US DOE Nuclear Criticality Safety Program

Technical Program Review

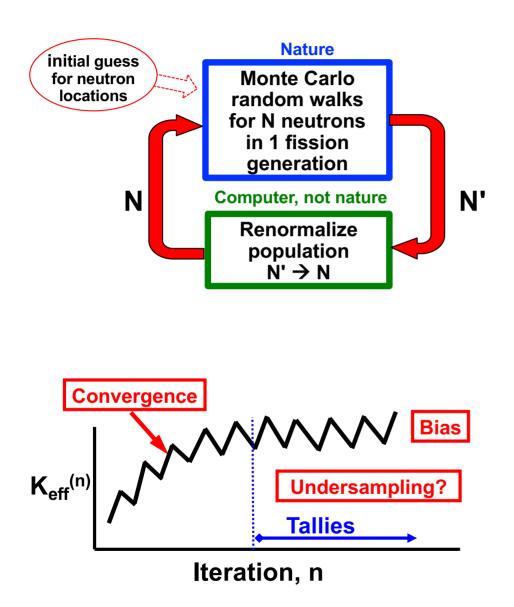
Pantex, Amarillo TX 26-27 March, 2019

LA-UR-19-20984








# Automated Acceleration & Convergence Testing for Monte Carlo NCS Calculations

#### Forrest B. Brown

Senior R&D Scientist Monte Carlo Methods, Codes, & Applications, LANL

National Laboratory Professor Nuclear Engineering Dept., Univ. of New Mexico

## **MC Criticality Calculations - Concerns**

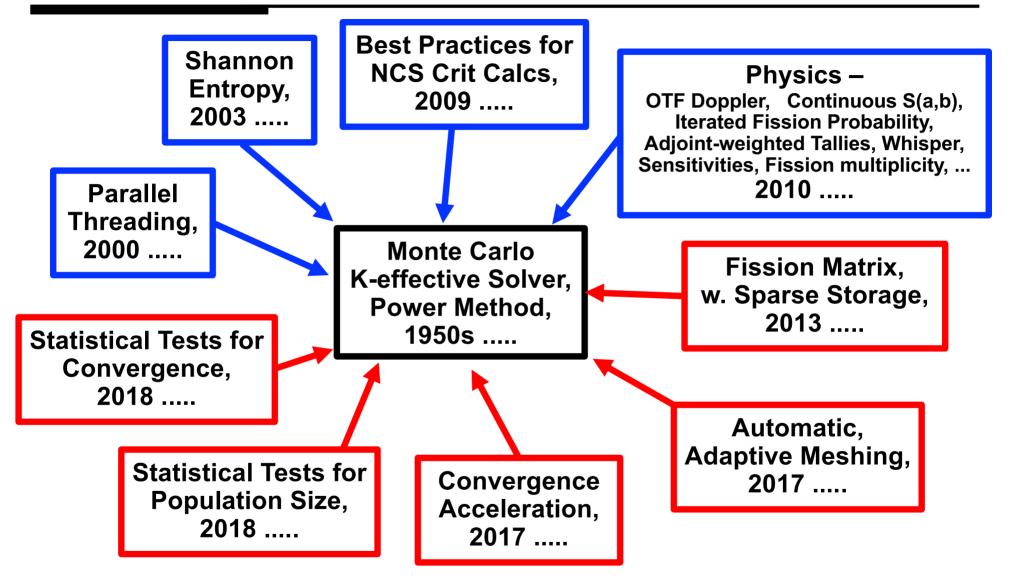


- Bias in Keff
  - -1 / (neutrons/cycle)

### • Bias in source shape

Too low in high-importance regions, Too high in low-importance regions

• Undersampling/clustering Not enough neutrons/cycle to cover space


### Convergence

source shape takes longer than keff

### Best Practices

Source in all fissile regions. Examine H<sub>src</sub> plot for convergence. >10k neuts/cycle (>100k big probs). A few 100 cycles.

## LANL R&D for MC Criticality Calculations



This work: Combine & automate the red boxes

#### Automated acceleration & convergence testing for MC criticality

#### • Enabling technology, automate & combine new methods

#### - Automated, adaptive meshing

- Basis for Shannon entropy & fission matrix
- Fission-matrix with adaptive sparse storage
  - Reference solution for fission neutron distribution
- Accelerate convergence of neutron distribution

#### Statistical tests for convergence

- 8 tests on metrics, 3 tests on distributions
- Automatically begin active cycles & tallies
- Population size tests
- Eliminates the need to run trial calculations, examine Shannon entropy plots, set parameters on KCODE card, & then rerun
  - Provides quantitative evidence of convergence
  - Enables parameter studies & coupled TH feedback
  - Saves significant computer time & people time

# **Automated Methods**

- Meshing for convergence tests
  - Automatically created & extended if needed, no user input required
  - Physics basis =  $L_{fiss}$  = RMS-distance-to-fission
  - Used for sources, entropy, fission matrix:  $S_{neut}$ ,  $H_{src}$ ,  $F(I \leftarrow J)$ ,  $S_{FM}$
- Cycle 1
  - Estimate L<sub>fiss</sub> & set initial mesh
- Initial cycles
  - Iterate until  $S_{neut}$  & F tallies stabilize
  - Automated, test that ( $\Delta$  nonzero tallies) < 2%, 5%
- For blocks of cycles (default = 10)
  - Solve F matrix equations for  $S_{FM}$
  - Convergence tests
    - 9 statistical tests must all pass for convergence (also 2 other tests)
    - If not converged, accelerate source convergence by importance sampling, weights:  $S_{FM}(m) / S_{neut}(m)$ , m = bin
    - If converged, set active cycles to begin with next cycle, population size tests

# **Statistical tests for convergence**

#### Slope test



- For a block of cycles (default = 10)
- For result x from each cycle in block, compute least-squares slope &  $\sigma_{slope}$  $| slope(x) | < 0.0001 \rightarrow pass, slope \sim 0$  $| slope(x) | < t_{0.05} \sigma_{slope} \rightarrow pass, slope \sim 0$ within statistics

#### • Metric tests, at end of block for convergence testing

- 1. Slope K<sub>tracklen</sub>
- 2. Slope K<sub>collide</sub>
- 3. Slope K<sub>absorb</sub>
- 4. Slope H, Shannon entropy
- 5. Slope H<sub>x</sub>, entropy X marginal
- 6. Slope H<sub>Y</sub>, entropy Y marginal
- 7. Slope H<sub>z</sub>, entropy Z marginal
- 8.  $H_{block}$  within 1% of  $H_{FM}$

If Test 8 passes, strong evidence of convergence If Test 8 fails, ignore it – might be low popsize

- Distribution tests, at end of block for convergence testing
  - 9. Kolmogorov-Smirnov test at 95% level, S<sub>block</sub> & S<sub>FM</sub> have same distrib.

For multi-D distributions, KS statistic depends on ordering. Take worst case KS statistic for many random permutations.

