

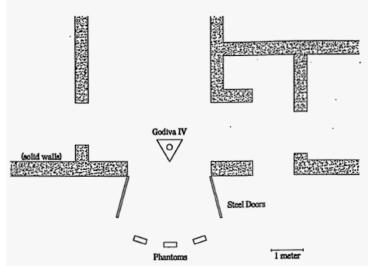
The First Nuclear Accident Dosimetry Exercise using Godiva at NCERC

Presented at the NCSP Technical Program Review, Washington DC, March 14-15, 2017

David P. Hickman Lawrence Livermore National Laboratory LLNL-PRES-725942

Lawrence Livermore National Laboratory, P.O. Box 808, L-198, Livermore, CA 94551-0808 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

HISTORY OF NAD INTERCOMPARISONS IN THE USA


1965 – 1989 Health Physics Research Reactor at ORNL

- 2,289 dose measurements during these intercomparisons
- 0.2 8.5 Gy neutron doses and 0.1 2.0 Gy gamma doses
- 68% of neutron measurements met the accuracy guidelines (+/- 25%)
- 52% of gamma measurements met the accuracy criterion (+/- 20%)
- Percent of dosimeters meeting neutron accuracy criteria decreased with softer spectra (steel, concrete, lucite)

1995 GODIVA & SHEBA at LANL

- with the "intention to conduct these studies approximately annually for the evaluation of nuclear accident dosimeter systems"
- 10 Facilities participated.
- Four Godiva irradiations: bare, concrete, Lucite, and iron shields
- Thermalized spectra difficult to measure for some NAD designs
- Conclusion: 'Results indicate that it is unlikely expertise that is not maintained will provide useful data'

FAST FORWARD 21 YEARS

- Godiva operational at NCERC
- CEA (France) reactors previously used for NAD intercomparisons (Caliban, Prospero, and Silene) no longer operational
- IER 147 Godiva dose characterization is completed
- NAD LAB at NNSS established to host participants
- IER 148 NAD Intercomparison funded and performed in May 2016

NAD Testing Requirements

- ANSI N13.3-1969 to 2013
 - ± 25% response from 0.1Gy to 10 Gy
 - Provide dose information within 24 hours*
 - Shall have quick sort techniques
 - Personnel dosimeters as well as fixed station dosimeters*
 - Use of fixed dosimeters only, requires ability to extrapolate to personnel dose
 - Dosimetry instruments & techniques shall be maintained
 - Shall be able to determine orientation

- ANSI/HPS 13.3-2013 to Present
 - ± 25% response from 1 to 10 Gy
 - ± 50% response from 0.1 to 1 Gy
 - Provide dose information within 24 hours
 - Shall have quick sort techniques for >0.5 Gy
 - Specified minimum throughput
 - System performance shall be verified (range 0.1 to 10 Gy)
 - Shall replicate configuration of normal use
 - Orientation corrections
 - Methods for handling partial body exposure and biological dosimetry methods*

* "Should" requirement

What did the May 2016 NAD Intercomparison Test?

- Main Focus:
 - $\pm 25\%$ response from 1 to 10 Gy
 - $-\pm 50\%$ response from 0.1 to 1 Gy
 - Provide dose information within 24 hours
 - System performance shall be verified (range 0.1 to 10 Gy)
 - Realistic criticality exposure configuration
- Additional Opportunities:
 - biological dosimetry methods
 (simulated blood Ringers Lactate)
 - quick sort techniques for >0.5 Gy
 - orientation corrections
 - training

Three Irradiations for the NAD Intercomparisons

- First two irradiations:
 - Doses were provided to participants immediately after irradiation
 - Participants allowed to practice and verify procedures and performance
 - Practice reporting results within 24 hours
- Last irradiation was unknown to participants and had to be reported within 24 hours

Burst Data for the NAD Intercomparisons

Burst	Date	Time	ΔT (°C)	Period (ms)	Reactivity (cents)	FWHM (ms)
1	24-May-16	10:11	68.5	40.4	102.9	155.5
2	25-May-16	9:42	244.8	9.5	112.4	
3	26-May-16	11:35	147.7	14.3	108.3	

