

Overview of NCSP Integral Experiments at Sandia

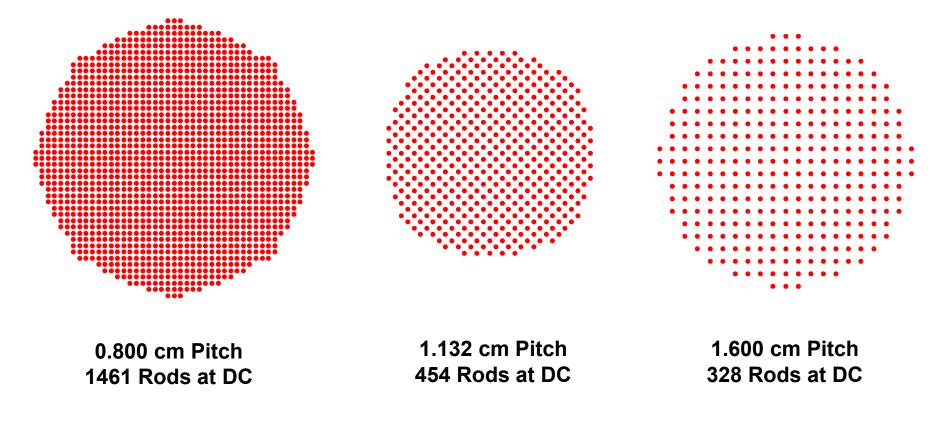
Nuclear Criticality Safety Program Technical Program Review

Oak Ridge, TN March 28, 2018

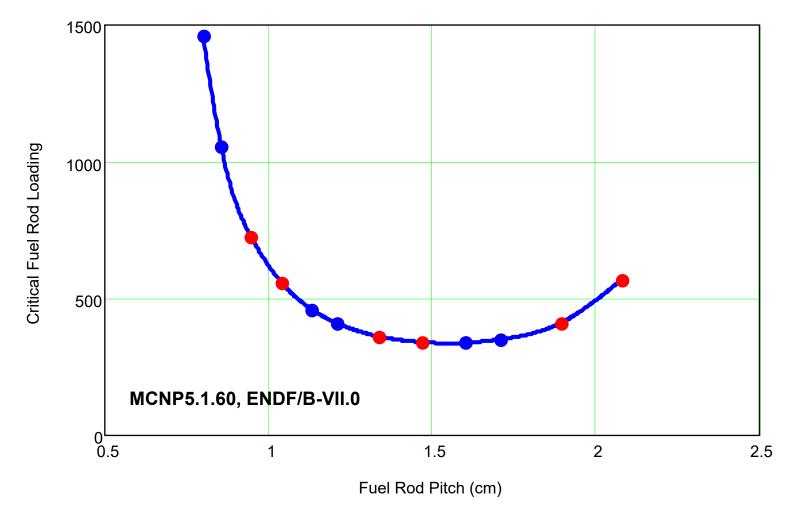
Presented by Gary A. Harms Sandia National Laboratories

SAND2018-2995 PE

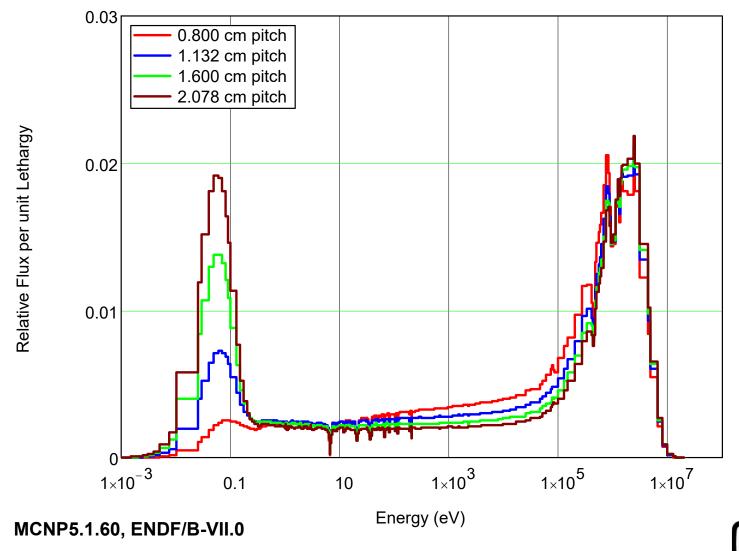
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.0.


