Developing a Benchmark Evaluation from the Experiments Performed on the Space Nuclear Thermal Propulsion Zero-Power Critical Assembly (SNTP-CX)

PRESENTED BY:

Elijah Lutz

SAND No 2021-1788 PE
The SNTP Program: 1987-1994

Purpose: To develop a new rocket capable of twice the performance of a standard chemical rocket using nuclear technologies.

Designed as Three Phase Effort
- Phase I: Proof of concept of particle bed reactor engine.
- Phase II: Perform ground test of the particle bed reactor engine.
- Phase III: Perform flight test of the particle bed reactor engine.
- Program terminated in 1994 before phase III began.

Diagram:
- Phase I: $53 M
 - Comp't Test
 - Prel Design
 - Site Selection
 - Ground Flight Test
- Phase II: $954 M
 - Reactor Neutronics Validation
 - EIS Record of Decision
 - Engine Dem/Val
- Phase III: Flight Exp't

Timeline:
- 1988
 - VX
 - Vehicle PDR
- 1989
 - Engine PDR
- 1990
 - PIPET PDR
- 1991
 - NET 1.2
- 1992
 - NET 3.4
- 1993
 - PIPET CDR
- 1994
 - PIPET GTA-1
- 1995
 - CX1
- 1996
 - CX2
- 1997
 - GTA-1 Competition
- 1998
- 1999
- 2000
Decided a zero power critical assembly was needed

Designed by SNL and B&W

Installed and operated at SNL

142 runs performed for various experiments from 1989 to 1992

19 fuel stalks on a 9.4 cm triangular pitch

Fuel annulus is a multi-particle type packed bed
The Particle Bed

3 Particle Types

- Fuel particle
 - UC kernel (93 w/o U-235 nominal enrichment)
 - Carbon graphite shell
- Carbon particle
 - Versar CARBOSPHERE Type S220
 - 6.2 w/o Sulfur impurity
- Zircaloy-4 particle
Particle Bed Information

What we have

Particle bulk densities
Material compositions
Total particle mass loaded/stalk
Particle size
Packing fraction of 0.64 [3]

Particle	Bulk Density (g/cc) [2]	Diameter (µm) [3]	Uncertainty (µm) [3]
Fuel Kernel | 5.47 | 275 | ±25 |
Carbon Shell (Thickness)* | - | 15 | ±5 |
Zircaloy-4 | 4.256 | 231 | ±19 |
Carbon | 1.269 | 231 | ±19 |

<table>
<thead>
<tr>
<th>Stalk ID</th>
<th>Particle Masses, Grams</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fuel (g)</td>
</tr>
<tr>
<td>S890427</td>
<td>1410.100</td>
</tr>
<tr>
<td>S890530</td>
<td>1402.300</td>
</tr>
<tr>
<td>S890606</td>
<td>1397.500</td>
</tr>
<tr>
<td>S890621</td>
<td>1331.300</td>
</tr>
<tr>
<td>S890622</td>
<td>1411.600</td>
</tr>
<tr>
<td>S890706(a)</td>
<td>1441.400</td>
</tr>
<tr>
<td>S890706(b)</td>
<td>1358.100</td>
</tr>
<tr>
<td>S890711(a)</td>
<td>1442.500</td>
</tr>
<tr>
<td>S890711(b)</td>
<td>1349.100</td>
</tr>
<tr>
<td>S890714</td>
<td>1331.450</td>
</tr>
<tr>
<td>S890717</td>
<td>1434.500</td>
</tr>
<tr>
<td>S890718</td>
<td>1417.300</td>
</tr>
<tr>
<td>S890721</td>
<td>1407.900</td>
</tr>
<tr>
<td>S890728(a)</td>
<td>1355.100</td>
</tr>
<tr>
<td>S890808(a)</td>
<td>1379.020</td>
</tr>
<tr>
<td>S890808(b)</td>
<td>1382.060</td>
</tr>
<tr>
<td>S890808(c)</td>
<td>1387.210</td>
</tr>
<tr>
<td>S890814</td>
<td>1347.920</td>
</tr>
<tr>
<td>S890816</td>
<td>1365.460</td>
</tr>
<tr>
<td>AVG</td>
<td>1386.938</td>
</tr>
<tr>
<td>STD DEV</td>
<td>34.558</td>
</tr>
<tr>
<td>STD DEVI/AVG</td>
<td>0.025</td>
</tr>
</tbody>
</table>

[2]
General Approach to Modeling

1. **Estimate particle fractions**
2. **Choose lattice type and size**
 ◦ Size referring to number of particles per lattice element
3. **Ensure total masses are correct by:**
 ◦ Using iterative process to:
 ◦ Adjust Carbon and Zircaloy-4 particle radii
 ◦ Adjust UC\(_{1.7}\) kernel and C shell material densities