- 10. Chi-square 2-point test at 95% level,  $S_{block}$  &  $S_{FM}$  have same distrib.
- 11. Relative entropy (Kullback-Liebler discrepancy) test at 95% level for S<sub>block</sub> & S<sub>FM</sub>

If Test 11 passes, strong evidence of convergence If Test 11 fails, ignore it – might be low popsize

#### If convergence tests all pass, convergence is locked-in

- Tests continue for each block
- Some tests may fail (due to statistics), but convergence not rescinded

## **Accelerating Source Convergence**

#### At the end of each cycle

- S<sub>FM</sub> is available source from fission matrix at end-of-block
- S<sub>neuts</sub> is available actual neutron source at end-of-cycle
- During inactive cycles, can optionally use (S<sub>FM</sub> / S<sub>neuts</sub>) for importance sampling of the fission source
  - Pushes neutron distribution toward F-matrix reference
  - Recomputed each cycle using  $S_{FM}$  from previous end-of-block, and  $S_{neuts}$  for current end-of-cycle
  - Works typically reduces inactive cycles by 2-20 X

- Further development under consideration:
  - Investigate using  $S_{FM}^{adjoint}$  for source importance sampling
  - Maybe coarsen the fission matrix, to reduce statistical noise

### **Statistical tests for Population Size**

Performed after convergence, at end of each block of cycles

- 1. Relative entropy < 0.05 for  $S_{block}$  vs  $S_{FM}$
- 2.  $< H_{cycle} >$  within 1% of  $H_{FM}$

### If both tests pass, population size is adequate

If either test fails, it is likely that larger neutrons/cycle should be used. A warning message is printed.

For future work, if the popsize tests fail, neutrons/cycle could be automatically increased. That could create resource issues – memory size, run time, etc.

| comment.<br>comment.<br>comment.<br>comment.<br>comment.<br>comment. | The MESH (adaptive, axis-aligned, cartesian) to be used for computing<br>Shannon entropy, fission-matrix tallies (if used), and source<br>convergence checking is initially defined by:<br>max mesh spacing for automesh = 1.0052E+01<br>total mesh cells = 3675<br>Xbins= 35 Xmin=-1.6861E+02 Xmax= 1.6856E+02 dx= 9.6334E+00 |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| comment.<br>comment.                                                 | Xbins= 35 Xmin=-1.6861E+02 Xmax= 1.6856E+02 dx= 9.6334E+00<br>Ybins= 35 Ymin=-1.6856E+02 Ymax= 1.6857E+02 dy= 9.6323E+00<br>Zbins= 3 Zmin=-9.6460E+00 Zmax= 9.9571E+00 dz= 6.5344E+00                                                                                                                                          |
| comment.                                                             | the mesh will be automatically extended if necessary,<br>preserving the original mesh cells and spacing.                                                                                                                                                                                                                       |
| comment.                                                             |                                                                                                                                                                                                                                                                                                                                |
| comment.                                                             | FISSION MATRIX WILL BE COMPUTED to estimate dominance ratio,                                                                                                                                                                                                                                                                   |
| comment.                                                             | based on fission sites only - not flights or collisions                                                                                                                                                                                                                                                                        |
| comment.                                                             |                                                                                                                                                                                                                                                                                                                                |
| comment.                                                             | The mesh for the fission matrix is the same as the entropy mesh,                                                                                                                                                                                                                                                               |
| comment.                                                             | using 3675 mesh bins for tallying fission neutrons                                                                                                                                                                                                                                                                             |
| comment.                                                             | Fission matrix mesh will be extended if                                                                                                                                                                                                                                                                                        |
| comment.                                                             | any fission sites are found outside this mesh.                                                                                                                                                                                                                                                                                 |
| comment.                                                             | Fission matrix tallies will be reset after cycle 1                                                                                                                                                                                                                                                                             |
| comment.                                                             | Fission matrix eigenfunction will be found every 10 cycles.                                                                                                                                                                                                                                                                    |
| comment.                                                             |                                                                                                                                                                                                                                                                                                                                |
| comment.                                                             | Fission matrix dimensions: 3675 x 3675                                                                                                                                                                                                                                                                                         |
| comment.                                                             | Compressed you stored is used for the fission metric                                                                                                                                                                                                                                                                           |
| comment.                                                             | Compressed-row-storage is used for the fission matrix.<br>max number of nonzero entries: 13505625                                                                                                                                                                                                                              |
| comment.                                                             |                                                                                                                                                                                                                                                                                                                                |
| comment.                                                             |                                                                                                                                                                                                                                                                                                                                |
| comment.                                                             | FMATCONVRG option is being used.                                                                                                                                                                                                                                                                                               |
| comment.                                                             | Statistical tests on the neutron & fiss-matrix distributions<br>will be used to determine convergence & begin active cycles                                                                                                                                                                                                    |
| comment.                                                             | will be used to determine convergence & begin active cycles.<br>The 3rd entry on the KCODE card may be ignored.                                                                                                                                                                                                                |
| comment.                                                             |                                                                                                                                                                                                                                                                                                                                |
| comment.                                                             | Targets for statistical tests:                                                                                                                                                                                                                                                                                                 |
| comment.                                                             | k slope: < 0.95 conf level, or < 0.0001<br>k slope: < 0.95 conf level or < 0.0001                                                                                                                                                                                                                                              |
| comment.                                                             | h slope: < 0.95 conf level, or < 0.0001<br>k-slope: < 0.95 conf level, or < 0.0001<br>distribs: < 0.95 conf level, h_diff: < 0.01                                                                                                                                                                                              |
| comment.                                                             | ······································                                                                                                                                                                                                                                                                                         |
| comment.                                                             | THAT COTT ontion is being used                                                                                                                                                                                                                                                                                                 |
| comment.                                                             | FMATACCEL option is being used.<br>Fission matrix will be used to ACCELERATE source convergence                                                                                                                                                                                                                                |
| comment.                                                             | of the neutron distribution during inactive cycles.                                                                                                                                                                                                                                                                            |
| comment.                                                             | Importance-factor-limits: min= 0.20, max= 5.00                                                                                                                                                                                                                                                                                 |
| comment.                                                             | -                                                                                                                                                                                                                                                                                                                              |
| comment.                                                             |                                                                                                                                                                                                                                                                                                                                |

