Resonance Reconstruction Capabilities in NJOY21

LA-UR-18-22371

Jeremy Lloyd Conlin¹ Austin P. McCartney¹ Wim Haeck¹ Amelia Jo Trainer^{2,1} March 26–28, 2018

¹Los Alamos National Laboratory PO Box 1663, Los Alamos, NM 87545

²Department of Nuclear Science & Engineering Massachusetts Institute of Technology
77 Massachusetts Avenue, 24-107
Cambridge, MA, 02139

- Modernization of NJOY
- Ground-up rewrite of NJOY2016
- Enable independent use of components
 - ENDFtk
 - Interpolation library
 - Resonance reconstruction
- Bindings to legacy Fortran code

Goals

- 1. Maintain NJOY's legacy of a gold standard processing code
- 2. Easier
- 3. Flexible
- 4. Maintainable

RECONR Module from NJOY2016

RECONR Module from NJOY2016

- 1. Resonance reconstruction njoy::resonanceReconstruction
 - Single-Level Breit-Wigner
 - Multi-Level Breit-Wigner
 - Reich-Moore
 - R-Matrix Limited
- 2. Energy-grid unionization njoy::twig
- 3. Linearization of tabulated cross sections njoy::twig
- 4. Removal of negative cross sections
- 5. Removal of positive cross sections below the reaction Q-value

Formalisms:

- Single-Level Breit-Wigner (SLBW) (LRF=1)
- Multi-Level Breit-Wigner (MLBW) (LRF=2)
- Reich-Moore (RM) (LRF=3)
- Adler-Adler (AA) (LRF=4)
- R-Matrix Limited (RML) (LRF=7)

Resonance Parameters—Single-Level Breit-Wigner

Trkov, Herman, and Brown, ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files, Appendix D

$$\sigma_{n,n}(E) = \sum_{\ell=0}^{\mathsf{NLS}-1} \sigma_{n,n}^{\ell}(E), \qquad (D.1)$$

$$\sigma_{n,n}^{\ell}(E) = \underbrace{(2\ell+1)\frac{4\pi}{k^2}\sin^2\phi_{\ell}}_{\text{potential scattering}} + \frac{\pi}{k^2}\sum_{J}g_{J}\sum_{r=1}^{NR_{J}}\frac{\Gamma_{nr}^{2} - 2\Gamma_{nr}\Gamma_{r}\sin^2\phi_{\ell} + 2(E - E_{r}')\Gamma_{nr}\sin(2\phi_{\ell})}{(E - E_{r}')^{2} + \frac{1}{4}\Gamma_{r}^{2}} \quad (D.2)$$

Parameters in red are parameters given in the ENDF file (some assembly required). Note: Resonance parameters are not (necessarily) given in order of J or ℓ .

Results

- NJOY2016 run through RECONR module.
- NJOY21 resonance reconstruction with energy grid from NJOY2016.

Results

- NJOY2016 run through RECONR module.
- NJOY21 resonance reconstruction with energy grid from NJOY2016.

```
real(kr) function sigfig(x,ndig,idig)
/-----
! Adjust x to have ndig significant figures. If idig is not zero,
! shade x up or down by idig in the last significant figure.
!------
```

```
\begin{array}{ll} {\rm sigfig(1.2345678901,7)} & \rightarrow 1.234567 \\ {\rm sigfig(1.2345678901,7,2)} & \rightarrow 1.234569 \end{array}
```

Single-Level Breit-Wigner Formalism

¹⁰⁵Rh

Multi-Level Breit-Wigner Formalism

⁵⁸Co

Multi-Level Breit-Wigner Formalism

¹⁶⁸Tm

Multi-Level Breit-Wigner Formalism

²³⁸Np

Reich-Moore Formalism

⁵⁶Fe

Reich-Moore Formalism

235U

Reich-Moore Formalism

238U

• Biggest			Relative Difference (1×10^{-7})					
difference:			elastic		capture		fission	
$6.4 imes10^{-3}$ %	Form	lsotope	max	mean	max	mean	max	mean
Integral	SLBW	105 Rh	5.5	5.0	5.0	5.0		
difference likely	MLBW	⁵⁸ Co	6.8	3.9	5.0	5.0		
much smaller	MLBW	¹⁶⁸ Tm	0.66	0.25	5.0	5.0	5.0	5.0
	MLBW	²³⁸ Th	3.4	0.57	5.0	5.0		
$\frac{\int_{E_{i-1}}^{E_i} \sigma_{21} - \sigma_{16} \mathrm{d}E}{-}$	RM	⁵⁶ Fe	220	3.7	7.2	5.0		
	RM	²³⁵ U	12.0	0.67	14.0	5.0	5.0	5.0
$\int_{E_{i-1}}^{E_i} \sigma_{16} \mathrm{d}E$	RM	²³⁸ U	640	4.7	9.5	5.0	5.0	5.0

Timing Results

Formalism	lsotope	NJOY2016 (ms)	NJOY21 (ms)	NJOY21 Speedup
SLBW	¹⁰⁵ Rh	0.256	0.122	2.1
	⁵⁸ Co	2.69	1.37	1.97
MLBW	²³⁸ Np	0.196	0.574	0.883
	¹⁶⁸ Tm	0.311	0.283	1.10
		(s)	(s)	
RM	⁵⁶ Fe	0.648	0.135	4.80
	²³⁵ U	82.7	13.6	6.07
	²³⁸ U	144	14.7	8.12

When resonance reconstruction is short, NJOY21 is comparable to NJOY2016. When resonance reconstruction takes a long time (>1s) NJOY21 is clearly faster.

Conclusion

- Resonance reconstruction capabilities in NJOY21 for:
 - Single-Level Breit-Wigner
 - Multi-Level Breit-Wigner
 - Reich-Moore
- Timing:
 - Comparable when resonance reconstruction is easy
 - Faster when resonance reconstruction is difficult
- Future Work:
 - R-Matrix Limited (RML) Formalism (coming FY2018)
 - Removal of negative cross sections
 - Removal of non-zero cross sections below Q-value