IER	Title	Sponsor	CED
206	Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia	SNL	4a
209	7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator	SNL	3b
230	Characterize the Thermal Capabilities of the 7uPCX	SNL	2
304	Temperature Dependent Critical Benchmarks	ORNL	2
305	Critical Experiments with UO ₂ Rods and Molybdenum Foils	IRSN	1
306	Critical Experiments with UO ₂ Rods and Rhodium Foils	IRSN	1
441	Epithermal HEX Lattices with SNL 7uPCX Fuel for Testing Nuclear Data	ORNL	2
451	Titanium Cross Sections in a Thermal Application (BUCCX Hardware)	SRNL	3b
452	Inversion Point of the Isothermal Reactivity Coefficient	SNL	1

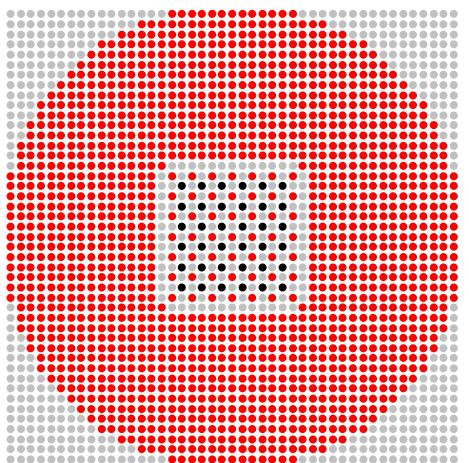
IER	Title	Sponsor	CED
206	Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia	SNL	4a
209	7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator	SNL	3b
230	Characterize the Thermal Capabilities of the 7uPCX	SNL	2
304	Temperature Dependent Critical Benchmarks	ORNL	2
305	Critical Experiments with UO ₂ Rods and Molybdenum Foils	IRSN	1
306	Critical Experiments with UO ₂ Rods and Rhodium Foils	IRSN	1
441	Epithermal HEX Lattices with SNL 7uPCX Fuel for Testing Nuclear Data	ORNL	2
451	Titanium Cross Sections in a Thermal Application (BUCCX Hardware)	SRNL	3b
452	Inversion Point of the Isothermal Reactivity Coefficient	SNL	1



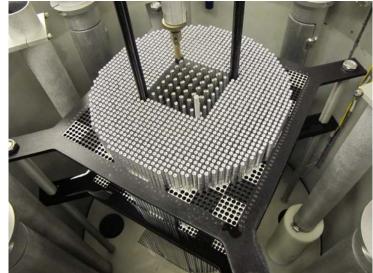
IER-230 – Characterize the Thermal Capabilities of the 7uPCX


Number of Fuel Rods at DC vs Pitch

The blue points are for existing grid plates (0.800 and 0.855 cm pitch). The red points are for new grid plates (0.947 and 1.039 cm pitch)



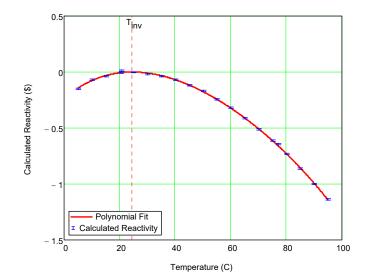
The Neutron Spectrum vs Pitch



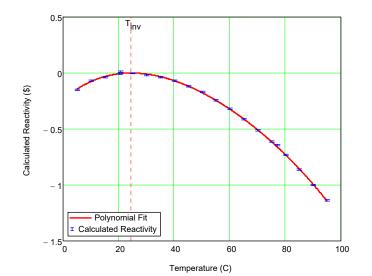
IER-285 LEU-COMP-THERM-097 Case 24

We stole the IER-230 concept from ourselves and used it in some of the IER-285 experiments