| cycle<br>1           | k(col)<br>1.35733                        | ctm<br>0.04                  | entropy<br>0.60521                       | active             | k(d    | col) | std dev                                 | chains<br>35416              |                            |
|----------------------|------------------------------------------|------------------------------|------------------------------------------|--------------------|--------|------|-----------------------------------------|------------------------------|----------------------------|
| 2                    | 1.16857                                  | 0.10                         | 0.62080                                  | extend             |        |      |                                         | 22433                        |                            |
| 3                    | 1.08223                                  | 0.13                         | 0.63109                                  |                    |        |      | $37 \times 35 \times 4$ shift window    | 17100                        |                            |
| 4                    | 1.05100                                  | 0.17                         | 0.63410                                  |                    |        |      | 37 x 36 x 4<br>shift window             | 13800                        |                            |
| 5                    | 1.02827                                  | 0.21                         | 0.63348                                  | dS= 1 <sup>9</sup> | %, dF= | 14%, | 37 x 37 x 4<br>shift window             | 11529                        | Source,<br>fission matrix, |
| 6                    | 1.02118                                  | 0.25                         | 0.61732                                  |                    |        |      | $37 \times 37 \times 5$<br>shift window | 9997                         | & mesh                     |
| 7                    | 1.02018                                  | 0.29                         | 0.61762                                  |                    | ·      |      | shift window                            | 8746                         | stabilization              |
| 8                    | 1.02413                                  | 0.32                         | 0.61845                                  |                    | •      |      | shift window                            | 7790                         |                            |
| 9                    | 1.01974                                  | 0.37                         | 0.61766                                  | dS= 0 <sup>9</sup> | %, dF= | 7%,  | shift window                            | 6974                         |                            |
| 10                   | 1.01709                                  | 0.43                         | 0.61656                                  | dS= 19             | %, dF= | 5%,  | shift window                            | 6313                         |                            |
| 11                   | 1.02129                                  | 0.48                         | 0.61606                                  | dS= 19             | %, dF= | 5%,  | shift window                            | 5815                         |                            |
| 12<br>13<br>14       | 1.01705<br>1.02459<br>1.02193            | 0.53<br>0.58<br>0.65         | 0.61452<br>0.61263<br>0.61214            |                    |        |      |                                         | 5351<br>4975<br>4640         | Block                      |
| 15<br>16<br>17<br>18 | 1.02741<br>1.03005<br>1.03266<br>1.03369 | 0.70<br>0.73<br>0.78<br>0.83 | 0.60894<br>0.60600<br>0.60435<br>0.60065 |                    |        |      |                                         | 4372<br>4091<br>3852<br>3628 | of<br>cycles               |
| 19<br>20<br>21       | 1.03485<br>1.03631<br>1.04159            | 0.87<br>0.91<br>0.96         | 0.59622<br>0.59177<br>0.58774            |                    |        |      |                                         | 3426<br>3245<br>3074         | ļ                          |

fmatrix keff= 1.12401, DR= 0.91098, iters= 199

| fmatrix keff= 1.12400, DR= 0.9                                                                                                                                                                                                                                                                       | 91098, iters= 199                                                                                                                                                                                                                                                                                         |                                                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
| <b>CONVERGENCE INFO &amp; CHECKS:</b> (based on last 10 cycles)                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           |                                                              |  |  |  |  |
| entropy for fmatrix eigenvect<br>entropy for neutron last cyc<br>relative entropy for last cyc                                                                                                                                                                                                       | cle = 0.58774 dif= 66.13%                                                                                                                                                                                                                                                                                 |                                                              |  |  |  |  |
| <pre>slope of keff (tracklen) slope of keff (collide) slope of keff (absorb) slope of entropy slope of entropy X marginal slope of entropy Y marginal slope of entropy Z marginal entropy dif, neuts vs fmat Kolmo-Smirnov, distrib, stat Chi-square, distrib, stat rel-h-block, distrib, stat</pre> | = 2.1E-03, target: < 5.3E-04 F $= 2.0E-03, target: < 5.8E-04 F$ $= -2.6E-03, target: < 4.3E-04 F$ $= -2.1E-03, target: < 5.1E-04 F$ $= -2.1E-03, target: < 4.2E-04 F$ $= 8.7E-04, target: < 3.3E-04 F$ $= 7.1E-01, target: < 1.0E-02 F$ $= 6.8E-01, target: < 9.1E-02 F$ $= 5.0E+04, target: < 5.1E+02 F$ | FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL |  |  |  |  |

\*\*\*\*\* convergence tests were NOT passed \*\*\*\*\*

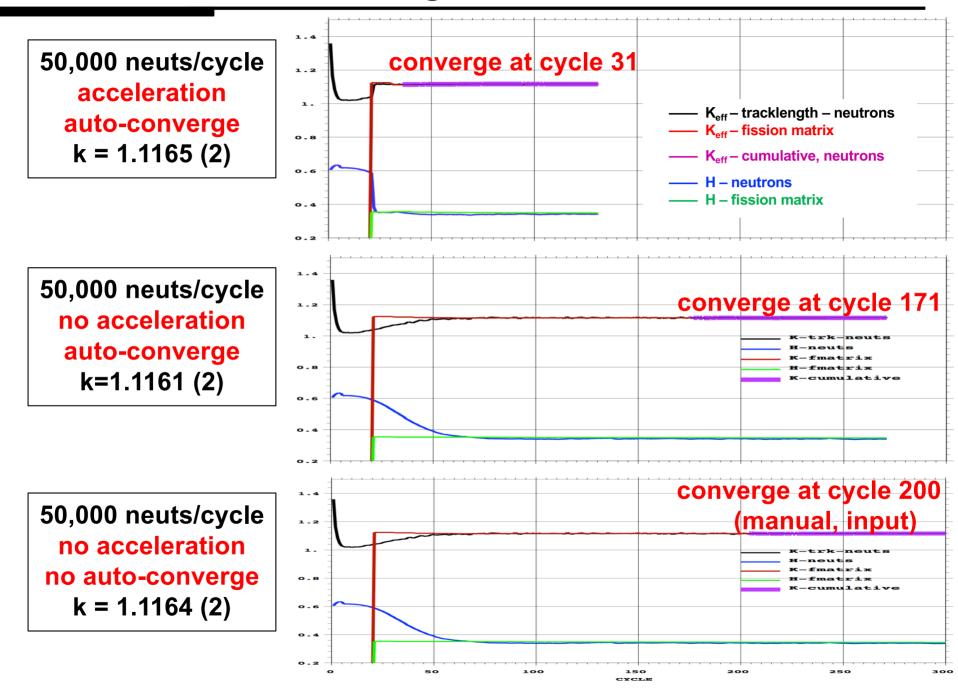
8

1.16

MISCELLANEOUS INFO & CHECKS:

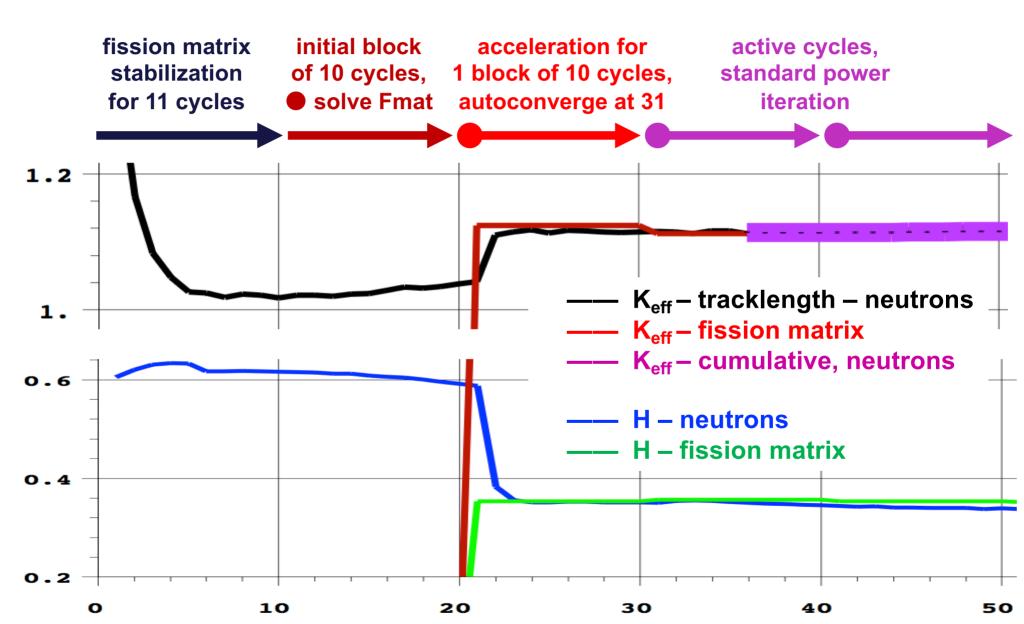
=

|    | fmat    | nnz= | 11884,  | 0.09 | 00  |
|----|---------|------|---------|------|-----|
| 22 | 1.10782 | 0.81 | 0.38309 |      | acc |
|    |         |      |         | a    | acc |
| 23 | 1.11376 | 0.85 | 0.35605 |      | acc |
| 24 | 1.11583 | 0.88 | 0.35129 |      | acc |
| 25 | 1.11726 | 0.92 | 0.35104 |      |     |


rmse

| accelerate: | Imin= | 0.2, | Imax= | 4.7 |      |
|-------------|-------|------|-------|-----|------|
| accelerate: | Tmin= | 0.2. | Tmax= | 3.8 | 2134 |
|             |       |      |       |     | 1499 |
| accelerate: | Imin= | 0.2, | Imax= | 3.2 | 1233 |
| accelerate: | Imin= | 0.2, | Imax= | 5.0 |      |
| accelerate: | Imin= | 0.2, | Imax= | 3.4 | 1077 |

| 31 | 1.11257 1.12 0.35069 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|    | fmatrix keff= 1.11187, DR= 0.91653, iters= 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
|    | CONVERGENCE INFO & CHECKS: (based on last 10 cycles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
|    | entropy for fmatrix eigenvector = 0.35656<br>entropy for neutron last cycle = 0.35069 dif= -1.65%<br>relative entropy for last cycle = 0.00972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |
|    | <pre>slope of keff (tracklen) = 4.2E-03, target: &lt; 5.1E-03 PASS slope of keff (collide) = 4.6E-03, target: &lt; 4.9E-03 PASS slope of keff (absorb) = 4.6E-03, target: &lt; 4.9E-03 PASS slope of entropy = -1.4E-02, target: &lt; 1.6E-02 PASS slope of entropy X marginal = -1.8E-02, target: &lt; 1.9E-02 PASS slope of entropy Z marginal = 1.3E-03, target: &lt; 1.9E-02 PASS slope of entropy Z marginal = 1.3E-03, target: &lt; 1.6E-03 PASS chino-Smirnov, distrib, stat = 2.5E-03, target: &lt; 9.1E-02 PASS chi-square, distrib, stat = 2.8E-03, target: &lt; 5.1E+02 PASS</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quantitative<br>Evidence<br>For<br>Convergence |
|    | <pre>*** FISSION SOURCE HAS CONVERGED, based on last 10 cycles ** ** Metrics: ** slope of keff (tracklen) is 0 (within uncert) ** ** slope of keff (collide) is 0 (within uncert) ** ** slope of keff (absorb) is 0 (within uncert) ** ** slope of entropy is 0 (within uncert) ** ** slope of entropy X marginal is 0 (within uncert) ** ** slope of entropy Z marginal is 0 (within uncert) ** ** slope of entropy Z marginal is 0 (within uncert) ** ** slope of entropy Z marginal is 0 (within uncert) ** ** slope of entropy Z marginal is 0 (within uncert) ** ** slope of entropy Z marginal is 0 (within uncert) ** ** slope of entropy Z marginal is 0 (within uncert) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi-square, distrib, stat, neut vs fmat (within conf) ** ** chi</pre> | Quantitative<br>Evidence<br>For<br>Convergence |
|    | Active cycles will begin with cycle = 32<br>Active cycles will end with cycle = 131<br>Total active cycles to be run = 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |


499 1.11130 1.43 3.45E-01 9 1.11344 0.00061 40 1.11454 487 41 10 1.12440 1.47 3.44E-01 0.00122 fmatrix keff= 1.11470, DR= 0.91540, iters= 126 (based on last 10 cycles) **CONVERGENCE INFO & CHECKS:** entropy for fmatrix eigenvector = 0.35367entropy for neutron last cycle = 0.34421dif= -2.67% relative entropy for last cycle = 0.01140slope of keff (tracklen) = -2.3E-04, target: < 3.8E-04PASS slope of keff (collide) = 9.9E-06, target: < 4.6E-04PASS slope of keff (absorb) = -3.7E-05, target: < 4.9E-04PASS slope of entropy = -9.2E-04, target: < 4.7E-04 FAIL slope of entropy X marginal = -1.1E-03, target: < 8.0E-04</pre> FAIL slope of entropy Y marginal = -1.4E-03, target: < 6.8E-04FAIL slope of entropy Z marginal = 9.4E-05, target: < 3.9E-04</pre> PASS entropy dif, neuts vs fmat = -9.0E-03, target: < 1.0E-02 Kolmo-Smirnov, distrib, stat = 5.3E-03, target: < 9.0E-02 PASS PASS Chi-square, distrib, stat = 8.8E+01, target: < 5.1E+02 PASS rel-h-block, distrib, stat = 2.5E-03, target: < 5.1E-03 PASS convergence checks passed at cvcle = 31 active cycles based on fmatconvrg begin at cycle = 32 entropy for fmatrix eigenvector = 0.35367entropy for neutron active cycles = 0.35111dif= -0.72% relative entropy for active cycles = 0.00249**POPULATION SIZE INFO & CHECKS:** (based on last 10 cycles) population check using relative entropy PASS warning: The average entropy for the last cvcles differs from the entropy for the fission matrix fundamental mode by -1.1%. This indicates undersampling or possible clustering. CONSIDER USING MORE NEUTRONS/CYCLE.

