75 LOS ALABORATORY NATIONAL LABORATORY EST. 1943

Neptunium Subcritical Observation (NeSO) Experiment Design

Nuclear Criticality Safety Program Technical Program Review

Alex McSpaden, Theresa Cutler, Jesson Hutchinson, Rian Bahran

March 27, 2018

- EST.1943 -

Outline

- What is NeSO?
- Motivation
- The Sphere and Reflectors
 - Material and configurations
- Detectors and Analysis Method
- Monte Carlo Simulations
 - Multiplication, Count Rates, Sensitivities, Uncertainties
- Preliminary Measurements
- Composition Troubles
- Current and Future Work

Overview of NeSO

- Subcritical experiment with a 6kg sphere of Neptunium ("Np sphere")
- Includes configurations with both the bare sphere and varying amounts of nickel reflection
 - Nickel increases multiplication of system, leading to configurations spanning a variety of multiplication levels
- To be performed at National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS)
- Goal is inclusion in International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook

Motivation

- Np sphere exists to better understand ²³⁷Np critical mass
 - Subject of previous critical benchmarks
 - Difference in critical masses between data libraries
- ²³⁷Np is a byproduct of power reactors
 - (n, γ) reactions of ²³⁵U or (n,2n) reactions involving ²³⁸U
 - ²⁴¹Am α -decay
- Help validate ²³⁷Np nuclear data, and subcritical measurement methods
 - Create a benchmark much more sensitive to ²³⁷Np cross sections than any already in existence
- Add to steadily growing group of NCERC subcritical benchmark measurements

Library	ENDF/B-VIII.0	ENDF/B-VII.1	JENDL-4.0	JEFF-3.1
Critical Mass (kg)	58.59	58.7	58.7	63.8

The Neptunium Sphere

- Cast in 2001
- Total mass: 6070.4 grams
 - ²³⁷Np: 6060 grams
- Radius: 4.149 centimeters
- Includes Tungsten and Nickel cladding
 - Meant to decrease dose from ²³³Pa γ -rays
 - Tungsten is 0.259 cm thick
 - Two layers of nickel, total 0.381 cm thick
- Composition shown in table on right, from analysis of the surface
 - Taken from previous critical benchmark
 - SPEC-MET-FAST-008, Np sphere surrounded by HEU
 - May not be representative of other parts of the sphere
 - Low emission rate
 - Spontaneous fission yield from PANDA Manual

	Nuclide	Mass (a)	S.F. yield		
		Iviass (g)	(neutrons/s)		
	²³⁷ Np	6.06 x 10 ³	6.90 x 10 ⁻¹		
	²³³ U	2.17 x 10 ⁻¹	1.87 x 10 ⁻⁴		
	²³⁴ U	3.48 x 10 ⁻²	1.75 x 10 ⁻⁴		
	²³⁵ U	1.66	4.96 x 10 ⁻⁴		
	²³⁶ U	9.28 x 10 ⁻³	5.09 x 10 ⁻⁵		
	²³⁸ U	1.87 x 10 ⁻¹	2.54 x 10 ⁻³		
	²³⁸ Pu	9.83 x 10 ⁻²	2.55 x 10 ²		
	²³⁹ Pu	1.95	4.25 x 10 ⁻²		
	²⁴⁰ Pu	1.40 x 10 ⁻¹	1.43 x 10 ²		
	²⁴¹ Pu	3.77 x 10 ⁻³	1.88 x 10 ⁻⁴		
	²⁴² Pu	1.95 x 10 ⁻²	3.35 x 10 ¹		
	²⁴¹ Am	4.04 x 10 ⁻⁴	4.76 x 10 ⁻⁴		
	²⁴³ Am	1.12 x 10¹	-		
	Total	6.07 x 10 ³	4.32 x 10 ²		

The Reflectors

• ²³⁷Np is a threshold fissioner

- Reflecting materials such as polyethylene or graphite wouldn't increase multiplication as much

Simulations investigated a series of material choices

- Iron, tungsten, nickel, copper, beryllium, etc.

Nickel chosen due to larger range of multiplication factor values, and consistency with cladding

- Previous benchmark experience with Nickel 200, a high purity alloy

Graphic from JANIS

Detectors & Analysis Method

- Neutron Multiplicity Array Detector (NoMAD)
 - 15 ³He tubes surrounded by polyethylene
 - Creates list-mode data
 - Two will be placed at 30 cm from the center of the sphere
- Data will be analyzed with Hage-Cifarelli formalism of Feynman Variance-to-Mean technique
 - Same as previous NCERC subcritical measurements
 - Allows to solve for leakage multiplication (M_L) from singles and doubles rates (R₁ and R₂)
 - M_L number of neutrons that leave the system per starter neutron
 - R₁ rate at which counts are recorded in the detector
 - R₂ rate at which two neutrons from same fission chain are recorded in the detector

Final Configurations

- Bare (no added nickel), 0.6", 1.1", 2.1", 3.6" Nickel
 - -A range of distinct M_L values
 - Smaller range than previous benchmarks, but still distinguishable
- Nickel reflection from nesting spherical shells
 - Similar in style to previous subcritical benchmarks