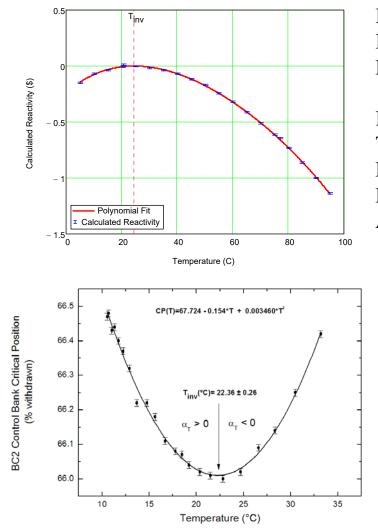
Fuel	1485
Expt.	36 Ti
Empty	136
Total	1657


Fuel Rod

Empty Grid Location


Titanium Experiment Rod

IER	Title	Sponsor	CED
206	Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia	SNL	4a
209	7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator	SNL	3b
230	Characterize the Thermal Capabilities of the 7uPCX	SNL	2
304	Temperature Dependent Critical Benchmarks	ORNL	2
305	Critical Experiments with UO ₂ Rods and Molybdenum Foils	IRSN	1
306	Critical Experiments with UO ₂ Rods and Rhodium Foils	IRSN	1
441	Epithermal HEX Lattices with SNL 7uPCX Fuel for Testing Nuclear Data	ORNL	2
451	Titanium Cross Sections in a Thermal Application (BUCCX Hardware)	SRNL	3b
452	Inversion Point of the Isothermal Reactivity Coefficient	SNL	1



International Reactor Physics Experiment Evaluation Project: International Handbook of Evaluated Reactor Physics Benchmark Experiments

IPEN(MB01)-LWR-RESR-017 THE INVERSION POINT OF THE ISOTHERMAL REACTIVITY COEFFICIENT OF THE IPEN/MB-01 REACTOR Adimir dos Santos et al.

International Reactor Physics Experiment Evaluation Project: International Handbook of Evaluated Reactor Physics Benchmark Experiments

IPEN(MB01)-LWR-RESR-017 THE INVERSION POINT OF THE ISOTHERMAL REACTIVITY COEFFICIENT OF THE IPEN/MB-01 REACTOR Adimir dos Santos et al.

Adimir and his colleagues measured three systems with T_{inv} between 14.99 and 22.36 C

T_{inv} Calculated Reactivity (\$) - 0 5 Polynomial Fit Calculated Reactivity 60 80 100 20 40 Temperature (C) 66.5 CP(T)=67.724 - 0.154*T + 0.003460*T BC2 Control Bank Critical Position (% withdrawn) 66.4 66.3 T_{inv}(°C)= 22.36 ± 0.26 66.2 α_τ < 0 α_ > 0 66.1 66.0 10 15 25 30 35 20 Temperature (°C)

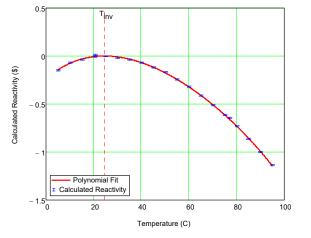
International Reactor Physics Experiment Evaluation Project: International Handbook of Evaluated Reactor Physics Benchmark Experiments

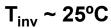
IPEN(MB01)-LWR-RESR-017 THE INVERSION POINT OF THE ISOTHERMAL REACTIVITY COEFFICIENT OF THE IPEN/MB-01 REACTOR Adimir dos Santos et al.