Dark Grey = Carbon Particle
Light Grey = Fuel Particle
Silver = Zircaloy-4 Particle
Estimating Particle Fractions

Assumptions
- Particles were of nominal radii
- Material densities were all equal to the bulk density/packing fraction

Calculate mass of each particle type

Divide total mass by particle mass

<table>
<thead>
<tr>
<th>Particle</th>
<th>Estimated # of Particles</th>
<th>Particle Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>1.41E+07</td>
<td>0.185</td>
</tr>
<tr>
<td>ZR-4</td>
<td>3.28E+07</td>
<td>0.430</td>
</tr>
<tr>
<td>C</td>
<td>2.94E+07</td>
<td>0.385</td>
</tr>
<tr>
<td>Totals</td>
<td>7.63E+07</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Choosing a lattice type

Desirable traits

Packing fraction of at least 0.64

High particles/unit cell
 ◦ Allows to get closer to estimated particle fractions

Lower modeling difficulty preferred

Face Centered Cubic (FCC)

Max packing fraction of 0.72

4 particles per unit cell

Easily expandable
 ◦ Allows for more particles per lattice cell
 ◦ 1 lattice cell = 2x2x2 unit cells = 32 total particles
 ◦ 6 fuel, 12 carbon, 14 zircaloy-4

Easily modeled
 ◦ MCNP square lattice (type 1)
 ◦ Particle positions in the lattice cell can be defined as a function of side length
Lattice Side Length, Particle Sizes and Material Densities

Iterative process choosing values to ensure total stalk mass for each particle type is conserved.

Initial conditions
- 6 Fuel, 12 Carbon, 14 Zircaloy-4
- UC kernel radius = 125 µm
- C shell thickness = 15 µm
- Carbon density = bulk density/packing fraction = $\frac{1.269}{0.64} = 1.983$ g/cc
- Zircaloy-4 density = bulk density/packing fraction = $\frac{4.256}{0.64} = 6.650$ g/cc

Iterated values
- UC kernel and C shell density
- Carbon and Zircaloy-4 particle radius
- Lattice cell side length
Final Lattice

Lattice side length = 762.7583 µm
Fuel particle lattice positions fixed
Filler particle lattice positions randomized

<table>
<thead>
<tr>
<th>Particle</th>
<th># per lattice element</th>
<th>thickness/radius (µm)</th>
<th>density (g/cc)</th>
<th>Stalk Mass Delta (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Kernel</td>
<td>6</td>
<td>125</td>
<td>11.201</td>
<td>9.90E-03</td>
</tr>
<tr>
<td>Fuel Shell</td>
<td></td>
<td>15</td>
<td>1.827</td>
<td>-4.15E-05</td>
</tr>
<tr>
<td>Carbon</td>
<td>12</td>
<td>126.4</td>
<td>1.983</td>
<td>-8.61E-04</td>
</tr>
<tr>
<td>Zircaloy-4</td>
<td>14</td>
<td>124.6</td>
<td>6.650</td>
<td>1.34E-04</td>
</tr>
</tbody>
</table>

Purple/Blue = Fuel Particle
Orange = Carbon Particle
Pink = Zircaloy-4 Particle
View 1: YZ – Center Plane

Purple/Blue = Fuel Particle
Orange = Carbon Particle
Pink = Zircaloy-4 Particle
View 2: YZ – Mid Plane

Purple/Blue = Fuel Particle
Orange = Carbon Particle
Pink = Zircaloy-4 Particle
View 3: YZ – Face Plane

Purple/Blue = Fuel Particle
Orange = Carbon Particle
Pink = Zircaloy-4 Particle
Particle Boundary Truncation Analysis

The effects of the particle truncation at the fuel annulus boundaries were looked at.

- Tested in both radial and axial directions
- Particle bed shifted in increments of 1/10 the lattice cell side length
- No correlation made
Base Model Results

Model is representative of a critical experiment ($k_{\text{eff}} = 1.0$)
- Using case 1 critical parameters

Discrete particle modeling brings model closer to critical

Utilizing the “average stalk” results in slightly lower reactivity

<table>
<thead>
<tr>
<th>Model</th>
<th>k-eff</th>
<th>std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Detailed</td>
<td>1.00151</td>
<td>0.00005</td>
</tr>
<tr>
<td>Average Detailed</td>
<td>1.00141</td>
<td>0.00004</td>
</tr>
<tr>
<td>Individual Smeared</td>
<td>1.00319</td>
<td>0.00004</td>
</tr>
<tr>
<td>Average Smeared</td>
<td>1.00293</td>
<td>0.00005</td>
</tr>
</tbody>
</table>
Boron Worth Experiments

Experiment series was conducted to measure the boron reactivity worth in the moderator.