Bare $- M_{L} 1.94$ $1.1^{\circ} Ni - M_{L} 2.10$ $3.6^{\circ} Ni - M_{L} 2.21$

Monte Carlo Simulations

- MCNP® version 6.2 KCODE criticality source computations, with ENDF/B-VII.1 cross sections
 - Used to determine the effective multiplication factor k_{eff} for each experimental configuration
 - 5,000 active cycles, 10,000 neutrons per cycle
- Can estimate total multiplication and leakage multiplication from k_{eff}

$$k_{eff} = \frac{k_p}{1 - \beta_{eff}} \qquad M_T = \frac{1}{1 - k_p}$$
$$M_L = \frac{1}{\overline{\nu}} [(\overline{\nu} - 1 - \alpha)M_T + 1 + \alpha]$$
$$\alpha = \frac{\Sigma_c}{\Sigma_f}$$

- β_{eff} effective delayed neutron fraction
- k_p prompt multiplication factor
- M_T total multiplication, the number of neutrons produced per starter neutron
- $\overline{\nu}$ average number of neutrons produced in fission

Estimation of Count Rates

Can further estimate singles and doubles rates
from leakage multiplication

$$R_1 = \varepsilon b_{11} F_S \qquad R_2 = \varepsilon^2 b_{21} F_S$$

 $\boldsymbol{b}_{11} = \boldsymbol{M}_L \overline{\boldsymbol{v}_{S1}}$

 $b_{21} = M_L^2 \left[\overline{v_{S2}} + \frac{M_L - 1}{\overline{v_{I1}} - 1} \overline{v_{S1} v_{I2}} \right]$

- ε detector efficiency
- F_S spontaneous fission rate
- $\overline{v_{In}} n$ th reduced factorial moment of the induced fission neutron multiplicity distribution
- $\overline{v_{Sn}}$ *n*th reduced factorial moment of the spontaneous fission neutron multiplicity distribution

Cross Section Sensitivities

- Integral and continuous energy cross section sensitivity coefficients were also calculated for various thicknesses of nickel
- Much more sensitive to ²³⁷Np than previous benchmarks
- Fast system, fast sensitivities
- Sensitivity coefficients to Plutonium isotopes are very small (<4.8E-4)

Nickel Thickness	²³⁷ Np Total XS Sensitivity		
0.0	7.94E-01 ± 1.91E-3		
1.0	7.52E-01 ± 2.03E-3		
2.0	7.37E-01 ± 2.06E-3		
3.0	7.37E-01 ± 2.14E-3		
4.0	7.26E-01 ± 2.11E-3		

Sensitivity Analysis and Uncertainty Quantification

- Perturb certain parameters by multiple times their uncertainty in each direction, treat difference in results as a derivative
 - This is the sensitivity
- To obtain uncertainty due to a parameter, multiply this derivative by the uncertainty in the parameter
- From table below, can see that count rates are very sensitive to plutonium content
 - Leakage multiplication is less sensitive

$$S_{k,x} = \frac{k_P - k_R}{P_x}$$

$$\delta k_{\chi} = u_{\chi} S_{k,\chi}$$

- $S_{k,x}$ sensitivity of benchmark parameter k to experimental parameter perturbation x
- *P* Perturbation
- R Reference
- δk_x Uncertainty in k due to uncertainty in x
- u_x uncertainty in x

	M _∟ Sensitivity	M _∟ Uncertainty	R₁ Sensitivity	R₁ Uncertainty	R ₂ Sensitivity	R ₂ Uncertainty
Np Radius \pm 2.74 mils	-0.6462	0.004497	0	0	0	0
Ni Cladding Thickness \pm 2 mils	0.1029	0.001046	0	0	0	0
Ni Mass ± 0.5%	0.0008057	0.0008057	0	0	0	0
Pu Content +61g/–2g	0.0002269	0.014298	7.141	449.9	0.7139	44.97

Preliminary Measurements

Case	R ₁	R ₂	M_L
Bare	174.95 ± 0.36	17.753 ± 0.351	1.95 ± 0.02

- Performed in Feb 2017 with 2 NoMAD systems at 47cm from center of sphere
 - 30 minute measurements, much shorter than benchmark
- Measured M_L matches with simulated data for non-reflected case
 - Reflected shows right shape, but not exactly representative of benchmark shells
 - Current shells not made to fit Np sphere, some gaps present
 - Leftover from BeRP-Ni benchmark

Count rates do not agree

- Over an order of magnitude higher

Composition Uncertainty

- 2002 LANL report estimated 63 grams of Pu based on emission rate
 - SPEC-MET-FAST-008 has 2 grams
- 2002 Estimated emission rate: 12,000 n/s
 - 2017: 8,700 n/s
 - 2018: 8,400 n/s
 - Simulation Model: 400 n/s
- Unsure if extra neutrons are from plutonium, curium, or something else entirely
- Gamma spectroscopy difficult due to shielding
 - Lower energy peaks are suppressed

Current and Future work

- Continue investigation of neutron emission rate issue
 - Could further analysis be performed on the sprue material?
 - Continue to analyze gamma spectroscopy data
- Determine the effect of ENDF/B-VIII.0 vs ENDF/B-VII.1
 - Updated nickel reaction cross sections
- Purchase Nickel reflector shells
- Execute the experiment
 - Expected this year

Thank you!

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy

