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Unraveling the nuclear data problem

Accurate nuclear data are key to the success of criticality-safety
simulations

Some basic questions:

How do we produce accurate nuclear data?
How do we know they are accurate or deficient?
Can we identify specific deficiencies?

Can we eliminate compensating errors?

This Talk:

A very brief tour of the nuclear data evaluation process
How machine learning algorithms can help in the inverse problem?

Scoping studies of machine learning in nuclear data
Perspectives
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The nuclear data evaluation process
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The validation of nuclear data uses simulations of

integral data to check C/E values

Many integral benchmarks are used, but their interpretation is 1
difficult (inverse problem) =

We often get the right answers for the wrong reasons 13/ \_
Lots of room for compensating errors! C LD i
The use of integral benchmarks is not reflected in the ENDF .,/ critical assembly
covariances
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Moving beyond the current situation

Large-scale use of sensitivity profiles Ak/k
How does a change in the cross section c impact the Sk.o = Ac/o
integral k value?

More generally, how does a change in a feature f AQ/Q
impact an integral quantity Q? 5q.p = Af/f

Importance of metadata in integral benchmarks
Geometry, composition, experimental technique, etc. (y7 dy) — f(;p‘X,L)
Going beyond (x,y,dy); X;=experimental features

More realistic UQ studies of differential and integral experiments

Wrong estimates of uncertainties and correlations can significantly bias
statistical results

Use of machine learning algorithms to identify hidden patterns and
correlations in zoology of integral data
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Develop a database/catalog of sensitivity profiles using

MCNP6 and Whisper

Use MCNPG perturbation/sensitivity features

Can compute profiles of ke — nuclear data sensitivity profiles
How does a relative change in the cross section impact kg of the system?

__ Ak/k
Sk,a ~ Ao/o

For a single system, these (energy-dependent) profiles are unique
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Recent R&D work on applying machine learning

algorithms to Whisper benchmark catalogue

Oregon State University PhD student, Pavel Grechanuk

Began ML research in summer of FY17
Explored ML algorithms to predict ke bias using only sensitivity profiles

B; =~ f(S} ,)

Continued ML research in summer of FY18
Using the SHAP metric to understand feature importance in predicting bias
Explored ML algorithms to cluster benchmarks together

Explored the genetic algorithm to perform nuclear data assimilation for the most
important nuclear data quantities found in the bias prediction and clustering steps

Future work under an established subcontract between XCP-3 and OSU
supported through both NCSP and ASC/PEM-NP

This R&D work has led to a larger LANL team effort, spanning several
groups (XCP, T, CCS), to develop robust ML tools for nuclear data
evaluation
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Bias prediction and feature importance

With the bias known for all Whisper-1.1
catalogue cases, the generalized model
predictions are promising

What are the underlying hidden patterns
in the nuclear data that are most related
to the bias predictions?

From the machine learning methods,
feature importance can be used to
identify what nuclear data has a high
likelihood to be related to the bias
predictions

Pu benchmarks used in this study
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SHAP feature importance

Shapley Additive exPlanation (SHAP) metric for feature importance

For each benchmark, estimate the additive contribution to the predicted bias
for each feature

“A Unified Approach to Interpreting Model Predictions” Lundberg, Lee

; CPar‘clal Dependence Plot for Polyethylene Inelastic Scattering
0.006 -
0.005 -
0.004
(=4}
) -
- R
&5 0003
U m
29
® S 0002
a5
% ™ poo
n =
O .
.
a -
+ fpees =
-0.001
-0.002 ;
~0.0020 -0.0015 —0.0010 —-0.0005 0.0000 00005 0.0010
poly.20t |nelast|c18

Los Alamos National Laboratory




Clustering benchmarks based on sensitivity profiles

Clustering is used to find inherent relationships in the data

Objects in the same cluster are more similar to each other than those in
other clusters

Used to find groups of benchmarks that have similar sensitivity profiles, Si.,g

Can train and test on a few clusters at a time
Well populated classes of benchmarks skew the overall model

Training and testing on a subset of the data leads to a more specialized and
accurate model

More accurate model <> More accurate feature importance

Can use clustering to find similar benchmarks for:
Benchmark selection for statistical analysis in Whisper

Finding regions in sensitivity space that are sparse (more benchmarks
needed, see cluster #11 with mix-comp-fast on next slide)
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Bias

Clustering Whisper

benchmarks

Finds 24 clusters ranging in
population from 2 to 133

Segregated mainly based on
materials present and spectrum

Bias Across Clusters
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3 133 heu-met- fast

1 5 heu-met-inter

3 54 heu-sol-therm, leu-comp-therm, u233-comp-therm
6 29 heu-met-fast, ieu-met-fast

7 117 leu-comp-therm, heu-comp-therm, heu-met-therm
8 77 heu-comp-therm, leu-comp-therm, heu-sol-therm
9 14 leu-comp-therm, heu-sol-therm

10 13 heu-sol-therm, leu-sol-therm

11 2 mix-comp-fast

12 20 mix-met-fast

13 54 pu-sol-therm, mix-sol-therm, mix-comp-therm
14 39 pu-comp-mixed, pu-sol-therm

15 11 pu-comp-mixed, pu-met-fast

16 75 pu-met-fast, mix-met-fast

17 105 pu-sol-therm, mix-sol-therm, mix-comp-therm
18 26 pu-sol-therm, mix-sol-therm,

19 10 u233-met-fast

20 15 u233-sol-therm, u233-sol-inter

21 10 u233-sol-therm

22 60 u233-sol-therm

23 29 u233-sol-therm, u233-comp-therm




Benchmark clustering, bias predictions, feature

importance and nuclear data assimilation

In FY18, we took a preliminary look at combining several machine
learning algorithms together in order to understand where they can be
applied within the nuclear data evaluation process

|dentify a cluster of benchmarks to study, e.g. PMF systems
Build a random forest model to predict the ke bias within this cluster
Select the most important features to predicting the bias

Apply genetic algorithm to optimize perturbations of the most important
features

We will continue scoping out these methods to find robust
methodologies to support nuclear data evaluations
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SHAP analysis points to potential deficiencies in

ENDF/B-VII.0

Recent results from Mike G. using Random Forest & SHAP analysis

This work focuses on finding known and unknown issues in ENDF/B-
VI1.0 to test ML algorithms capabilities. Once that is successful, we
will do production runs validating ENDF/B-VIII.0

PRELIMINARY: Questionable nuclear
data related to small-scale exp.
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Using integral experiment metadata as feature

importance

If only sensitivity profiles are used, only nuclear data observables will
be highlighted as related to bias between simulated and experimental
benchmark value

Experiments can be characterized by their MCNP input deck
(metadata): geometry, material composition, source definition,
analysis method, etc.

The final result, e.qg., difference between simulated and measured k.,
is a function of nuclear data and experimental metadata
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Conclusions & Future Work

Using the Whisper-1.1 catalogue of 1100+ criticality safety
benchmarks, several machine learning methods were applied to
predict k¢ bias, cluster similar benchmarks together, find highly
important features in the nuclear data and optimize perturbations to
important cross sections.

Need to examine all of the machine learning results more closely,
especially the initial nuclear data adjustment results
Comparison to GLLSM is needed (already underway)

Inclusion of the nuclear data covariance is essential
The accuracy of the nuclear data covariance data could be problematic

Using more features of the benchmarks (metadata) is being explored
to see if they can help in clustering benchmarks or finding systematic
outliers
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