Resolved Resonance Region Evaluation
Update of 140,142Ce

Chris W. Chapman, Marco Pigni, Klaus Guber, Goran Arbanas

Nuclear Data Group, Oak Ridge National Laboratory

NCSP Technical Program Review
22-26 February 2021 - Online
Outline

• Overview

• R-matrix Analysis
 – Fitting results
 – Statistical analysis

• Validation

• Conclusions
Overview of 140,142Ce Isotopes

- New evaluations of 140,142Ce requested by Hanford Plutonium Finishing plant to the NCSP
 - 88.45% 140Ce, 11.11% 142Ce, 0.44% minor isotopes
- Used as a catalyst or additive for chemical applications
- Appears as an admixed material in process streams
- 140Ce stable secondary fission product
- 140Ce has closed neutron shell
 - Potential for direct capture contribution
Overview of $^{140,142}\text{Ce}$ Isotopes

- Current ENDF/B-VIII.0 issues:
 - Error in the 1-2 keV range of ^{142}Ce
 - Evaluated using multi-level Breit-Wigner
 - ^{142}Ce has room for extending resolved resonance region current upper limit from 13 keV

- New transmission and capture measurements of $^{\text{nat}}\text{Ce} \& ^{142}\text{Ce}$ from K. Guber at GELINA

- No known integral critical experiments prominently feature Cerium
R-matrix Analysis – fitting results: $^{\text{nat}}$Ce
R-matrix Analysis – fitting results: 142Ce
R-matrix Analysis – Statistical Analysis – 140Ce

Ce-140 s-wave statistical checks

Average Level Spacing Distribution

Resonance Width Distribution

Cumulative Levels vs. Energy

Ce-140 p-wave statistical checks

Average Level Spacing Distribution

Resonance Width Distribution

Cumulative Levels vs. Energy

Resolved Resonance Region Evaluation Update of 140,142Cerium
R-matrix Analysis – Statistical Analysis – 142Ce
Validation

- No critical benchmarks containing appreciable amounts of cerium

- Previously measured 140,142Ce cross section contain troubling errors
 - Hacken: possible sample contamination
 - Ohkubo: multiple sample thicknesses not clearly reported

- Available 140,142Ce measurements:
 - Resonance integrals
 - Thermal capture cross sections
Validation – 140Ce (Panikkath (2017))

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mughabghab</td>
<td>0.58 ± 0.02</td>
</tr>
<tr>
<td>ENDF/B-VIII.0</td>
<td>0.58</td>
</tr>
<tr>
<td>Kayzero Library*</td>
<td>0.575 ± 0.006</td>
</tr>
<tr>
<td>ORNL*</td>
<td>0.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mughabghab</td>
<td>0.54 ± 0.05</td>
</tr>
<tr>
<td>ENDF/B-VIII.0</td>
<td>0.303</td>
</tr>
<tr>
<td>Kayzero Library*</td>
<td>0.48 ± 0.005</td>
</tr>
<tr>
<td>ORNL*</td>
<td>0.369</td>
</tr>
</tbody>
</table>
Validation – 142Ce

Measurements of thermal capture cross section of 142Ce

Measurements of resonance integral of 142Ce

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mughabghab</td>
<td>0.97 ± 0.02</td>
</tr>
<tr>
<td>ENDF/B-VIII.0</td>
<td>0.96</td>
</tr>
<tr>
<td>Kayzero Library*</td>
<td>0.97 ± 0.01</td>
</tr>
<tr>
<td>ORNL*</td>
<td>0.65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mughabghab</td>
<td>1.15 ± 0.05</td>
</tr>
<tr>
<td>ENDF/B-VIII.0</td>
<td>0.86</td>
</tr>
<tr>
<td>Kayzero Library*</td>
<td>1.17 ± 0.01</td>
</tr>
<tr>
<td>ORNL*</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Conclusions

• R-matrix fit for 140,142Ce nearing completion

• Thermal capture & resonance integral needs careful investigation

• Direct capture component / additional sub-threshold resonance may be necessary to get better agreement with thermal values

• Continue to search for more high quality measurements/experiments for validation
Acknowledgements

• This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy

• JRC-GEEL instrument scientists for their work in conducting the experiment and making the data available
References

 https://doi.org/10.1140/epja/i2017-12231-8
Questions?