measurement methods
 - Create a benchmark much more sensitive to ²³⁷Np cross sections than any already in existence
- ²³⁷Np is a byproduct of power reactors
 - (n, γ) reactions of ²³⁵U or (n,2n) reactions involving ²³⁸U
 - ²⁴¹Am α -decay
- Np sphere exists to better understand ²³⁷Np critical mass
 - Subject of previous critical benchmarks
- Add to steadily growing group of NCERC subcritical benchmark measurements

Overview of NeSO

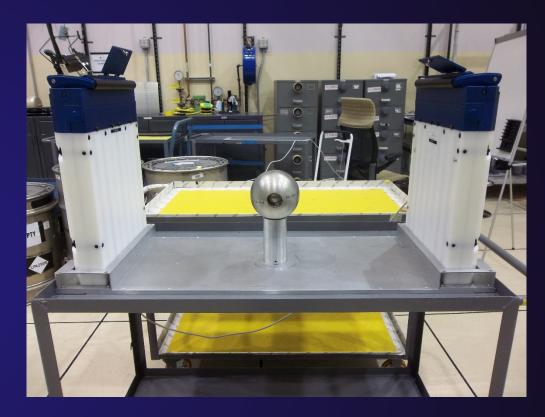
- Subcritical experiment with a 6kg sphere of Neptunium ("Np sphere")
- Includes configurations with both the bare sphere and varying amounts of nickel reflection
 - Nickel increases multiplication of system, leading to configurations spanning a variety of multiplication levels
- Performed at National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS)
- Goal is inclusion in International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook

The Neptunium Sphere

- Cast in 2001
- Total mass: 6070.4 grams
 - ²³⁷Np: 6060 grams
- Radius: 4.149 centimeters
- Includes Tungsten and Nickel cladding
 - Meant to decrease dose from ²³³Pa γ -rays
 - Tungsten is 0.259 cm thick
 - Two layers of nickel, total 0.381 cm thick
- Composition shown in table on right, from analysis
 of the surface
 - Taken from previous critical benchmark
 - SPEC-MET-FAST-008, Np sphere surrounded by HEU
 - May not be representative of other parts of the sphere
 - Low emission rate
 - Spontaneous fission yield from PANDA Manual

Nuclide	Mass (g)	S.F. yield	
		(neutrons/s)	
²³⁷ Np	6.06 x 10 ³	6.90 x 10 ⁻¹	
²³³ U	2.17 x 10 ⁻¹	1.87 x 10⁻⁴	
²³⁴ U	3.48 x 10 ⁻²	1.75 x 10 ⁻⁴	
²³⁵ U	1.66	4.96 x 10 ⁻⁴	
²³⁶ U	9.28 x 10 ⁻³	5.09 x 10⁻⁵	
²³⁸ U	1.87 x 10 ⁻¹	2.54 x 10 ⁻³	
²³⁸ Pu	9.83 x 10 ⁻²	2.55 x 10 ²	
²³⁹ Pu	1.95	4.25 x 10 ⁻²	
²⁴⁰ Pu	1.40 x 10 ⁻¹	1.43 x 10 ²	
²⁴¹ Pu	3.77 x 10 ⁻³	1.88 x 10 ⁻⁴	
²⁴² Pu	1.95 x 10 ⁻²	3.35 x 10 ¹	
²⁴¹ Am	4.04 x 10 ⁻⁴	4.76 x 10 ⁻⁴	
²⁴³ Am	1.12 x 10 ¹	-	
Total	6.07 x 10 ³	4.32 x 10 ²	

