Los Alamos Updates to nuclear data evaluations

Overview:
- Light element evaluations
- 208Pb evaluation
- Minor actinide evaluations
- Summary
LANL Light-element (LE) evaluations

- Multichannel, unitary: fit all reaction/scattering data simultaneously
- Fit quantum mechanical amplitudes, not cross sections
- Superior to single-channel & cross-section curve fitting
- High-fidelity, low chi-squared: $\chi^2/DOF \sim 1.2 – 1.5$

Core capabilities/efforts

- LANL lead contributor LE evaluations for ENDF/B-VIII.0 (see table below)
- LE evaluations for many users/formats (ENDF, NJOY, ACE, NDI, etc.)
- Provide covariance information for all LE evaluations
- International efforts (IAEA Consultant’s Meeting R-matrix evaluations/Standards)

<table>
<thead>
<tr>
<th>Roman</th>
<th>Mass</th>
<th>Version</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>H1</td>
<td>H2</td>
<td>H3</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3He</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Catalogue of some light-element evaluations

NCSP evaluations of interest

- NN, 9Be, $^{12/13}$C, 16O

EDA Code Modernization

- NCSP FY20 request
- Higher-energies (<20 MeV)
- Interface EDA & NJOY, etc.

Roman numerals refer to ENDF versions

-- All LANL evaluations except *

-- * denote LLNL evaluations
CoH$_3$: Coupled-Channels Hauser-Feshbach code

- Hauser-Feshbach-Moldauer theory for compound nucleus reaction
 - 45,000 lines C++ code (~ 140 C++ source files, ~60 headers, ~80 classes)
 - maintain by GNU Autotools package

- Modules and Models employed
 - spherical and deformed optical models
 - DWBA for direct inelastic scattering
 - Moldauer’s width fluctuation correction with LANL parametrization
 - Gilbert-Cameron level density with updated parameters
 - pre-equilibrium 2-component exciton model
 - Madland-Nix prompt fission neutron spectrum including pre-fission emission
 - direct/semidirect capture model
 - mean-field models (FRDM and Hartree-Fock BCS)

Consistent evaluations in all channels
CoH₃ New Evaluation of 208Pb, (n,n’), (n,2n), and (n,3n)

Pre-equilibrium estimated by the single-particle model based on FRDM

Strutinsky shell correction predicts lower single-particle level density
- lowers the pre-equilibrium emission
- increase (n,2n)

New evaluation better agrees Simakov data

Need to re-investigate if Frehaut data should be renormalized
CoH₃ New Evaluation of 208Pb, Capture and Elastic

Very small capture cross section
Realistic Direct/Semidirect capture theory applied (evaluations are simple Lorentzians)

Unphysical dips near 60 and 140 degrees removed
Evaluation similar to JENDL-4
Evaluation of 234,236U

- **Extensive and consistent** evaluations based on CoH3 calculations, with parameters adjusted to experimental data (DANCE, WNR)
- All open channels included
- KALMAN-based evaluation for fission channel to include cross section data from WNR
- 234U: re-evaluation of nubar, consistent PFNS
- 236U: re-evaluation of nubar above 2$^{\text{nd}}$ chance fission, PFNS
- PFGS and gamma multiplicity taken from the recent 235U evaluation
Evaluation 234,236U (capture)

- Resonance parameters for 236U(n,γ) refitted to DANCE data, but only for the s wave and in different format than currently in ENDF (new fit this summer?)
- Data for 234U(n,γ) will be analyzed this summer (before September?)
- CoH$_3$ evaluation
 - Width corrections fluctuation of Moldauer, with the Engelbrecht-Weidenmüller transformation (strict treatment of the directly coupled channels in the Hauser–Feshbach theory), the coupled-channels optical potential of Soukhovitskii
 - Same parameters used for the suite of U isotopes

Baramsai et al, PRC 96 (2017) 024619
234U evaluation: all channels consistent from CoH$_3$ calculations
New paradigm for nuclear data evaluations

• **Novelty in evaluation procedure:**
 • Include >1000 integral experiments of various types
 • Develop infrastructure for re-adjustment of existing evaluations each time any evaluation is changed

• **Prerequisites**
 • Reliable set of integral experiments (with input decks)
 • Library of inputs and scripted procedures allowing for quick re-evaluation
 • ML techniques for tracing outliers (in experiments and evaluations), for performing global adjustment and analysis of the results
 • Reaction modeling adequate to reproduce experimental data (all reaction mechanisms)
 • Extensive set of sensitivities
 • Automated validation
 • Integration of experimental, evaluation and validation communities

• **Benefits**
 • Accounting for differential and integral exp. on the same footing
 • Extensive set of covariances including cross-material correlations
 • Reduction of error compensation
 • Improved responsiveness to new measurements and model advances
Summary

- Extend light-element evaluations: higher energy via code modernization
- Improved evaluation for 208Pb
- Complete and consistent evaluations for 234,236U
- CoH3: extensive (many models) and flexible evaluation tool neutron induced reactions on medium and heavy nuclei
- New evaluation scheme using ML algorithms

Work in progress:
- Identify benchmarks that include 234U/236U and check the performance of the evaluation
- Include the s-wave parameters for 236U(n,γ) (DANCE)
- Compare with 234U(n,γ) cross section, when the analysis is finished
- Neudecker: updates of PFNS for U and Pu based on new ChiNu data
- Kawano, Stetcu, Talou: new deterministic Hauser-Feschbach cascade model for PFNS/PFGS
- Adjustments to CGMF parameters so it can be used in future evaluations