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2 SAMMY Modernization 

Outline 

•  SAMMY history and overview of features 
•  SAMMY modernization update 

–  SAMMY 8.1 release 
–  Modernization strategy  
–  Example: Coulomb functions 

•  SAMMY future directions 
–  Simultaneous optimization of thermal and resolved R-matrix 
–  Bayesian generalized data optimization for defective models 
–  Generalized Reich-Moore approximation 

•  Summary and outlook 
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History of SAMMY 
•  Developed by Dr. Nancy Larson since 1970s 
•  Includes SAMMY + 25 auxiliary codes (e.g., SAMRML  

shared by AMPX and NJOY) 

•  Architecture is a large Fortran (77) container array for  
memory management 

•  Includes 185 multi-step test cases + 10 tutorial examples 

•  Comprehensive documentation available at: 
http://info.ornl.gov/sites/publications/files/Pub13056.pdf 

•  Employed for resolved resonance evaluations in ENDF 

•  SAMMY 8.1 distributed via RSICC https://rsicc.ornl.gov/ 
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SAMMY capabilities 
•  Multilevel, multichannel R-matrix code 
•  Bayesian fitting of R-matrix resonance parameters (RPs) 

–  Also known as generalized least squares  
–  Yields covariance matrix of RPs 

•  Data reduction: 
–  Experimental facility resolution functions: ORELA, RPI, GELINA 
–  Normalization, background  

•  Detector resolution functions: configurable for variety  
of detectors 

•  Doppler broadening: Solbrig’s kernel, Leal-Hwang method 
•  Multiple scattering effects and other target effects 

•  Charged projectiles (p, α) 

•  Unresolved resonance range (FITACS by F. Froehner) 
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Example SAMMY evaluation: Ti-48 
•  From: Leal, Luiz C., Guber, Klaus H., Arbanas, Goran, Wiarda, Dorothea, Koehler, Paul Edward, & Kahler, 

A. “Resonance Evaluation of 48Ti Including Covariance for Criticality Safety Applications.”  ICNC 2011:  
9th International Conference on Nuclear Criticality Safety, United States 

Resonance evaluation of 48Ti  
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abundant isotope, 48Ti also has the largest thermal capture cross section. Furthermore, criticality 
safety benchmark experiments, for which natural titanium is present, are predominantly sensitive to 
48Ti cross sections. The work described in this paper was carried out in response to criticality safety 
needs for improved nuclear data for systems in which titanium is present. Therefore, ORNL was 
targeted to produce a resonance evaluation for 48Ti. 

The six experimental measurements listed in Table I were used in the evaluation of the 48Ti 
isotope. In addition, the thermal cross section and resonance integral listed in the ANR were also 
used. For a complete SAMMY analysis of the natural and enriched 48Ti, one must include the 
resonance parameters for the remaining titanium isotopes. For that purpose, the ENDF/B-VII.0 
resonance parameters for 46Ti, 47Ti, 49Ti, and 50Ti were used. In SAMMY, the experimental data 
can be fitted simultaneously or sequentially. The latter was used in the present evaluation. In the 
sequential Bayes’ analysis the RP and the RPCM obtained from fitting one data set are used in the 
analysis of the next data set. This procedure should yield a unique set of resonance parameters with 
the corresponding RPCM at the end of the evaluation for all data analyzed. In practice this is 
usually not possible in view of the fact that the experimental data carry systematic uncertainties as a 
result of, for instance, normalization process, background correction, neutron energy calibration, 
and others. Because of these systematic uncertainties, the experimental data basis used in the 
evaluation is seldom consistent. Consistency in the experimental data basis can be achieved by 
varying the experimental parameters in a sequential fitting using the SAMAMR modules of 
SAMMY. 

3.2 48Ti Resonance Evaluation 
A set of resonance parameters describing the experimental data up to 400 keV was obtained in 

the SAMMY analysis. The initial set of resonance parameters used in the evaluation up to 300 keV 
was retrieved from ENDF/B-VII.0 [5]. Above 300 keV up to 400 keV new resonance parameters 
were generated using the peak-search option of the RSAP code [6]. The resonance spin assignment 
was done using the methodology described in the code SUGGEL [7]. The final set of resonance 
parameters for 48Ti contains a total of 120 resonances—118 in the energy region up to 400 keV and 
two external energy levels, one negative level and another level above 400 keV. Of the 118 
resonances 17 are s-wave resonances, 67 are p-wave, and 36 are d-wave. The results of the total 
and capture cross sections calculated with the resonance parameters and compared with the 
experimental data for 48Ti are displayed in Fig. 1 in the energy range 10 eV to 100 keV. The total 
cross section was derived from the two transmission measurements indicated in Table 1. 
Comparisons of the total and capture cross section in the energy region from 100 keV to 400 keV 
are shown in Fig. 2. 