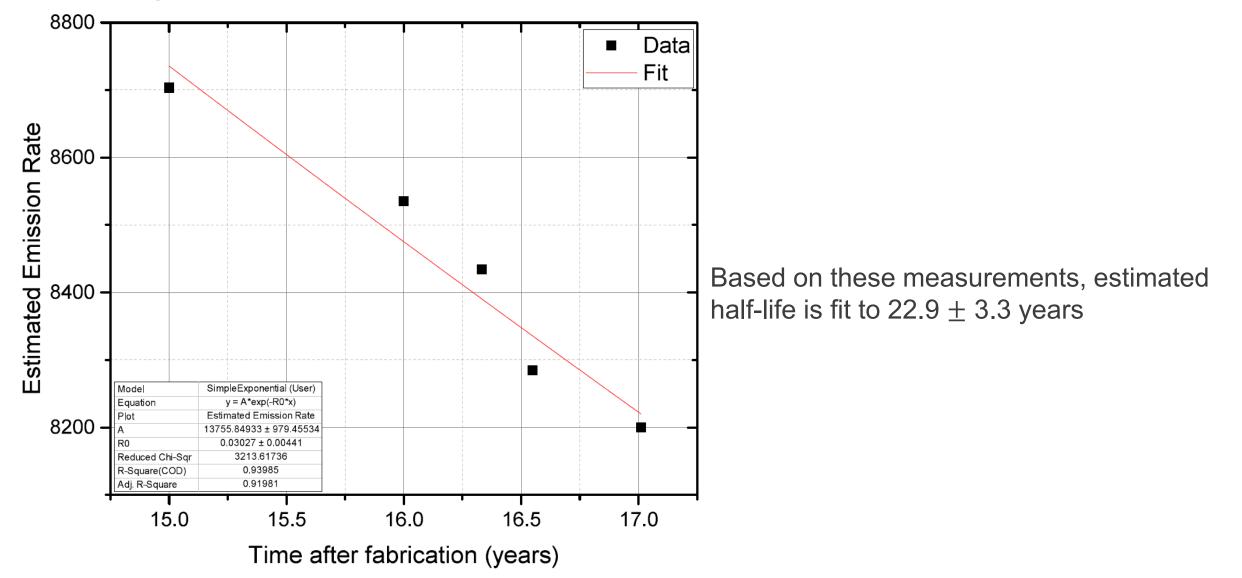
Detectors & Analysis Method


- Neutron Multiplicity Array Detector (NoMAD)
 - 15 ³He tubes surrounded by polyethylene
 - Creates list-mode data
 - Two will be placed at 30 cm from the center of the sphere
- Data will be analyzed with Hage-Cifarelli formalism of Feynman Variance-to-Mean technique
 - Same as previous NCERC subcritical measurements
 - Allows for the inference of leakage multiplication (M_L)
 - M_L number of neutrons that leave the system per starter neutron

Final Configurations

- Bare (no added nickel), 0.6", 1.1", 2.1", 3.6" Nickel
 - A range of distinct M_L values
 - Smaller range than previous benchmarks, but still distinguishable
- Nickel reflection from nesting spherical shells
 - Similar in style to previous subcritical benchmarks

Statistical uncertainties ≤ 0.0005



Preliminary Measurements

Date	Estimated Emission Rate (n/s)	
February 2017	8,703	
February 2018	8,535	
June 2018	8,434	
August 2018	ugust 2018 8,284	
February 2019	8,199	

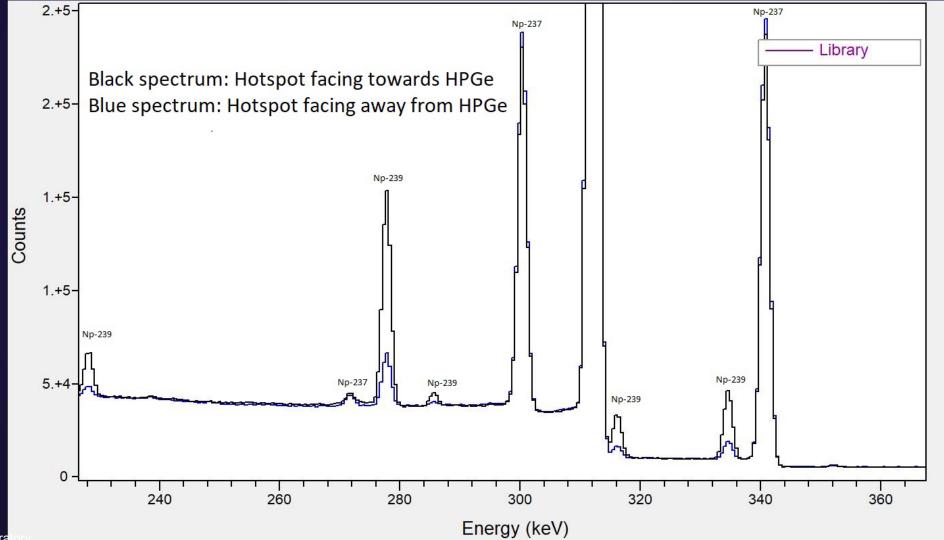
- A series of preliminary measurements have been performed over the past couple of years
 - Show decline in neutron emission rate over time
 - See the effect of moving the neutron hotspot