Provided by Joetta Goda

Neutron Tissue KERMA Dose First Reported from 1st Irradiation

	Distance from Core (m)				
	2	2.5	3	4	9
Known Value (Gy)	1.57	1.17	0.91	0.66	0.13
Facility:					
LLNL	2.78 ¹ /1.57	2.56 ¹ /1.25	1.57 ¹ /0.94	1.42 ¹ /0.70	0.48 ¹ /0.23
LANL	1.7/1.3	1.4	1.4/1.95	NM/NR	NM/NR
SRS	NM/NR	NM/NR	NM/NR	1.32	0.14
PNNL	1.38	1	0.7	0.52	NM/NR
US Navy	1.55/ <mark>2.31</mark>	NM/NR	NM/NR	NM/NR	NM/NR
AWE	2.0	NM/NR	1.00/0.64	0.73	NM/NR
SNL	3.8	2.61	1.75	1.18	NM/NR
IRSN	1.61/1.64/1.40/1.39	1.27/1.27/1.17	1.05/0.85/0.9	0.93/0.70/0.53	0.59/0.26 /0.07

red signifies value outside ANSI/HPS 13.3 – 2013 limits

¹ over corrected for foil decay

Neutron Tissue KERMA Dose Results First Reported from 2nd Irradiation

	Distance from Core (m)				
	2	2.5	3	4	
Known Value (Gy)	5.62	4.17	3.26	2.35	
Facility:					
LLNL	5.69	4.41	3.38	2.46	
LANL	NM/NR	5.52	4.33	3.1/2.69	
SRS	NM/NR	NM/NR	2.26	2.05	
PNNL	NM/NR	NM/NR	NM/NR	NM/NR	
US Navy	4.11	5.52	NM/NR	2.97	
AWE	5.88	NM/NR	2.3	NM/NR	
SNL	3.8	2.61	1.75	1.18	
IRSN	5.86/5.66/6.73	4.31/4.53/5.15	2.92/3.24/3.67	2.09/2.29/2.2	

red signifies value outside ANSI/HPS 13.3 – 2013 limits

Neutron Tissue KERMA Dose Results Reported within 24 hours after 3rd 'Unknown' Irradiation

	Distance from Core (m)					
	2	2.5	3	4	9	
Known Value(Gy)	3.39	2.52	1.97	1.42	0.27	
Facility:						
LLNL	3.37	2.74	1.54	1.49	NM/NR	
LANL	4.58	3.16	1.84/ <mark>2.6</mark>	1.23	0.30	
SRS	2.51/4.72	NM/NR	NM/NR	NM/NR	0.243*	
PNNL	13.68	7.59	10.91	4.81	NM/NR	
US Navy	4.24	4.04	NM/NR	2.41	NM/NR	
AWE	3.2	2.55	1.38	1.09/1.10	NM/NR	
SNL	4.1	2.78	1.87/2.13	1.33	0.256/ <mark>2.85</mark> *	
IRSN	3.25/3.9/3.55	2.75/2.9/2.7	2.0	1.3/1.1	0.54/ 0.30/0.26*	

red signifies value outside ANSI/HPS 13.3 – 2013 limits

* Based on blood tube (Ringers Lactate) evaluation

Results Summary – Final Test – 3rd Irradiation

- 66% of the reported results meet the accuracy requirements
- Majority of facilities were able to report doses within 24 hours
- Facilities were able to verify procedures and operations for dose determination
- One facility (not listed) was not able to report any results within 24 hours
- Gamma doses were not typically reported in 24 hours
- US facilities appeared to have the majority of difficulties (but were also the majority participants)
- Possible reasons for US facility difficulty are:
 - Inability to routinely test at high doses
 - Lack of practice
 - Time crunch (24 hour reporting)
 - Some dosimeter designs are insufficient

What NEXT?

- IER 252 & 253 Flattop dose characterization and intercomparisons
 - Flattop with its surrounding sphere will have a "softer" spectrum.
 - Remember from previous experiences (first slide): 'Percent of dosimeters meeting neutron dose criteria decreased with softer spectra (steel, concrete, lucite)'
- Training of new personnel on NAD dosimetry methods
- More opportunity for routine testing at high doses
- Better quick-sort testing (time factor, equipment, & personnel issues)
- Biological dosimetry testing
- New design of a standardized dosimeter that is accepted across the DOE complex ('super-NAD') and easy/quick to operate and manage

QUESTIONS?