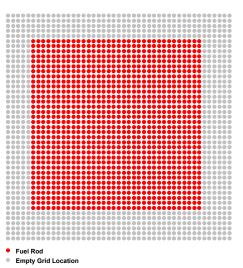
What IS required:

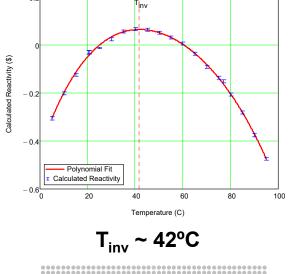
- 1. Control element with high-precision position indication (worth need not be calibrated)
- 2. Ability to measure power changes
- 3. Accurate knowledge of the temperature in the core (uniformity space and time is important)

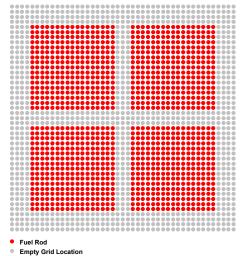
What IS NOT required:

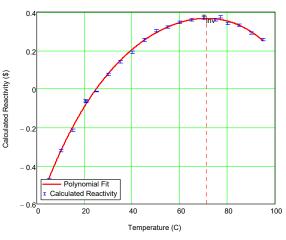

Knowledge (measurement/calculation/guess) of the kinetics parameters of the system

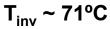

Adimir and his colleagues measured three systems with T_{inv} between 14.99 and 22.36 C

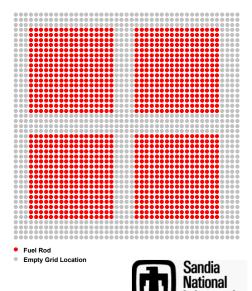



IER-452 – What can we do?


0.2







Laboratories

Thomas Miller (ORNL)

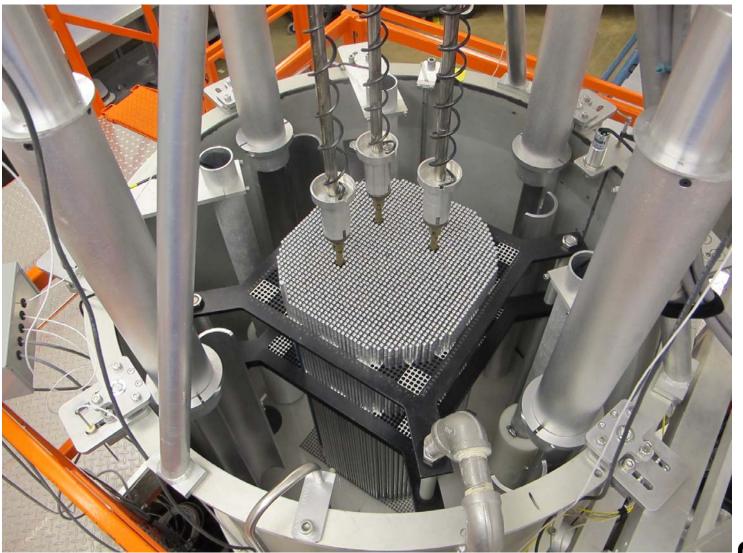
IER	Title	Sponsor	CED
206	Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia	SNL	4a
209	7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator	SNL	3b
230	Characterize the Thermal Capabilities of the 7uPCX	SNL	2
304	Temperature Dependent Critical Benchmarks	ORNL	2
305	Critical Experiments with UO ₂ Rods and Molybdenum Foils	IRSN	1
306	Critical Experiments with UO ₂ Rods and Rhodium Foils	IRSN	1
441	Epithermal HEX Lattices with SNL 7uPCX Fuel for Testing Nuclear Data	ORNL	2
451	Titanium Cross Sections in a Thermal Application (BUCCX Hardware)	SRNL	3b
452	Inversion Point of the Isothermal Reactivity Coefficient	SNL	1

Justin Clarity (ORNL)

