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Outline
 Overview of thermal neutron scattering theory

 Overview of FLASSH Code Development

 Inelastic Scattering under Incoherent Approximation

 Coherent Inelastic Scattering with One-phonon Correction

 Coherent Elastic Scattering with Debye-Waller matrix

 Summary

Presenter
Presentation Notes
I will first talk about the overall design and improvement of the code.
…
After this, I will talk about two completely new features added to the new code



Thermal Neutron 
Scattering in Matter
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 Thermal neutrons are characterized by energies and de Broglie 
wave length that are on the order of excitation energy and 
separation distance in the medium in which they interact

 The scattering behavior of thermal neutrons are quantified by 
the double differential cross section using the scattering law 
𝑆𝑆(𝛼𝛼,β)

 The scattering law 𝑆𝑆(𝛼𝛼,β), also known as the dynamic 
structure factor, describes the energy states of motions and the 
structure constitution of the interaction medium 
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Scattering in Matter
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Thermal Neutron 
Scattering in Matter

 𝑆𝑆 𝛼𝛼,𝛽𝛽 is made up of self and distinct terms and can be 
written as

 The neutron scattering cross section can be further written as

 Harmonic approximation: interatomic forces are proportional 
to displacement from equilibrium position. Scattering law can 
be expanded
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Phonon Expansion 
of the Scattering Law

 Coherent elastic scattering

 Incoherent elastic scattering

 Inelastic scattering under incoherent approximation
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Presenter
Presentation Notes
Superscript denotes the number of phonons annihilated or created during the scattering process.
In coh_ela no phonon will be annihilated or generated, all phonon terms can be dropped out.
In coherent approximation - distinct scattering law is small compared to the self scattering law
Justification - much smaller probability to find a different atom at same position than to find the same atom
To sum up,



FLASSH Code Flow
Input module

Elastic Scattering 
ENDF data format

Inelastic Scattering
S(α,β)

Post processing
Cross section data

Integrator
Cross section data

Output

Coherent Elastic

Incoherent Elastic

Inelastic under 
incoherent 

approximation

Coherent one-phonon 
correction to incoherent 

approximation

Standard ENDF 
format

Analyzing and 
plotting format
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The code is designed with modulus concept kept in mind. It is made in this way to easily expand to new features and future development.
The 



FLASSH Code Features
LEAPR+THERMR FLASSH

Coherent inelastic N/A Implemented

Coherent elastic Approximate Exact

Short Scattering Time
(SCT) approximation Yes No

Integral against α
differential cross section Numerical Default: Analytical

Optional: Numerical

α, β gridding User input Default: Automatic grid 
Optional: User input

Parallel Computing N/A Yes
Using OpenMP

Graphic User Interface N/A Yes



FLASSH Example






Scattering Law 𝑆𝑆(𝛼𝛼,𝛽𝛽)
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Differential Scattering Cross Section
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Differential Scattering Cross Section
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Integrated Cross Section
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Presentation Notes
By this point, we completely reproduce the incoherent approximated inelastic scattering cross section as NJOY.
It is also important to point out that we completely removed the SCT approximation because …



Coherent inelastic
one-phonon correction routine

FLASSH

Supported structure Any crystal structure

Supported material Any material

Compound material Yes

Debye-Waller Factor Exact

Polarization vector Exact

Sampling of the full reciprocal space Yes

Structure Factor Exact

Presenter
Presentation Notes
This new routine essentially calculates the coherent inelastic scattering cross section using the one-phonon correction.



One-phonon Corrected
Scattering Law 𝑆𝑆(𝛼𝛼,𝛽𝛽)
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The one-phonon corrected scattering law is no longer a smooth Gaussian shape peak any more. 
As we can see in the plots, it exhibits some detailed behavior in the low alpha region, which is stems from the interference of one-phonon coherent scattering.
This detail behavior of one-phonon corrected S(a,b) shows very good agreement with the experiment measured S(a,b)



Coherent Elastic Routine
LEAPR FLASSH

Supported structure Hexagonal, FCC, BCC Any crystal structure

Supported material
Graphite, beryllium, 

beryllium oxide, aluminum, 
lead, iron

Any material

Compound material 2 elements with ratio 1:1 Any number of elements with 
any ratio

Cubic Approximation Yes No

Atom sites approximation Yes No

Coherent Elastic Scattering 
Cross Section Over Ewald Sphere On every reciprocal lattice

point 

Need to modify source code if 
calculating other materials Yes No



Approximations of the LEAPR
Coherent Elastic Routine
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Coherent Elastic Cross 
Section of α-SiO2

 The calculation shows around 15% divergence at low and 
high energies between the two methods in the cross 
sections of α-SiO2.
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We find that this could result in a 15% difference between the C Approx. as current used in LEAPR and the matrix approach of our code.



Code Implementation 

 Calculations and ENDF TSL library formatting modules were 
implemented by FORTRAN 95 using modulus design

MF=1, MT=451 formatting was done by Python

 Parallel computing was realized by OpenMP 4.0 bindings

 GUI implemented by cross platform QT® C++ API



Summary
 The more general coherent elastic and coherent inelastic 

calculation routines were implemented.

 Approximations such as SCT approximation, cubic 
approximation, atom site approximation and incoherent 
approximation were removed or relaxed in FLASSH. 

 Compared FLASSH results to NJOY results and experimental 
measurements.

 FLASSH is designed using modern C++ and FORTRAN95 
language with GUI and parallel computation capability.
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