NCSP 2021 Virtual TPR

Y-12 NSC Status of Metallic Fuel Projects & Capabilities

Chris Robinson and Lloyd Jollay
Global Security & Strategic Partnerships

February 25, 2021
Y-12 History of Transformation

- Construction began in 1943 as part of Manhattan Project
- During the Cold War, some 8,000 people produced weapon secondaries
- Transformation is underway to create a modern facility that will meet future mission needs
Y-12 National Security Complex

- Oak Ridge, TN
- 811 acres spanning 2.5 miles
- 7.3 million ft² of laboratory, machining dismantlement, research and development and office areas
- ~5,000 employees
- Average age: 49 / Average years of service: 13

With decades of hands-on experience and expertise, the Y-12 National Security Complex has global leaders in:

• Nuclear Nonproliferation
• Advanced Manufacturing
• Global Security
• Nuclear Material Initiatives
• Material Innovation
<table>
<thead>
<tr>
<th>NNSA</th>
<th>DOE</th>
<th>U.S. Federal Agencies</th>
<th>Non-Federal Entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Programs</td>
<td>Office of Intelligence/</td>
<td>Department of Homeland Security</td>
<td>Mutual Defense</td>
</tr>
<tr>
<td>Defense Nuclear</td>
<td>Counterintelligence</td>
<td>Department of Defense</td>
<td>Foreign Government</td>
</tr>
<tr>
<td>Nonproliferation</td>
<td>Office of Science</td>
<td>Department of Justice</td>
<td>Research Reactors</td>
</tr>
<tr>
<td>Counterterrorism &</td>
<td>Other National</td>
<td>Office of Personnel Management</td>
<td>Academic Institutions</td>
</tr>
<tr>
<td>Counterproliferation</td>
<td>Laboratories and Sites</td>
<td>National Aeronautics and Space Administration</td>
<td>Commercial Companies</td>
</tr>
<tr>
<td>Naval Reactors</td>
<td></td>
<td>Intelligence Community</td>
<td></td>
</tr>
</tbody>
</table>
Mission

- Providing the nuclear deterrent
- Fueling the Nuclear Navy
- Reducing the global nuclear threat
Protecting Materials and Capabilities

Pantex and Y-12 are fortresses for staging and storing weapons components, weapons materials, and production processes:

- **Highly Enriched Uranium Materials Facility**
 - Central repository for highly enriched uranium (HEU).
 - Provides maximum security for HEU

- **Uranium Processing Facility**
 - Built to ensure long-term viability, safety, and security of enriched uranium capabilities
 - Multi-building, $6.5B complex to be complete by the end of 2025
Overview of Capabilities

SPECIAL MATERIAL
- Cradle-to-grave enriched uranium weaponization processes
- EU machining, fabrication, processing, recycle, & salvage
- Specialty nuclear fuel fabrication
- Packaging
- Reactor and fuel supply
- Lithium processing
- Lithium component manufacturing
- Lithium R&D
- Distribution of Certified Reference Materials

ENERGETIC MATERIAL
- Cradle-to-grave capabilities
- Synthesis
- Formulation
- Pressing
- Machining
- Extrusion
- Custom components
- Chemical & mechanical testing
- Test-fire and disposition
- Blast effects engineering & analysis
- Forensics
- Characterization

SECURITY & RESPONSE
- International Nuclear Security
- Nuclear smuggling detection & deterrence
- Vulnerability assessment
- Radiological/nuclear detection & response training
- Secure storage/transportation
- Remove and secure missions
- Counter-Terrorism Response & Training
- Radiological control / response

MATERIALS CHARACTERIZATION
- Analytical chemistry
- Material evaluation
- Nuclear forensics
- National Material Information Center
- Destructive and Non-Destructive Testing, evaluation, and surveillance
- Nuclear Materials Information Program

DETECTION & ANALYSIS
- Dedicated measurement sites
- HEU components and assemblies
- Monitored Dismantlement Technology Testing
- EU-HEU metallic enrichment standards
- Specialized Test & Evaluation Equipment
- Nuclear forensics
- Treaty verification

MANUFACTURING & PROTOTYPING
- Classified, precision machining and metal metrology
- Additive in polymer, metals, & special materials
- Large-scale
- Advanced prototyping
- Thermo-mechanical processing
- Welding and joining
- Design for manufacture
- Machine design
- Specialized tooling, enclosures & molds
- Manufacturing Supply
- Chain Cybersecurity

