LLNL-PRES-726477

CED-2 for Thermal/Epithermal Experiments (TEX) with Highly Enriched Uranium Jemima Plates with Polyethylene and Hafnium

Presented at the Nuclear Criticality Safety Program (NCSP) Technical Program Review March 14-15 2017, Washington DC

Tony Nelson, Catherine Percher, Will Zywiec, Dave Heinrichs Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory, P.O. Box 808, L-384, Livermore, CA 94551-0808 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Thermal/Epithermal eXperiments (TEX) Overview

• TEX Goals

- New critical experiments to address high priority nuclear data needs
- Special emphasis on intermediate energy range
- Create uranium test bed that can be easily modified for various diluents

• TEX Preliminary Design (Sep 2012) IER-184 CED-1

- Showed feasibility for three different fissile systems to create intermediate energy assemblies with various diluent materials
- Addendum to CED-1 (Dec 2015) *IER-297 CED-1*
 - Determined optimal thickness of hafnium diluent for TEX-Hf using HEU Jemima plates moderated by polyethylene
- **TEX-Hf Final Design** (in review) *IER-297 CED-2*
 - Describes 21 critical experiments for benchmarking hafnium and uranium across entire energy range

TEX Feasibility Meeting July, 2011 **Nuclear Data Needs** Plutonium-239 Plutonium-240 Uranium-238 Uranium-235 **Temperature Variation** Water Density Variation Steel Lead (reflection) Hafnium Tantalum Tungsten Nickel Molybdenum Chromium Manganese Copper Vanadium Titanium Concrete

Jemima Plates

- 93.13 93.5 wt% ²³⁵U enrichment
- Existing US asset at NCERC
- 3 mm thickness
- 15 inch outer diameter with central holes of various sizes
- 27 disks used in TEX-Hf
- 1 solid disk equivalent made from filling a 6" hole plate with a 6" OD plate
- 1 solid disk equivalent made from 6 wedges
- Wedge plates used to adjust reactivity

TEX-Hf Final Experiment Design

- 21 Critical Configurations
- Materials
 - 0.1 cm thick hafnium diluents
 - Varied polyethylene moderator thickness 0-1.5" to adjust energy spectrum
 - 1 inch polyethylene reflector around entire assembly
- Solid Jemima plates centrally located to maximize reactivity
- Calculational Model
 - Simulations run using MCNP6 with ENDF/B-VII.1 cross sections
 - Sensitivity calculated using KSEN card in MCNP6
- 4 stacking methods
 - Baseline
 - Standard
 - Sandwich
 - Bunched HF

Baseline Configuration- No Hafnium

				Fis			
Polyethylene Thickness, inches	Number of HEU Plates	Number of Wedges in Top Plate	Gap Below Aluminum Platen, cm	Thermal (<0.625eV)	Intermediate (0.625eV- 100keV)	Fast (>100keV)	k _{eff}
0	18	5	0	7.54%	20.46%	72.00%	1.00193
1/8	12	1	0.2	13.12%	49.74%	37.14%	1.00066
1/4	9	1	0.2	21.98%	51.93%	26.09%	1.00339
1/2	6	2	0.1	38.01%	44.31%	17.68%	1.00274
1	4	6	0.3	53.78%	33.08%	13.14%	1.00147
1.5	4	3	0	<u>61.95%</u>	26.58%	11.47%	1.00394

Standard Stacking Configuration

				Fission Fraction, %			
Polyethylene Thickness,	Number of HEU Plates	Number of Wedges in Top Plate	Gap Below Aluminum Platen cm	Thermal	Intermediate (0.625eV- 100keV)	Fast	k
0	26	6		5.87%	17.65%	76 48%	1 00097
1/8	15	6	0.1	9.21%	50.37%	40 42%	1 00172
1/4	13	4	0	15.51%	54.79%	29.70%	1.00069
1/2	10	4	0	31.24%	48.31%	20.45%	1.0044
1	8	1	0	50.90%	34.65%	14.45%	1.00333
1.5	9	6	0	59.66%	27.83%	12.51%	1.00424

Sandwich Stacking Configuration

			Gap	Fission Fraction, %				
Polyethylene	Number	Number of	Below		Intermediate			
Thickness,	of HEU	Wedges in	Aluminum	Thermal	(0.625eV-	Fast		
inches	Plates	Top Plate	Platen, cm	(<0.625eV)	100keV)	(>100keV)	k _{eff}	
0	26	6	0.1	5.87%	17.65%	76.48%	1.00097	Unmoderated case
1/4	15	1	0.1	12.06%	<u>57.71%</u>	30.23%	1.00325	identical to standard
1/2	12	4	0	25.22%	53.81%	20.96%	1.00359	stacking
1	12	1	0	43.42%	41.73%	14.85%	1.00384	

Bunched Hafnium Configuration

Sensitivity- Hafnium Capture

- Thermal Regime:
 - Standard 1.5" PE
 - Total sensitivity = -0.144
 - 71.3% thermal •

Intermediate Regime:

- Sandwich 1/2" PE
 - Total sensitivity = -0.112
 - 66.3% intermediate
- Sandwich 1/4" PE
 - Total sensitivity = -0.088
 - 77% intermediate

Fast Regime:

- Unmoderated Standard/Sandwich
 - Total sensitivity = -0.025
 - 35.6% fast •
 - Still a predominantly (50.8%) intermediate system

-0.03

-0.04

-0.05

-1" PE Thickness

0" PE Thickness

Sensitivity- Hafnium Elastic Scatter

- Sensitivity Magnitude
 - Absolute value of sensitivity
- Thermal Regime:
 - Standard 1.5" PE
 - Total sensitivity = 0.005
 - 42.4% thermal
- Intermediate Regime:
 - Bunched Hf 1/8" PE
 - Total sensitivity = 0.0130
 - 32.1% intermediate
 - Sandwich 1" PE
 - Total sensitivity = 0.0065
 - 72.3% intermediate
- Fast Regime:
 - Unmoderated Bunched Hf
 - Total sensitivity = 0.0352
 - 75.6% fast

Sensitivity- Hafnium Inelastic Scatter

- Inelastic scattering only occurs at high energy
- Bunched hafnium is almost twice as sensitive
 - Unmoderated configuration
 - Sensitivity = 0.031
 - ~100% fast

0.016

0.014

Incident Energy of Neutron (MeV)

Standard

Sensitivity- U-235

• Thermal Regime:

- Standard 1.5" PE
- Total sensitivity = 0.305
- 31.2% thermal

• Intermediate Regime:

- Sandwich 1/4" PE
- Total sensitivity = 0.481
- 54.7% intermediate

• Fast Regime:

- Unmoderated bunched
- Total sensitivity = 0.600
- 91.4% fast

• Thermal Regime:

- Baseline 1.5" PE
- Total sensitivity = -0.158
- 55.8% thermal
- Intermediate Regime:
 - Bunched 1/8" PE
 - Total sensitivity = -0.150
 - 84.3% intermediate
- Fast Regime:
 - Unmoderated bunched
 - Total sensitivity = -0.057
 - 58.9% fast

Uncertainty and Bias

Uncertainty

- Jemima plate mass
 - Uncertainty from previous ICSBEP benchmarks

PE mass

- Mass will be precisely measured after fabrication, reducing uncertainty
- Plate gaps
 - Height of stack will be measured before experiment to precisely determine gaps between plates
- U-235 enrichment
 - U-235 enrichment uncertainty based on standard deviation of measurements

Bias

- Room return
 - Simulations excluding room return were found to underestimate k_{eff} by 0.00161
- Plate impurities
 - Jemima: measured impurities included but they could be omitted with increase in k_{eff} of 0.00019
 - Hafnium: omitting impurities would decrease k_{eff} by 0.00090
- Hafnium isotopic composition
 - Increasing Hf-177 content by 10% reduces k_{eff} by 0.00346
 - Will precisely measure this value before experiment

Source of	Parameter	Calculated		
Uncertainty	Variation	Effect, Δk _{eff}		
HEU Plate Mass	+0.03%	0.00016		
HEU Plate Mass	-0.03%	-0.00006		
PE Moderator				
Mass	+0.005 g/cm	0.00086		
PE Reflector				
Mass	+0.005 g/cm	0.00040		
HEU Plate Gaps	0.00127 cm	-0.00044		
U-235				
Enrichment	+0.11%	0.00042		
Total				
Uncertainty	0.00114			

Conclusions

• Thermal, intermediate, and fast critical configurations were designed using available Jemima plate inventory.

Hafnium capture

- Standard stacking maximizes thermal sensitivity.
- Sandwich stacking maximizes intermediate sensitivity.
- No configuration was predominately sensitive to fast energy range.

Hafnium scatter

 Bunched hafnium configuration maximizes sensitivity to elastic and inelastic scattering at high energy.

U-235 fission

- Sensitivity in the intermediate and fast energy regime was verified.
- No configuration was predominately sensitive to thermal energy range.

• U-235 capture

- Baseline configuration maximized thermal sensitivity.
- Bunched Hf configurations maximized intermediate and fast sensitivity.

Uncertainty

- Total predicted uncertainty for the experiments was 0.00114 Δk_{eff} , which can be further reduced with measurement of PE parts.

Schedule CED-3 Schedule

- FY 2017- Quarter 3 and Quarter 4
 - Project Introduction: prepare facility documentation and reactor safety and experimental plans.
 - Procurements and Fabrication: polyethylene, aluminum, and hafnium parts.
 - Hafnium plates provided by external sponsor
 - Cost to NCSP for other parts estimated to be around \$10,000
- FY 2018- Quarter 1, 2, & 3
 - Experiment Execution: LLNL will work with NCERC personnel to schedule and conduct the 21 experiments for TEX-Hf.

CED-4 Schedule

• Laboratory Reports: A laboratory report summarizing each critical configuration will be completed one month after the completion of each experiment. These laboratory reports will record the experimental details needed for the ICSBEP benchmark.

ICSBEP Evaluations: ICSBEP evaluations for all experiments will be completed in FY2018 Q4 and FY2019 Q1-2 for review by the ICSBEP review group in May of 2019.

Acknowledgements

- This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA273444 and was funded by the U.S. Department of Energy Nuclear Criticality Safety Program.
- Dr. Michael Zerkle of Bettis Atomic Power Laboratory provided substantial input and guidance to this work.
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) provided technical input to this work.