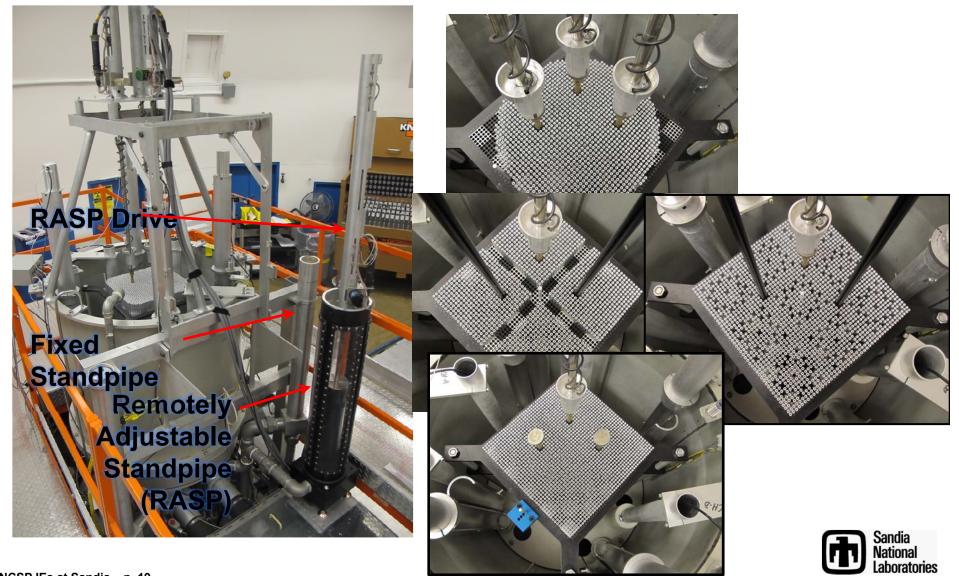
IER	Title	Sponsor	CED
206	Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia	SNL	4a
209	7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator	SNL	3b
230	Characterize the Thermal Capabilities of the 7uPCX	SNL	2
304	Temperature Dependent Critical Benchmarks	ORNL	2
305	Critical Experiments with UO ₂ Rods and Molybdenum Foils	IRSN	1
306	Critical Experiments with UO ₂ Rods and Rhodium Foils	IRSN	1
441	Epithermal HEX Lattices with SNL 7uPCX Fuel for Testing Nuclear Data	ORNL	2
451	Titanium Cross Sections in a Thermal Application (BUCCX Hardware)	SRNL	3b
452	Inversion Point of the Isothermal Reactivity Coefficient	SNL	1

Nicolas Leclair (IRSN) is the chief analyst

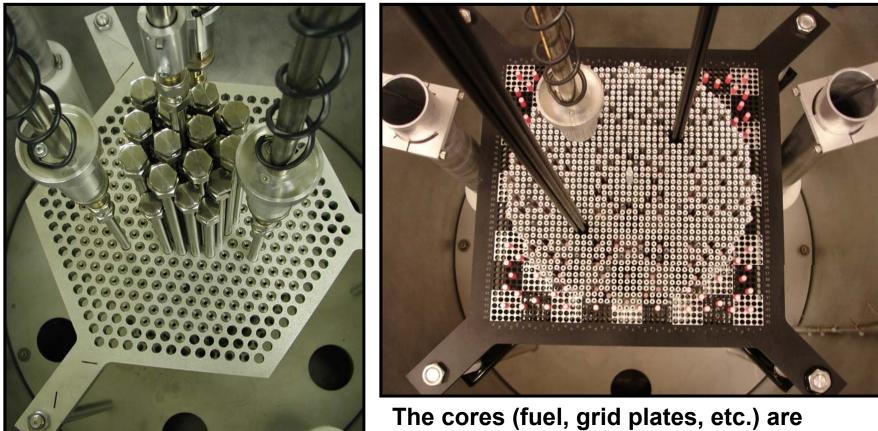
IER	Title	Sponsor	CED
206	Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia	SNL	4a
209	7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator	SNL	3b
230	Characterize the Thermal Capabilities of the 7uPCX	SNL	2
304	Temperature Dependent Critical Benchmarks	ORNL	2
305	Critical Experiments with UO ₂ Rods and Molybdenum Foils	IRSN	1
306	Critical Experiments with UO ₂ Rods and Rhodium Foils	IRSN	1
441	Epithermal HEX Lattices with SNL 7uPCX Fuel for Testing Nuclear Data	ORNL	2
451	Titanium Cross Sections in a Thermal Application (BUCCX Hardware)	SRNL	3b
452	Inversion Point of the Isothermal Reactivity Coefficient	SNL	1