OTHER WEAPON CAPABILITIES
- Nuclear production hands-on expertise
- Inert trainer design, development, manufacturing & refurbishment
- Intrinsic radiation units
- Component availability
- High consequence test equipment
- High consequence facilities
- Specialized handling equipment design & manufacture

Nuclear Weapon Component Manufacturing, Assembly, Disassembly, Testing and Surveillance

Special Manufacturing, Nuclear Nonproliferation, Global Security, Intelligence Analysis and Training
Uranium Center of Excellence

- Purified HEU metal production
- Uranium machining, fabrication, processing, recycle, and salvage operations
- HEU storage and inventory management
- EU supply and fuel component development
Providing the Nuclear Deterrent for Our Nation and Allies

Life Extension Programs

• Build canned subassemblies for Life Extension Programs
• Help ensure an effective nuclear deterrent by extending weapon life
• Maintain specialized skills to support inspection, retrofit, and surveillance of our stockpile
Fueling the Nuclear Navy that Stays on Watch

- Supply nuclear payloads for weapons on ballistic missile submarines
- Provide highly enriched uranium to power submarines and aircraft carriers
Reducing the Total Nuclear Warheads in the Stockpile

Dismantlement

• Dismantle retired weapons and disposition the various components and materials
• Reduce the number of nuclear weapons in the world
• Ensure the nuclear material is in safe and secure storage
Reducing the Global Nuclear Threat

- Provide special materials expertise to government agencies
- Develop technologies to detect uranium and weapons
- Conduct research to enhance understanding of material signatures
- Repatriate highly enriched uranium (HEU)
- Supply high assay low enriched uranium (HALEU)
Recovering Material Across the Globe
Foreign Research Reactor (FRR) Supply

- Y-12 supplies over 80% of the research reactors around the world (excluding Russia and China designed reactors)

- Approximately 85% of nuclear medical procedures performed worldwide originate with uranium supplied by Y-12

- Provide LEU (19.75% 235U) and small quantities of HEU (93.15% 235U) to fuel research reactors and produce isotopes for medical and/or industrial use

- Supports nonproliferation objectives of NNSA’s Office of Material Management & Minimization - NA-23 (HEU Convert, Remove, and Dispose)
Supply - Start to Finish
Supply - Arrival & Offload
Footprint of Foreign Research Reactor Supply
U(10)Mo Conversion of the USHPRRs

Batch Make Up
High Assay Low Enrich Uranium (HALEU)

- Currently supply HALEU (235U% >5%<20%), HEU, DU
- Relocating, upgrading, and optimizing HALEU production
- Recent and current fuel projects
HEU-Mo Machining
Notable Partnerships: KRUSTY Core & WSMR

- KRUSTY, or Kilopower Reactor Using Stirling Technology, is a kilopower reactor using Stirling technology
- KRUSTY shown being tested by LANL/NASA to support deep space travel
- Y-12 experts manufactured and delivered the uranium reactor core in 2017
- WSMR Upgraded Fuel
New Technologies Being Deployed

Physical Vapor Deposition (PVD)

Part with Plasma

Coated Part
Additional Technologies Being Pursued for HALEU Applications and HALEU/HEU Pursuits

• Bulk Oxide Production
• Atomized Powder
• U rope
• Advanced Manufacturing
• HALEU Fabrication Line
• Multiple plate type fuel requests (Unv. RRx, NASA/DOD Rx Concepts, etc.)
• HALEU Feed Support
• Support for aspects of advanced fuel fabrication
Backup Slides
(ES-3100 Specifics)
Table 1.3 – Authorized Content and Fissile Mass Loading Limits for Ground Transportation (cont)\(^a,\)\(^b,\)\(^c\)

<table>
<thead>
<tr>
<th>HEU metal or alloy turnings, fines, or powders (^8)</th>
<th>0.0</th>
<th>2.637</th>
</tr>
</thead>
<tbody>
<tr>
<td>>80%, ≤ 90%</td>
<td>0.4</td>
<td>5.000</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>9.166</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>16.667</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>21.667</td>
</tr>
<tr>
<td>>70%, ≤ 80%</td>
<td>0.0</td>
<td>2.967</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>5.192</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>8.900</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>17.059</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>19.284</td>
</tr>
<tr>
<td>>60%, ≤ 70%</td>
<td>0.0</td>
<td>3.249</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>5.848</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>13.646</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>21.444</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>24.692</td>
</tr>
<tr>
<td>≤ 60%</td>
<td>0.0</td>
<td>5.576 kg U</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>14.872 kg U</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>28.814 kg U</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>35.20 kg U (^f)</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>35.20 kg U (^f)</td>
</tr>
</tbody>
</table>

Spacers not required
Table 1.3 – Authorized Content and Fissile Mass Loading Limits for Ground Transportation (cont.)

