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The scattering angular distribution 
can have dramatic impact on small
systems
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Sodium void reactivity effect (SVRE)  

Impact on the SVRE: 
 
The impact of the elastic SAD on the SVRE was investigated with MASURCA and ZPPR integral 
experiments. The calculations were performed with the deterministic code ERANOS 
 
Those calculations were carried out using 3 different Na23 elastic scattering angular distributions: 

SAD with fluctuations 

SAD with a smooth fit of the a1 
coefficient 

SAD without fluctuations 
(calculated by Optical Model) 

23Na elastic SAD
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Impact on the SVRE (ZPPR-10A benchmark): 
 
Significant improvement of the C-E results by using SAD calculated by optical model + fit of a1 
 

The scattering angular distribution 
can have dramatic impact on small
systems
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Two-body angular distributions are 
calculable, analytically, using Blatt-
Beidenharn formalism
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and the compound nuclear reaction part is associated

with the energy averaged fluctuating part:
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Although we formulate these the following results in

terms of the T-matrix, the transition to the on-shell S-

matrix is relatively straightforward. The S-matrix is

Sba = �ba�(⌦b � ⌦a)� i
p

µ↵µ�kakb
2⇡

~2 Tba (12)

In the remainder of this note, we will derive the ex-

pression for eq. (11) in a coupling scheme that is natural

for implementation in EMPIRE.

II. FORMULATION USING CHANNEL SPIN COUPLING

Several sources ([1–5]) couple to the channel spin ~Sa = ~Ix + ~IA:
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a = {↵, Ea, Ix, IA, Tx, T zx, TA, T zA} captures all the other quantum numbers that are unimportant for the angu-

lar momentum coupling work. Here (`amaSaMa|JM) are the Clebsch-Gordan coe�cients (a.k.a. vector coupling

coe�cients) [6] and are defined in terms of 3-j symbols as (Edmonds eq. (3.7.3))
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◆
. (14)

Note, ma +Ma = M .

Following Blatt and Biedenharn [5] and Lane and Thomas [2], Fröbrich and Lipperheide [1] show (note our notation

is slightly di↵erent)
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Here they used the fact that ~ka||ẑ so Y`ama(⌦a ⌘ 0) = �ma0

p
(2`a + 1)/4⇡ which eliminates sums over ma,m0

a,Ma

and M 0
a. We have written the T-matrix in the channel spin coupling scheme as

T J
{a;`aSa}!{b;`bSb} = hb; `bmb;SbMb; JM |T (Ea) |a; `ama ⌘ 0;SaMa ⌘ M ; JMi (17)

It is independent ofmb, Mb andM because the Hamiltonian is rotationally invariant. The Blatt-Beidenharn coe�cient

Z is
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0
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The Racah coe�cient W (`aJ`0aJ
0
;SaL) is defined in therms of 6-j symbols as (eq. (6.2.13) [6])
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Note, that we write our Z in the notation of Fröhner which incorporates the time-reversal phase convention correction

of Lane and Thomas (and others) [2] from Blatt and Biedenharn’s original definition in [5].
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§ It’s ugly, but well understood.
§ Implemented in FUDGE, EMPIRE, CoH, SAMMY, AMPX, 

NJOY, ....



63Cu (65Cu is similar)

§ Smoothed distribution in excellent agreement with 
reconstructed distribution. – is actually no surprise: 
FUDGE & SAMMY used these data to validate against 
each other

Scattering Angular Distributions . . . D.A. Brown et al.

63Cu

FIG. 137. The elastic scattering cross section for 63Cu.

(a) L = 1 moment (b) L = 2 moment

(c) L = 3 moment (d) L = 4 moment

(e) L = 5 moment (f) L = 6 moment

FIG. 138. Comparison of Legendre moments in the original evaluation for 63Cu (orange) and reconstructed from the resonance
region (blue).
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Justin Vega’s project
§ BNL’s High School Research Program
§ Final report is huge, available upon request.  

Report number BNL-114446-2017-IR

§ The project:
• Test that energy 

average SAD 
approaches HF SAD

• Check all SAD in 
ENDF/B-VIII.0 beta3

sister   mom      Justin     proud 
mentor



Issues encountered in full library 
scan (ENDF trackers have been 
added for each of these)



Anomaly in Si isotopes
§ All isotopes have same 

distribution, taken from 
ENDF/B-V natSi

§ Natural SAD built from isotopic 
SADs

§ If SAD is smooth, is OK to 
replace isotopic with natural 
SADs

§ THIS IS NOT THE CASE

Scattering Angular Distributions . . . D.A. Brown et al.

28Si

FIG. 56. The elastic scattering cross section for 28Si.

(a) L = 1 moment (b) L = 2 moment

(c) L = 3 moment (d) L = 4 moment

(e) L = 5 moment (f) L = 6 moment

FIG. 57. Comparison of Legendre moments in the original evaluation for 28Si (orange) and reconstructed from the resonance
region (blue).
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28Si

29Si

30Si



Anomaly in Cr isotopes

§ Same issue as Si
§ May be part of problem with steel assemblies

50Cr

54Cr53Cr

52Cr



101Ru, 105Pd, 109Ag, 108,110,116Cd, 131Xe, 
133Cs, 141Pr 

§ Symmetry requires that, as E → 0, PL=0(μ) → 0 
§ Several isotopes violate this requirement



xTl, xPb, 209Bi 

§ Here agreement is poor
§ Near closed shell, fluctuations large, extend to high energy
§ May indicate problem with OMP’s involved
§ Requires further investigation

205Tl

209Bi

208Pb
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Nuclear reactors function by controlling the chain reaction of fission events in a fissile material.
Understanding the gain and loss of neutrons is crucial for controlling this chain reaction. The role of
fission in liberating neutrons from nuclei is well known. The fact that neutrons can scatter out of a
reactor and therefore be lost is less well appreciated. Scattering can happen within fissile fuel or o↵
of any number of the non-fissile structural components holding a reactor together. The scattering
angular distributions for reactor material are the quantity that give the probability for a particle
(usually a neutron) to scatter o↵ a nucleus into a given angle. The Evaluated Nuclear Data File/B
(ENDF/B) nuclear data library is the most complete and authoritative reference for neutron scatter-
ing data, containing reaction cross sections and outgoing particle distributions (including scattering
angular distributions). In this project, we will compare the scattering angular distributions given in
these ENDF/B data sets with those that can be derived using the Blatt-Biedenharn formalism and
the resolved resonance data also in the ENDF/B files. More comparisons between the scattering
angular distributions of relevant isotopes will help identify and correct any errors in the ENDF/B
files. The results of this study will be an important component of the next major release of the
ENDF/B library.
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