IER-209 – 7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator

- This is similar to the experiments completed in IER-208 that resulted in the benchmark evaluation LEU-COMP-THERM-096 (2015)
- The difference is in the fuel rod pitch (0.855 vs 0.800 cm)
- The 0.855 cm pitch array is more reactive than the 0.800 cm pitch array (~1060 rods fully reflected vs ~1450)

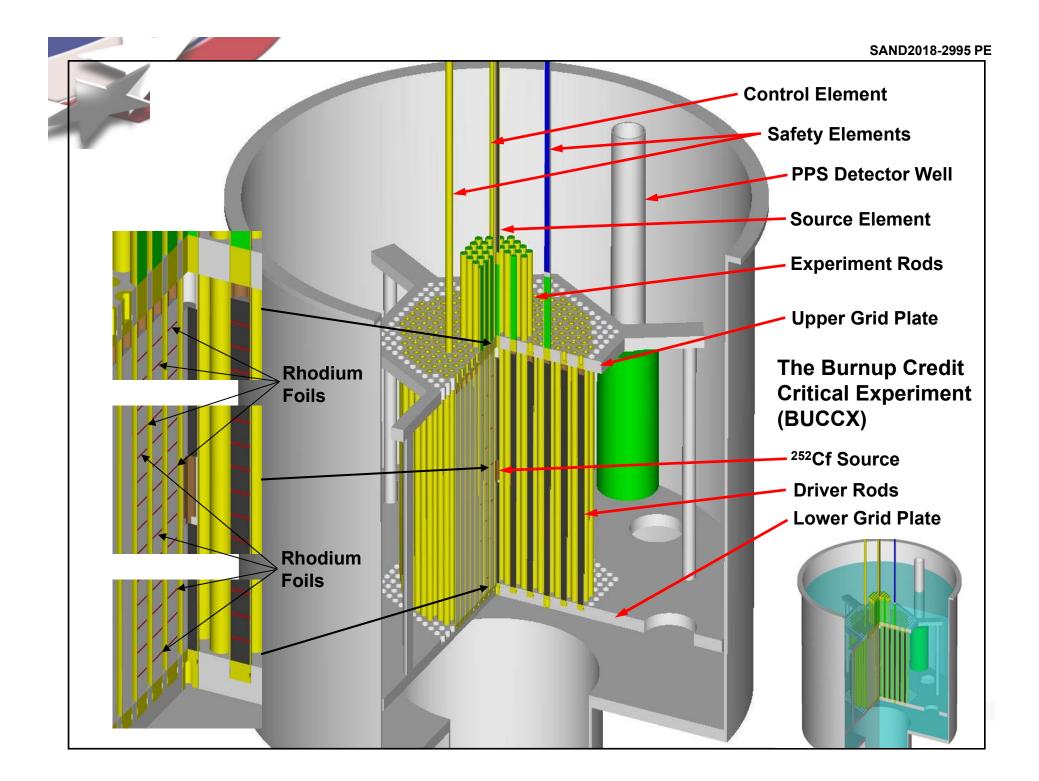

IER-208 Configuration

IER-208 Experiments

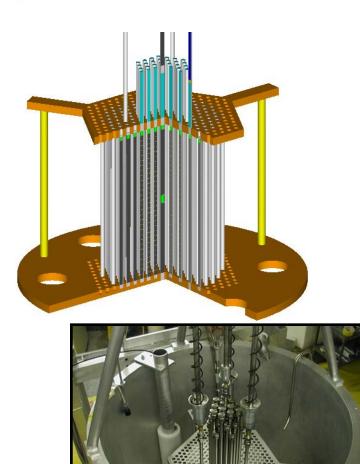


NCSP IEs at Sandia - p. 19

IER	Title	Sponsor	CED
206	Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia	SNL	4a
209	7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator	SNL	3b
230	Characterize the Thermal Capabilities of the 7uPCX	SNL	2
304	Temperature Dependent Critical Benchmarks	ORNL	2
305	Critical Experiments with UO ₂ Rods and Molybdenum Foils	IRSN	1
306	Critical Experiments with UO ₂ Rods and Rhodium Foils	IRSN	1
441	Epithermal HEX Lattices with SNL 7uPCX Fuel for Testing Nuclear Data	ORNL	2
451	Titanium Cross Sections in a Thermal Application (BUCCX Hardware)	SRNL	3b
452	Inversion Point of the Isothermal Reactivity Coefficient	SNL	1