<table>
<thead>
<tr>
<th>Content Description</th>
<th>Enrichment</th>
<th>CSI</th>
<th>No Spacers, $^{235}\text{U} (\text{kg})$</th>
<th>277-4 can Spacers, $^{235}\text{U} (\text{kg})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEU oxide $^{h, i}$ (UO$_2$, UO$_3$, U_3O$_8$, U_3O$_8$-Al, UO$_2$-Mg, l UO$_2$-ZrO$_2$)</td>
<td>See below</td>
<td>0.0</td>
<td>15.13 kg oxide</td>
<td></td>
</tr>
<tr>
<td>bulk density 2.0 – 6.54 g/cm3</td>
<td>0.0</td>
<td>9.682 kg ^{235}U</td>
<td>12.323 kg ^{235}U</td>
<td></td>
</tr>
<tr>
<td>bulk density ≥1.75, <2.0 g/cm3</td>
<td>0.0</td>
<td>9.46 kg ^{235}U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bulk density ≥1.5, <1.75 g/cm3</td>
<td>0.0</td>
<td>8.36 kg ^{235}U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bulk density ≥1.25, <1.5 g/cm3</td>
<td>0.0</td>
<td>7.04 kg ^{235}U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bulk density ≥1.0, <1.25 g/cm3</td>
<td>0.0</td>
<td>5.94 kg ^{235}U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bulk density ≥0.75, <1.0 g/cm3</td>
<td>0.0</td>
<td>4.84 kg ^{235}U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bulk density ≥0.5, <0.75 g/cm3</td>
<td>0.0</td>
<td>3.52 kg ^{235}U</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spacers not required
Table 1.3b - Loading Limits for Air Transport

<table>
<thead>
<tr>
<th>Content description</th>
<th>Enrichment</th>
<th>CSI</th>
<th>$^{235}\text{U (kg)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEU metal or alloy</td>
<td>≤ 100%</td>
<td>—</td>
<td>7.00</td>
</tr>
<tr>
<td>HEU metal or alloy turnings, fines, or powder</td>
<td>≤ 100%</td>
<td>—</td>
<td>7.00</td>
</tr>
<tr>
<td>Research reactor fuel elements and components (UZrH_x, f U-Zr, U-Al, U_3O_8-Al, UO_2, oxides of U-Zr, g UO_2-Mg, U_3Si_2-Al)</td>
<td>≤ 20%</td>
<td>—</td>
<td>0.921</td>
</tr>
<tr>
<td></td>
<td>> 20%</td>
<td>—</td>
<td>0.408</td>
</tr>
<tr>
<td>HEU oxide (UO_2, UO_3, U_3O_8, U_3O_8-Al, UO_2-Mg, j UO_2-ZrO_2):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bulk density ≥ 1.0, < 1.5 g/cm³</td>
<td>≤ 100%</td>
<td>0.0</td>
<td>2.15</td>
</tr>
<tr>
<td>bulk density ≥ 1.5, < 2.0 g/cm³</td>
<td></td>
<td></td>
<td>2.77</td>
</tr>
<tr>
<td>bulk density ≥ 2.0, < 3.0 g/cm³</td>
<td></td>
<td></td>
<td>3.38</td>
</tr>
<tr>
<td>bulk density ≥ 3.0, < 4.0 g/cm³</td>
<td></td>
<td></td>
<td>4.75</td>
</tr>
<tr>
<td>bulk density ≥ 4.0, < 5.0 g/cm³</td>
<td></td>
<td></td>
<td>6.02</td>
</tr>
<tr>
<td>bulk density ≥ 5.0, ≤ 6.54 g/cm³</td>
<td></td>
<td></td>
<td>7.57</td>
</tr>
</tbody>
</table>

(a, b, c) Refer to specific notes and conditions.
(d) CSI values not applicable.
(f, g, h, i, j) Additional specific conditions apply.
ES-3100 CV Loading
Palletized ES-3100’s
DISCLAIMER
This work of authorship and those incorporated herein were prepared by Consolidated Nuclear Security, LLC (CNS) as accounts of work sponsored by an agency of the United States Government under contract DE-NA0001942. Neither the United States Government nor any agency thereof, nor CNS, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or contractor thereof, or by CNS. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or contractor thereof, or by CNS.