 
Figure 1. Comparison of the total (two transmission data) and capture cross 
section calculated in the energy range 10 eV to 100 keV with the resonance 
parameters and the experimental data for 48Ti. 
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SAMMY 8.1 released by RSICC April 2017: 

•  SAMINT: integral benchmark experiments inform research 
parameter evaluations (V. Sobes, L. Leal, G. Arbanas, 
https://info.ornl.gov/sites/publications/Files/Pub50343.pdf ) 

•  SAMMY was integrated into SCALE software quality assurance 
(SQA) in AMPX footsteps 
–  Automated cmake/ctest suite, revision control repository, FogBugz 
–  Platforms supported: Linux/gfortran, Mac/gfortran, Windows/ifort 

•  New detector resolution functions were developed in 
collaboration with Rensselaer Polytechnic Institute (RPI) 

•  Updated physical constants, which are identical in SAMMY  
and SAMRML 

•  Implemented several other bug fixes and added 6 test cases 
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SAMMY++ high-level application programming 
interface (API) design 
•  Defines APIs before implementation 

–  Enables interchangeable implementations for each API 
–  Leverages input/output (I/O) and resonance API in modernized AMPX 

•  SAMMY parameter and GND file reader/writer under development 
•  Will replace SAMMY I/O routines  

Resonance 
API 

Fit API 

I/O API 
Experimental 

effects  
API 

SAMMY++ 
driver 
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Fortran 77  
SAMMY 

 
 
 

 
 
 

 
 
 

    Modular modernization of SAMMY using APIs 

Schematic diagram of SAMMY Fortran 77 legacy module modernization 
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Example: modernization of Coulomb functions 
•  Background: Coulomb functions are used in SAMMY to compute the  

R-matrix Shift and Penetrability functions needed to compute cross sections 
for charged-particle projectiles 

•  Problem:  Shift functions are needed at negative energies for evaluations 
spanning channel thresholds but cannot be computed by SAMMY 

•  Solution: Coulomb functions will be modernized via the C++ API method 
outlined on the previous slide:  
(Leverage modern C++ Coulomb functions published by N. Michel 
10.1016/j.cpc.2006.10.004 

•  Issues:  3 variants of Coulomb, Shift, and Penetrability functions are called 
in the legacy SAMMY depending on the values of input parameters; 
negotiated an Oak Ridge National Laboratory (ORNL) lab-wide license for 
use and distribution of Coulomb functions  

•  Benefit: Enables inclusion of channels below their thresholds (next); 
enables conversion from R-matrix parameters to (and back) the Brune’s 
alternative R-matrix, or the S-matrix poles, also known as Hwang “multipole” 
representations  



10 SAMMY Modernization 

Modernization of SAMMY methods 
•  Background: Nuclear theories, measured data, and optimization methods 

are becoming more sophisticated 

•  Problem: Although SAMMY is robust, its methods must advance 

•  Solution: Conceptual advances in evaluations methods are needed for cross 
section models and data optimization methods 

•  Benefits: Conceptual advances pave the way for advanced functionality 

Simultaneous 
evaluations of 
thermal and 

resolved 
resonance region 

(RRR) 

Bayesian 
optimization of 

defective models 

Generalized 
Reich-Moore 

approximation 
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Simultaneous evaluation of S(α,β) and RRR 

•  Problem: S(α,β) and RRR are evaluated separately by different evaluators/
codes 

–  Covariance between the two is absent; may lead to discontinuity at the interface 
–  Caused by distinct physical theories and codes used in respective evaluations 

•  Solution: 
–  Develop S(α,β) expertise (C. Chapman) and couple with RRR expertise at ORNL 
–  Relate parameters in S(a,b) and RRR and evaluate simultaneously  
–  Coding is required to interface the optimization code to the S(a,b)  

and RRR codes 

•  Benefits: 
–  Consistent evaluations of S(α,β) and RRR, including cross-covariances 
–  Thermal S(α,β) cross sections include T-effects cf. conventional  

Doppler broadening 

–  Similar problems exist at the interface of RRR and URR 
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Scattering length for S(α,β) and RRR 

•  This expression relates the bound scattering length used in 
S(α,β) evaluations to SAMMY RRR R-matrix parameters 

SIMULTANEOUS EVALUATION OF THERMAL NEUTRON
SCATTERING AND RESOLVED RESONANCE RANGES

GORAN ARBANAS

1. Theory

The quantity that appears in thermal neutron scattering and in the R-matrix resolved

resonance range (RRR) is the bound state scattering length. A relationship between the

bound scattering length and the R-matrix resonance parameters is

(1) b(E) =

A+1
A a(E)

whose incoming neutron energy dependence has been made explicit in anticipation of sharp

energy-dependence introduced by a resonance appearing in the thermal neutron range.