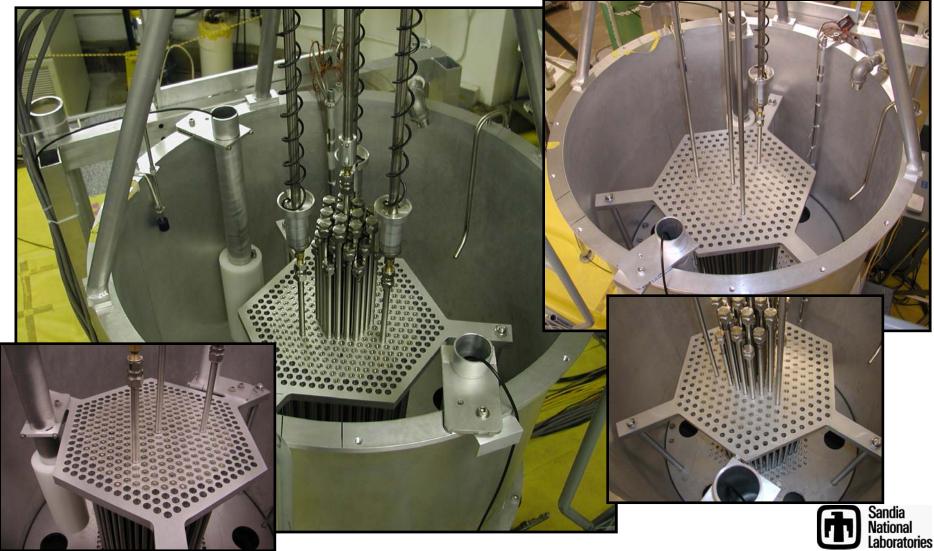


IER-206 – Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia



The cores (fuel, grid plates, etc.) are different. The balance of the assembly hardware is the same.

IER-206 – Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia



- In 2002, we built a critical assembly in which we could insert fission product materials to measure reactivity effects
- We completed a set of experiments with rhodium between the fuel pellets in "experiment" elements
- The experiment is documented as LEU-COMP-THERM-079
- In 2017, we completed approach-to-critical experiments on all the original configurations
- Improvements for new experiments:
 - We precisely measured the diameter of each fuel/experiment element (decrease in the uncertainty)
 - We performed the experiments with the original source away from the assembly
- At the conclusion of the experiments we rolled into the IER-451 Titanium Sleeve experiments

NCSP IEs at Sandia – p. 23

The BUCCX core shown at the end of approach-to-critical experiments

COP IES at Sanuta – p. 24

IER	Title	Sponsor	CED
206	Re-establish the 4.3% Enriched Critical Experiment Capability at Sandia	SNL	4a
209	7uPCX 0.855 cm Pitch, Variable Depth Pure Water Moderator	SNL	3b
230	Characterize the Thermal Capabilities of the 7uPCX	SNL	2
304	Temperature Dependent Critical Benchmarks	ORNL	2
305	Critical Experiments with UO ₂ Rods and Molybdenum Foils	IRSN	1
306	Critical Experiments with UO ₂ Rods and Rhodium Foils	IRSN	1
441	Epithermal HEX Lattices with SNL 7uPCX Fuel for Testing Nuclear Data	ORNL	2
451	Titanium Cross Sections in a Thermal Application (BUCCX Hardware)	SRNL	3b
452	Inversion Point of the Isothermal Reactivity Coefficient	SNL	1

