

Delivering science and technology to protect our nation and promote world stability

Experimental Design to Study Criticality Effects of Plutonium Aging

IER-301

Theresa Cutler, Travis Grove, David Hayes, Mark Mitchell, Bill Myers, Rene Sanchez, Jessie Walker, Bob Margevicius

NCSP Technical Program Review March 2017

Overview

- Experimental Objectives
- Background and Previous Work
- Preliminary Design
- Final Design

Experiment Objectives

- Examine the effects of plutonium aging on criticality
 - It is known that the isotopic composition of plutonium changes with age, due to radioactive decay
 - $Pu-241 \rightarrow Am-241$
 - He-3 ingrowth
- The effects of criticality have yet to be examined in a systematic approach
- NEED integral data

Previous Work

- Metallurgical Effects have been investigated over the past few decades
 - Much information has been obtained
- He-3 atoms formed from alpha decay
 - These atoms migrate toward each other forming sub-micron-size bubbles
 - Become effective "hardening agents" in the plutonium
 - Well documented in the last two decades
- Accounted for in benchmark evaluations
 - ZPPR critical benchmark experiments (1969→1980)
 - BeRP ball fundamental physics benchmark experiments (1980→2009)

Preliminary Design

- Design an integral experiment to compare new and aged plutonium
- Two approaches considered
 - Approach 1: Design and build a completely new set of critical experiment parts to perform the comparison
 - Approach 2: Utilize currently available critical parts to perform small sample reactivity worth comparisons
 - Both options utilize the existing critical assemblies at NCERC

Preliminary Design: Approach 1

- Manufacture 6" OD discs, matching current NCERC inventory and available reflectors (Be, DU, Fe, ...)
- 2 sets
 - One with "new" isotopics
 - One with "aged" isotopics
- All cladding would be of the same material type and thickness

Preliminary Design: Approach 2

- Utilize currently available critical parts to perform small sample reactivity worth comparisons
 - Flattop glory hole pieces
 - BeRP ball
 - Thor core pieces
- Used by R. Sanchez* to estimate the critical mass of Np-237 using Flattop

*SPEC-MET-FAST-003, Neptunium-237 and Highly Enriched Uranium Replacement Measurements Performed Using Flattop, 1999-09-30.

BeRP ball

Final Design

- Small Sample glory hole replacement measurements in Flattop
 - Chosen through systematic evaluation in MCNP and feasibility
 - Future work will likely build upon this with a new full Flattop Pu core
- Use similar protocal for determining reactivity worth and critical mass to Sanchez Np-237 work in 1990s using the Flattop core
- Considered both HEU and Pu core
 - Pu core selected due to higher worth of glory hole pieces

Final Design: Overview

- Glory hole loading with "new" and "old" Pu
- The Flattop Pu core and glory hole pieces were manufactured in ~1957 at Los Alamos
- Diameter of Flattop Pu core glory hole is 0.5". All pieces used fit tightly
- New pieces, 0.5" OD x 0.5" L, will be manufactured at Los Alamos
- New pieces will be included in the configuration and compared to reactivity results from old configuration
- Locations selected based on highest reactivity worth

Nominal Reactivities for Pu Core/ 6 NU Buttons In Cap/ Glory Hole as Follows: (Measured September/October 1999)

> Glory Hole Loadings and Associated Reactivity for Flat-top Pu core

Final Design: Isotopics

- Manufactured in ~1957, δ-phase plutonium, stabilized in gallium
- Approximate density: 15.83 g/cm³
- 5 mil thick nickel cladding on all pieces
 - New pieces will have 10 mil thick Invar cladding
- Computationally decayed, using MISC, to 2016
- No burnup assumed
- No density change effects considered in decay, although acknowledged it decreased slightly from He-3 ingrowth

Initial Isotopic Composition

Nuclide	Weight Percent		
²³⁹ Pu	93.8		
²⁴⁰ Pu	4.8		
²⁴¹ Pu	0.3		
⁶⁹ Ga	0.6611		
⁷¹ Ga	0.4389		

Approximate 2016 Decayed Isotopic Composition

Nuclide	Weight Fraction			
⁶⁹ Ga	6.611E-03			
⁷¹ Ga	4.389E-03			
²⁰⁷ Pb	4.889E-15			
²²⁷ Ac	1.105E-14			
²²⁹ Th	8.384E-14			
²³¹ Th	6.140E-15			
²³² Th	2.352E-10			
²³¹ Pa	4.165E-11			
²³³ Pa	5.807E-12			
²³³ U	1.237E-09			
²³⁵ U	1.510E-03			
²³⁶ U	2.834E-04			
²³⁷ U	5.895E-12			
²³⁷ Np	1.719E-04			
²³⁹ Pu	9.365E-01			
²⁴⁰ Pu	4.771E-02			
²⁴¹ Pu	1.890E-04			
²⁴¹ Am	2.636E-03			

Final Design: MCNP®6 Simulations

- Detailed Flattop model for HEU core, adapted to the Pu core
- Pu core based on detailed engineering drawings
 - Different than those used in previous benchmarks with Flattop
- All blues, orange, and reds represent natural uranium; teal represents plutonium.

Final Design: MCNP®6 Simulations

- Close up view of Pu core with the proposed glory hole loading
- Blue and purple boxes represent the pieces that will be replaced with new ones
- All blues, orange, and reds represent natural uranium; teal represents plutonium.
- HEU and blank pieces also considered in the same locations

Final Design: MCNP®6 Simulations

MCNP6 keff and Reactivity Results for Expecte Replacement Measurements

configuration	keff	delta_keff	reactivity (cents)	delta reactivity (cents)
Base (all old Pu)	1.00269	0	96.85	
New Pu 1	1.00259	0.00010	93.26	3.59
New Pu 2	1.00243	0.00026	87.51	9.34
HEU 1	1.00159	0.00110	57.31	39.54
HEU 2	1.00061	0.00208	22.01	74.84
Empty can 1	0.99923	0.00346	-27.82	124.67
Empty can 2	0.99663	0.00606	-122.07	218.92

Delta Reactivity (cents) for All Considered Replacement Measurements

Summary

- Knowledge gaps exist on criticality behavior of plutonium as it ages
- An integral experiment has been designed to measure the reactivity worth of new and 50+ year old plutonium
- Experiment based on proven concept with Np-237 in Flattop

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