- 10 different boron concentrations tested
- Moderator height used as approach to critical parameter
- Control and safety blades fully withdrawn
- 19 runs performed
 - 10 Critical water height measurements (yellow)
 - 9 Reactivity measurements at the previous boron concentrations critical water height (blue)

<table>
<thead>
<tr>
<th>Case</th>
<th>B PPM</th>
<th>Water Height (mm)</th>
<th>Reactivity (Cents)</th>
<th>B Worth (Cents/PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.89</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>61.66</td>
<td>542.5</td>
<td>18.26</td>
<td>2.52559</td>
</tr>
<tr>
<td>3</td>
<td>55.12</td>
<td>534.6</td>
<td>17.7</td>
<td>2.70642</td>
</tr>
<tr>
<td>4</td>
<td>47.71</td>
<td>528.4</td>
<td>20.16</td>
<td>2.72065</td>
</tr>
<tr>
<td>5</td>
<td>39.86</td>
<td>516.2</td>
<td>22.63</td>
<td>2.88280</td>
</tr>
<tr>
<td>6</td>
<td>32.7</td>
<td>510.7</td>
<td>22.56</td>
<td>3.15084</td>
</tr>
<tr>
<td>7</td>
<td>24.21</td>
<td>510.7</td>
<td>22.76</td>
<td>2.68080</td>
</tr>
<tr>
<td>8</td>
<td>16.54</td>
<td>505.2</td>
<td>21.98</td>
<td>2.86571</td>
</tr>
<tr>
<td>9</td>
<td>8.69</td>
<td>500.1</td>
<td>26.1</td>
<td>3.32484</td>
</tr>
<tr>
<td>10</td>
<td>0.27</td>
<td>488.4</td>
<td>30</td>
<td>3.56295</td>
</tr>
</tbody>
</table>
Modeling the Boron Worth Experiments

- Model created using methods described above
- 19 models are identical varying only in boron concentration and water height
- Boron worth calculated from the model is within 1 standard deviation of the experimentally measured values
- Model is behaving as expected

<table>
<thead>
<tr>
<th>Case</th>
<th>B PPM</th>
<th>Water Height (mm)</th>
<th>Reactivity (Cents)</th>
<th>B Worth (Cents/PPM)</th>
<th>Std. Dev. (Cents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.89</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>61.66</td>
<td>542.5</td>
<td>23.19574</td>
<td>-3.30471</td>
<td>0.81411</td>
</tr>
<tr>
<td>3</td>
<td>55.12</td>
<td>542.5</td>
<td>43.14874</td>
<td>3.20497</td>
<td>0.89826</td>
</tr>
<tr>
<td>4</td>
<td>47.71</td>
<td>528.4</td>
<td>51.38881</td>
<td>-3.40904</td>
<td>0.71808</td>
</tr>
<tr>
<td>5</td>
<td>39.86</td>
<td>522.2</td>
<td>55.18832</td>
<td>-3.34560</td>
<td>0.71771</td>
</tr>
<tr>
<td>6</td>
<td>32.7</td>
<td>516.2</td>
<td>37.44709</td>
<td>-3.18935</td>
<td>0.71766</td>
</tr>
<tr>
<td>7</td>
<td>24.21</td>
<td>510.7</td>
<td>57.97319</td>
<td>-3.37649</td>
<td>0.71753</td>
</tr>
<tr>
<td>8</td>
<td>16.54</td>
<td>505.2</td>
<td>38.05946</td>
<td>-3.38968</td>
<td>0.71742</td>
</tr>
<tr>
<td>9</td>
<td>8.69</td>
<td>500.1</td>
<td>58.73249</td>
<td>-3.34373</td>
<td>0.71731</td>
</tr>
<tr>
<td>10</td>
<td>0.27</td>
<td>494.5</td>
<td>60.37732</td>
<td>-3.61460</td>
<td>0.81242</td>
</tr>
</tbody>
</table>
Future Work

• Determine causes for consistently increased multiplication factor in the model compared to the experiments
• Continue to close information gap
• Complete uncertainty analysis
• Finalize simplified model

Acknowledgements

The work presented here is supported by the DOE Nuclear Criticality Safety Program (NCSP), funded and managed by the National Nuclear Security Administration for the Department of Energy
REFERENCES

2. G.S. Hoovler, “As-Built Description and Excess Reactivity of Reference CX Core 94WS100,” Babcock & Wilcox 1994