### **OECD-NEA Source Convergence Problem TEST4S**



## **OECD-NEA Source Convergence Problem TEST4S**

### 50,000 neuts/cycle, acceleration, auto-converge, k = 1.1165 (2)



### MCNP6 Test Problems for Fission Matrix Based Automated Convergence & Acceleration of K-eigenvalue Problems

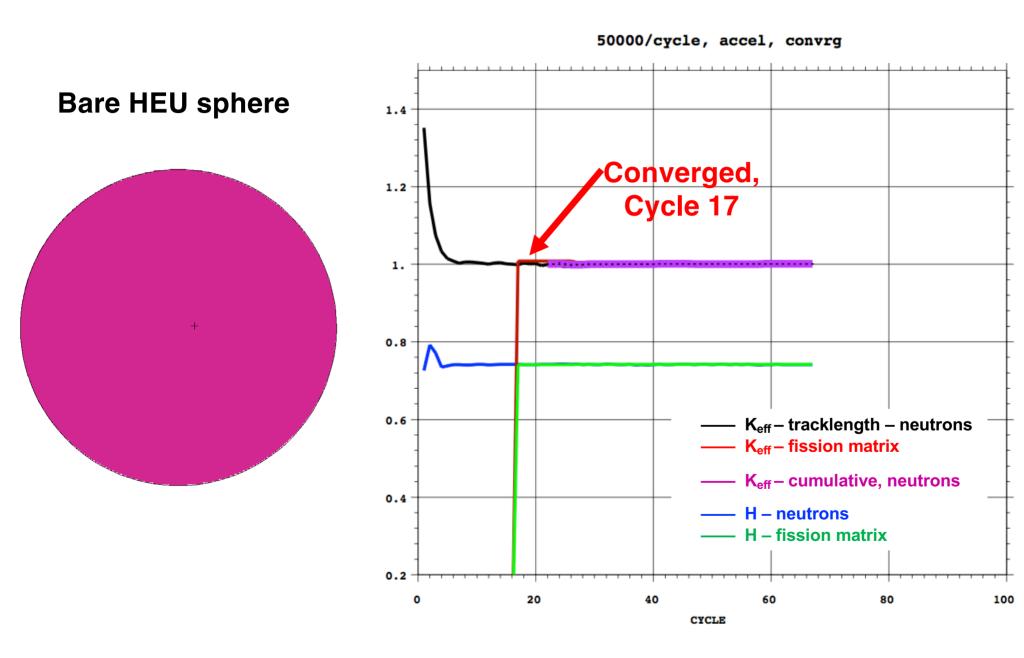
- VALIDATION\_CRITICALITY benchmark suite
- Godiva bare HEU sphere
- PWR2d commercial PWR
- ATR advanced test reactor
- C5G7 3D U-Mox benchmark, OECD-NEA
- Triga reactor
- ACRR burst reactor, with FREC
- LCT-078-001 Sandia critical experiment
- 3D PWR Hoogenboom-Martin benchmark, OECD-NEA
- Whitesides problem K-effective of the world model
- TEST4S simplified Whitesides, OECD-NEA
- FPOOL OECD-NEA source convergence benchmark 1

# VALIDATION\_CRITICALITY benchmark suite

- Standard MCNP validation suite since 2002 (Mosteller)
  - 31 ICSBEP Handbook problems, critical experiments
  - Run using ENDF/B-VII.1 nuclear data
  - Timing results include all I/O, input & xsec file processing, Monte Carlo random walks, printing results, etc. for all 31 problems

### Timing tests

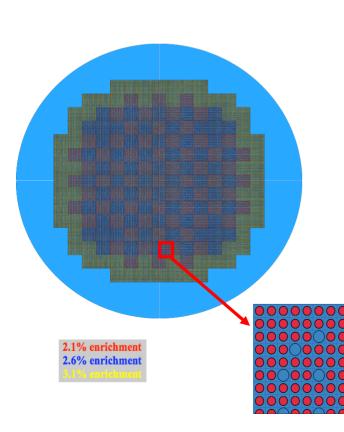
- 50,000 neutrons/cycle for all runs
- For standard runs, 100 inactive cycles, 100 active cycles
- For auto accelerate & converge,
   100 active cycles

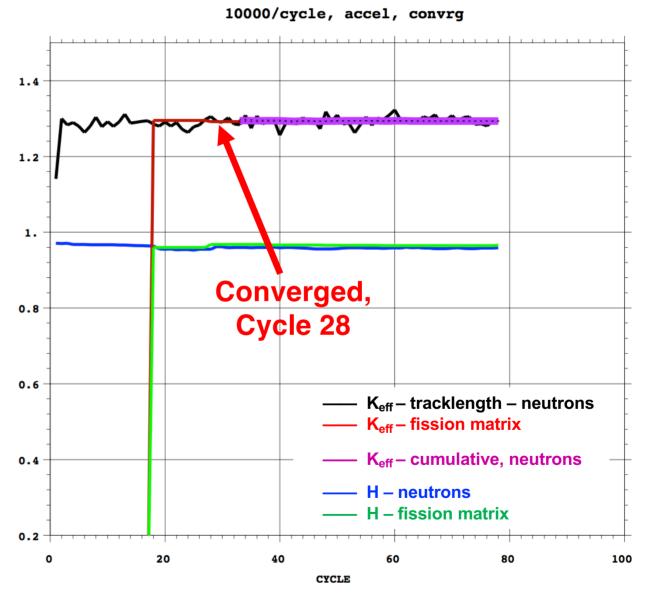

Standard run:

106 minutes

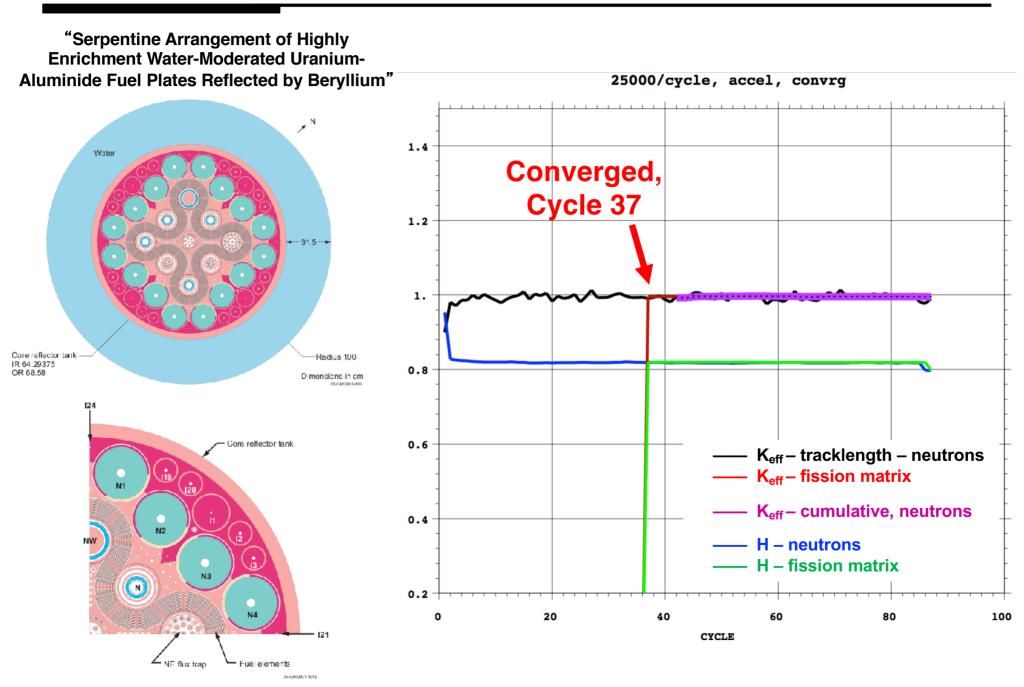
Auto accel & converge:

70 minutes


# **Godiva Problem**




# Whole-core 2D PWR Model


2D PWR (Nakagawa & Mori model)

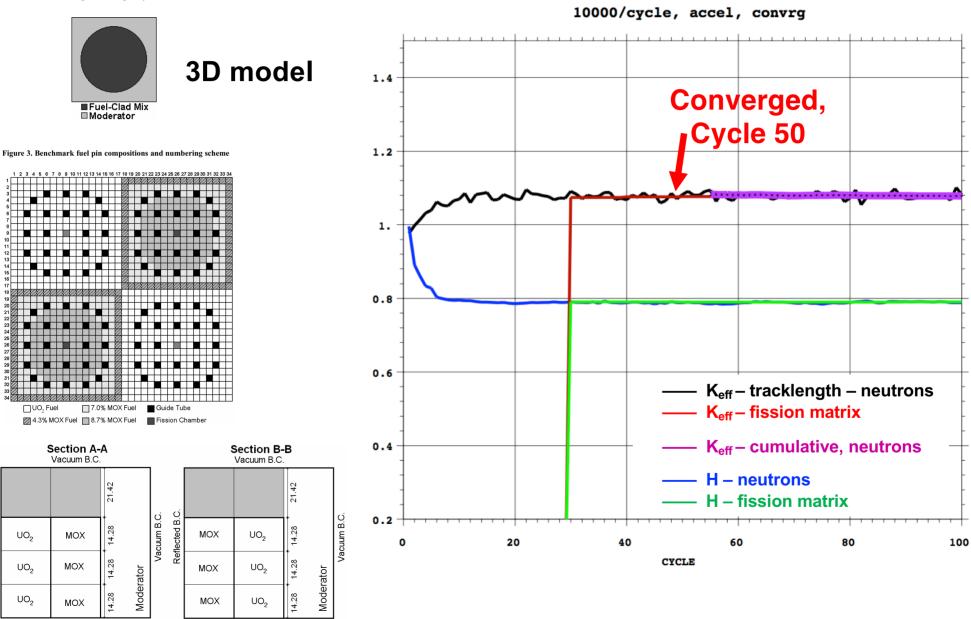
- 193 fuel assemblies:
  - 50,952 fuel pins with cladding
  - 4825 water tubes
- Each assembly:
  - Explicit fuel pins & rod channels
  - 17x17 lattice
  - Enrichments: 2.1%, 2.6%, 3.1%
- Calculations used whole-core model





## **Advanced Test Reactor**



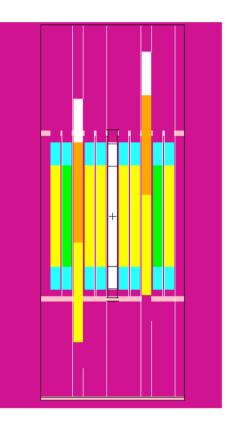

### **OECD-NEA Benchmark - C5G7**

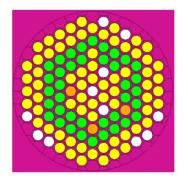
Reflected B.C

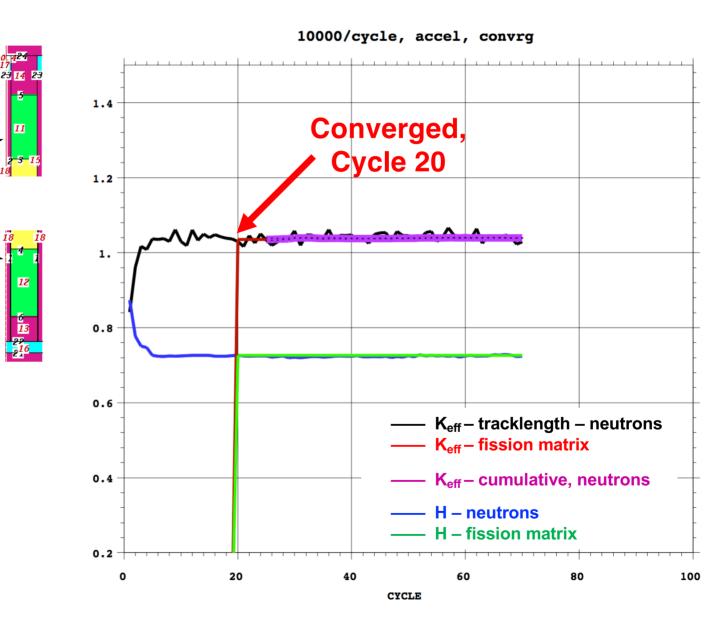
Figure 2. Fuel pin layout

Reflected B.C.