Decay in Emissions

Procurement of Reflector Shells

• Nickel Reflectors were received for the experiment in September of 2018

Benchmark Measurement Campaign

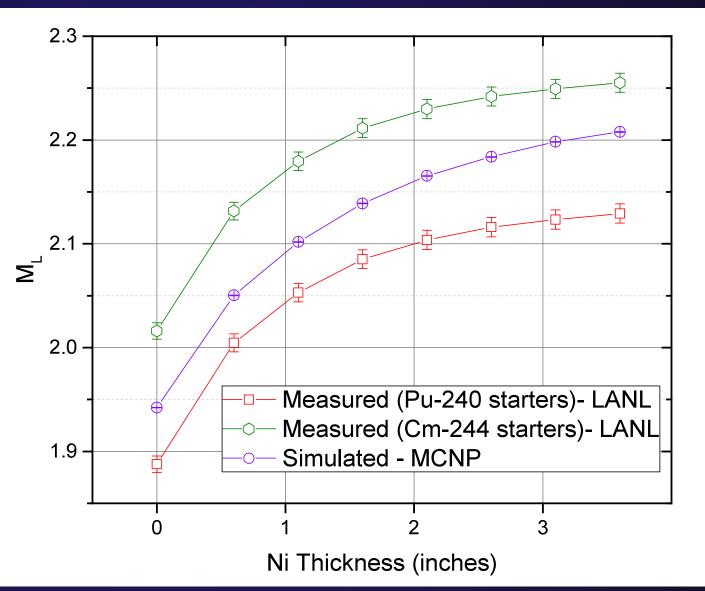


Los Alamos National Laboratory

Everything that follows is *preliminary*.

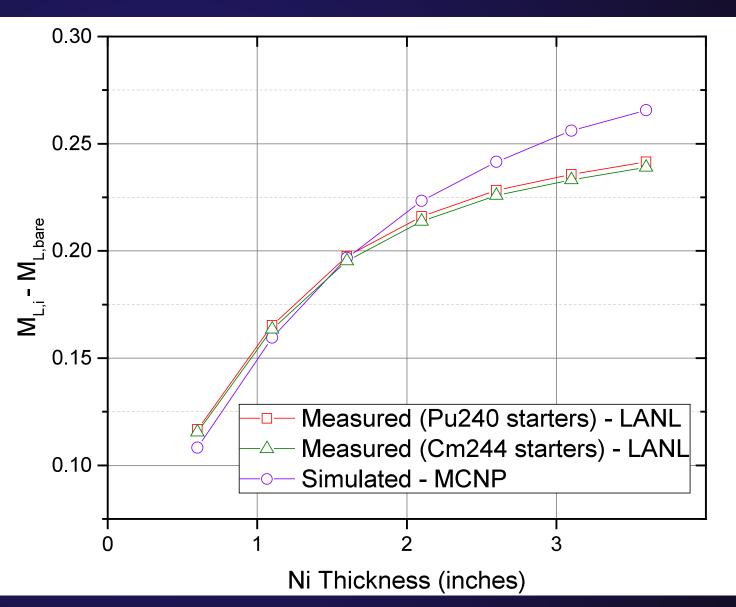
Gamma Spectroscopy

• Performed multiple overnight measurements with an HPGe


Americium-243

- Comes from α -decay of ²⁴³Am
- The benchmark composition includes a significant ²⁴³Am Content
 - Made through four (n, γ) -interactions on ²³⁹Pu
- One Additional neutron capture could explain extra neutron emissions
 - Curium-244!
 - Only milligrams of ²⁴⁴Cm is needed to account for difference in simulated and measured emission rates

241Cm	242Cm	243Cm	244Cm	245Cm
32.8 D	162.8 D	29.1 Y	18.1 Y	8423 Y
ε: 99.00%	α: 100.00%	π: 99.71%	π: 100.00%	σ: 100.00%
α: 1.00%	SF: 6.2E-6%	ε: 0.29%	SF: 1.4E-4%	SF: 6.1E-7%
240Am	241Am	242Am	243Am	244Am
50.8 H	432.6 Y	16.02 H	7364 Y	10.1 H
ε: 100.00%	α: 100.00%	β-: 82.70%	α: 100.00%	β-: 100.00%
α: 1.9E-4%	SF: 4E-10%	ε: 17.30%	SF: 3.7E-0%	
239Pu	240Pu	241 Pu	242Pu	243Pu
24110 Y	6561 Y	14.329 Y	3.75E+5 Y	4.956 H
α: 100.00%	α: 100.00%	β-: 100.00%	α: 100.00%	β-: 100.00%
SF: 3.E-10%	SF: 5.7E-6%	α: 2.5E-3%	SF: 5.5E-4%	
238Np	239Np	240Np	241Np	242Np
2.117 D	2.356 D	61.9 M	13.9 M	2.2 M
β-: 100.00%				


Preliminary Benchmark Results!

- Data collection time varied between eight hours and four days
- Difficult to distinguish between some configurations
 - Especially as thickness increases
- Difference between simulated and measured increases with reflection
- We will continue to analyze this data
 - Eventual submission to ICSBEP

Preliminary Benchmark Results!

- Data collection time varied between eight hours and four days
- Difficult to distinguish between some configurations
 - Especially as thickness increases
- Difference between simulated and measured increases with reflection
- We will continue to analyze this data
 - Eventual submission to ICSBEP

Thank you!

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy