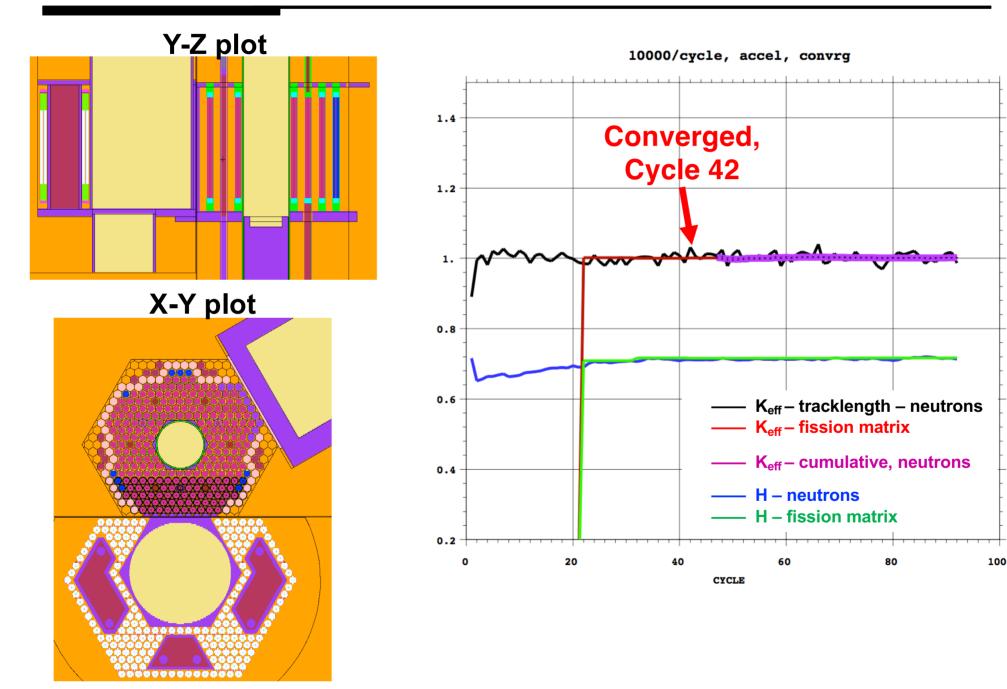
Reflected B.C



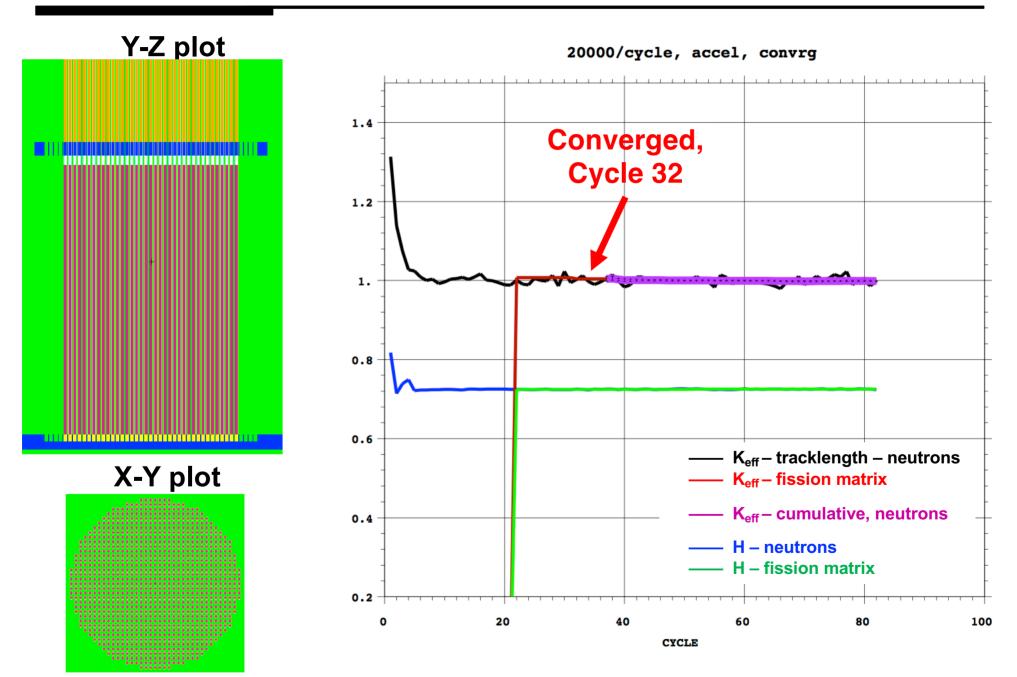


# **TRIGA Reactor**


11

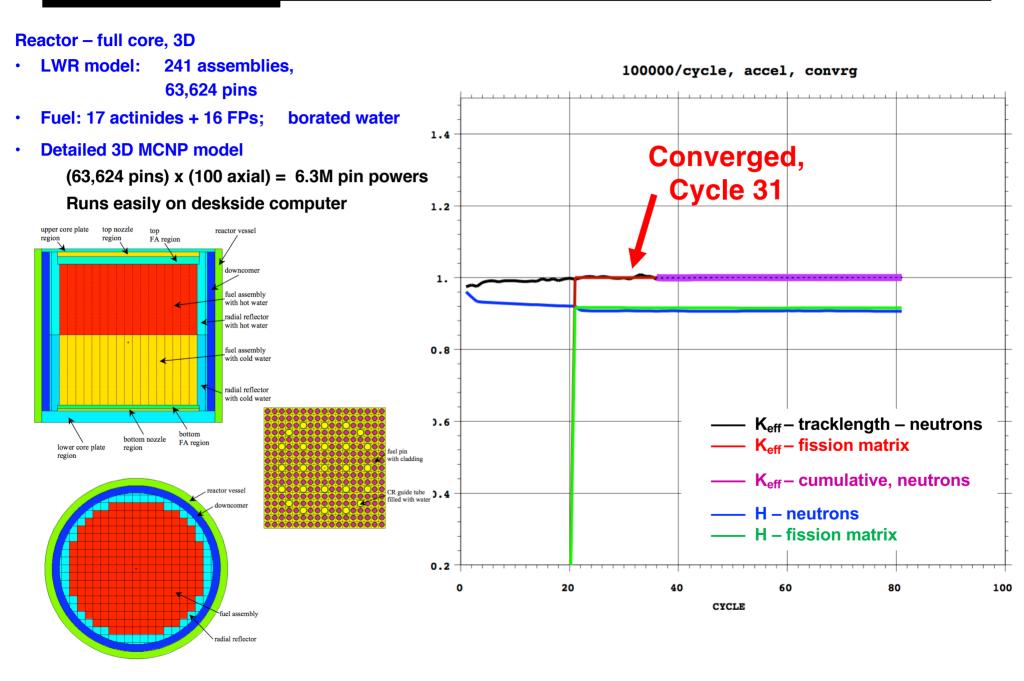
18


0 13

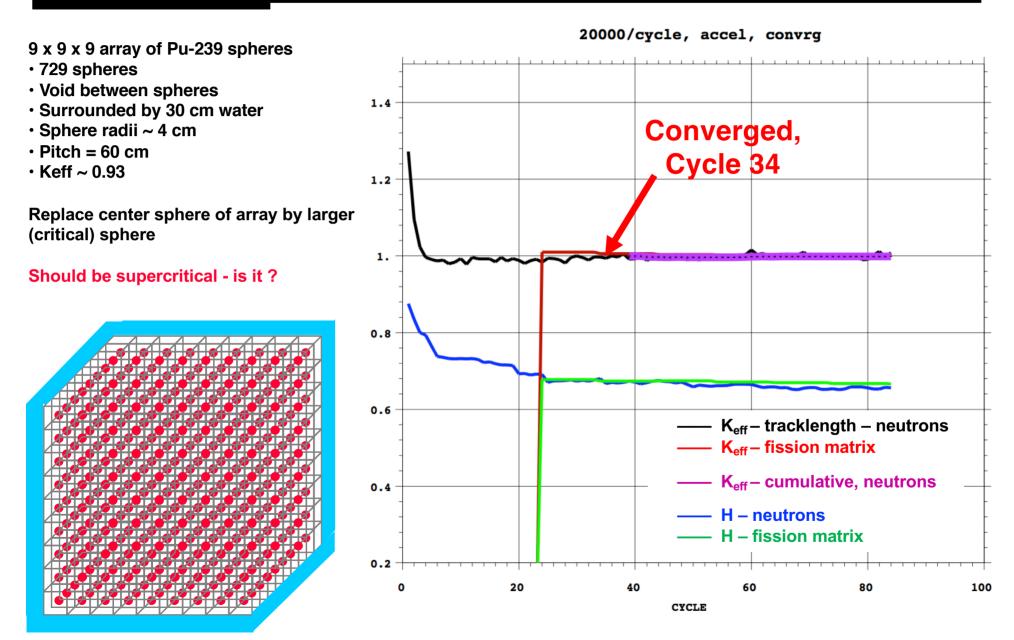








## Sandia burst reactor - ACRR, with FREC

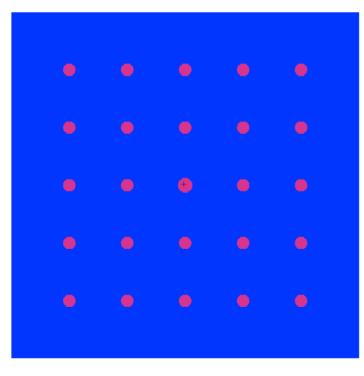


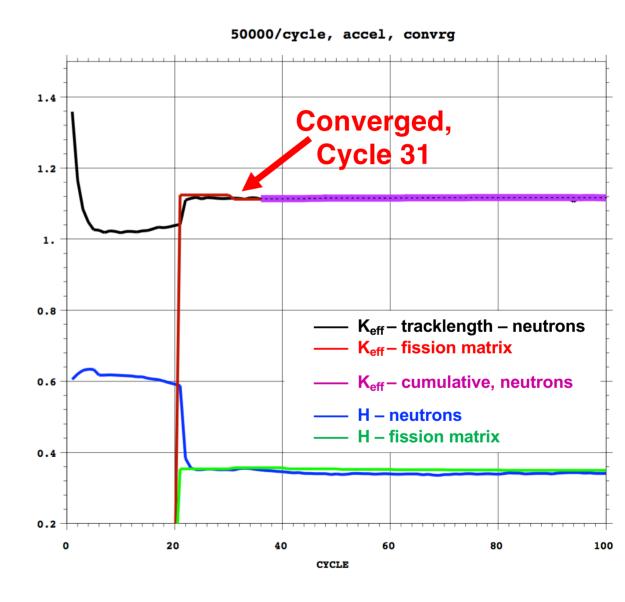

### Sandia critical experiment – LCT-078-001, 1,057 rod assembly



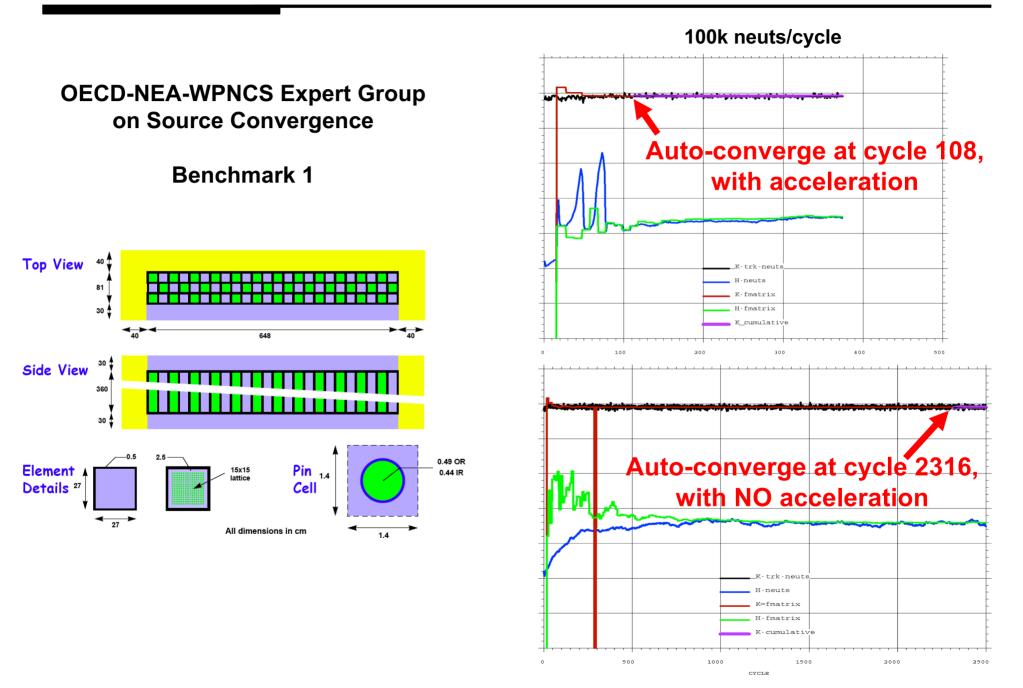
#### **OECD-NEA** "Hoogenboom-Martin Performance Benchmark"




## Whitesides' Model Problem – K-eff of the World




### **OECD-NEA Source Convergence Problem TEST4S**


**OECD-NEA** source convergence benchmark

- Simplified version of Whitesides problem
- 5 x 5 array of HEU spheres
  - center sphere, R = 10 cm
  - others, R = 8.71 cm
  - pitch = 80 cm
  - air in between spheres
  - vacuum boundary conditions





# **OECD-NEA Fuel Storage Pool**



# **Current Work**

### • Summer 2019

- Limited release to NCS early adopters, more testing & feedback

### Near-term R&D Work

#### Source guess

- Handle a list of axis-oriented bounding boxes (AABB)
- For 1 large bounding box, handle source overruns
- Should be possible to completely automate

#### - Fission matrix

- Better eigensolver ?
- Investigate matrix size vs neutrons/cycle
  - Statistical noise on matrix elements effect on solution & stability
  - Kord-Smith problem, fuel storage pool problem

#### Convergence tests

- Add more ?
- Determine precise confidence level for passing all tests
- Acceleration
  - Possibly find more robust, stable method
- Population size tests
  - Scheme for predicting adequate size
- More examples & tests

## References

- F.B. Brown, "Monte Carlo Techniques for Nuclear Systems", LANL report LA-UR-16-29043 (2016).
- F.B. Brown, "Advanced Computational Methods for Monte Carlo Calculations, LANL report LA-UR-18-20247 (2018)
- F.B. Brown, "Investigation of Clustering in MCNP6 Monte Carlo Criticality Calculations", Int. Conf. on Transport Theory, Monterey CA, Oct 2017, LA-UR-17-29261 (2017).
- F.B. Brown, "A Review of Best Practices for Monte Carlo Criticality Calculations", ANS NCSD 2009, Hanford WA, LA-UR-09-03136 (2009).
- C.J. Werner, et al., "MCNP6.2 Release Notes", LANL report LA-UR-18-20808 (2018).
- F.B. Brown, S.E. Carney, B.C. Kiedrowski, W.R. Martin, "Fission Matrix Capability for MCNP, Part I - Theory", Mathematics & Computation 2013, Sun Valley, ID, LANL report LA-UR-13-20429 (2013).
- S.E. Carney, F.B. Brown, B.C. Kiedrowski, W.R. Martin, "Fission Matrix Capability for MCNP, Part II - Applications", Mathematics & Computation 2013, Sun Valley, ID, LANL report LA-UR-13-20454 (2013).
- F.B. Brown, W.R. Martin, "Statistical Tests for Convergence in Monte Carlo Criticality Calculations", LANL report LA-UR-18-28764 (2018).
- F.B. Brown, C.J. Josey, "Diagnostics for Undersampling and Clustering in Monte Carlo Criticality Calculations", LANL report LA-UR-18-27656 (2018).
- F.B. Brown, C.J. Josey, S. Henderson, W.R. Martin, "Automated Acceleration and Convergence Testing for Monte Carlo Criticality Calculations", submitted to ANS M&C 2019, Portland OR, LANL report LA-UR-19-20308 (2019)
- F.B. Brown, C.J. Josey, S. Henderson, W.R. Martin, "Automated Acceleration and Convergence Testing for Monte Carlo Nuclear Criticality Safety Calculations", submitted to ICNC 2019, Paris FR, LANL report LA-UR-19-20482 (2019)