(2) a(E) = as-wave(1�R1 � �21s
E1 � E � i�1�/2� ik�21s

)

where as-wave is the R-matrix s-wave channel scattering radius in the center-of-mass frame,

E1 is the resonance energy of a thermal s-wave resonance, �1s is its scattering reduced

width amplitude, �� is its Reich-Moore resonance capture width. The thermal resonance

is labeled by index “1” that indicates it is the lowest energy resonance.

(3) R1 ⌘
1X

r=2

�2rs
Er � i�r�/2� ik�2rs

,

where the energy dependence in R1 from distant resonances is negligible when E ⌧ Er

and has been omitted. Note that ac could be a complex parameters whose imaginary part

would be responsible for direct capture cross section. Similarly the imaginary parts of R1
and of R1 contribute to resonant capture. This could lead to a welcome interference e↵ect

between direct and resonant capture of thermal neutronsl
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•  A Spallation Neutron Source proposal has been submitted to 
measure U3O8 

•  Complex scattering lengths model thermal neutron absorption 
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Bayesian optimization of defective models 
•  Background: Bayes theorem takes prior information about model 

parameters and data to yield posterior probability distribution functions 

•  Problem: Nuclear data evaluations assume perfect cross section models; 
à  this assumption may yield incorrect posterior values and uncertainties 

•  A solution: Formally introduce model defect into the Bayes’ theorem 

•  Benefits: Provides a Bayesian framework for model defects; posterior data 
values are no longer forced to equal posterior model prediction 

Data Model 

Priors: 

Posteriors w/defect: 

Posteriors w/o defect: 

Defect 
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Bayesian optimization of defective models 
•  Comparison to the conventional chi2 minimization method: 

Goran Arbanas et al.: Bayesian Optimization of Generalized Data for Defective Models 3

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P ,
measured data D, and a model defect �:

z ⌘ (P,D, �), (4)

where prior values of generalized data are

hzi ⌘ (hP i, hDi, h�i), (5)

and where the prior covariance matrix of generalized data
is represented by a 3⇥ 3 block diagonal matrix C

C ⌘ h(z � hzi)(z � hzi)|i (6)
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where square matrices M, V, and � along the diago-
nal represent covariance matrix of parameters, measured
data, and the model defect, respectively, while W, X, and
Y are their respective pair-wise covariances. Prior expec-
tation value of model defect h�i is a vector of the same
size as measured data hDi, and it is expectation value of
deviations between model predictions T (P ) and the mea-
sured data caused by the model defect alone. The Bayes’
theorem is used to write a posterior PDF for z ⌘ (P,D, �)
by making the following substitution in Eq. (1),

↵ ! z
� ! T (·)
� ! hzi,C

(8)

to obtain

p(z|hzi,C, T (·)) / p(z|hzi,C)⇥ p(T (·)|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·)). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·)) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (14)

hPP |i0 =
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dPPP |

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )
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|
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,

(18)
reported in evaluated nuclear data files like the ENDF
[10].
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covariance matrix C

0 ! C. Using this initial random en-
semble MC weight wk associated with the kth element of
the ensemble are computed as

wk =
p(zk|hzi,C)

p(zk|hzi0,C0)
e�

1
2 (!k�h!i)|⌦�1(!k�h!i), (37)

where zk ⌘ (Pk, Dk, �k) and !k = T (Pk) � Dk � �k, and
where the normal form has been assumed for the likelihood
function in Eq. (21) only.

These weights are then normalized as
P

k ŵk = 1 and
used to compute updated posterior expectation values of
hzi0 and C

0 for use in the next iteration, as:

hzi0 !
X

k

ŵkzk, (38)

C

0 !
X

k

ŵk(zk � hzi0)(zk � hzi0)|. (39)

Updated posterior expectation values of hzi0 and C

0 are
used for random sampling in the next iteration accord-
ing to the PDF p(z|hzi0,C0). Since zk are sampled from
p(z|hzi0,C0), the weights for MC evaluation of integrals
in Eqs. (11,13) are divided by p(zk|hzi0,C0) in Eq. (37).
These MC computations are iterated until hzi0 and C

0

have converged.
Elements of MC ensemble of generalized data, {zk},

with mean hzi0 and covariance matrix C

0 (from the previ-
ous iteration) are constructed as

zk = hzi0 + VE1/2Rk, (40)

where Rk is a vector of the same length as z of normally
distributed random numbers with zero mean and unit vari-
ance, and where the eigenvector matrix V and a diagonal
eigenvalue matrix E are defined via singular value decom-
position of C0:

C

0 = VEV|. (41)

This construction guarantees that the covariance matrix
of {zk} equalsC0. To avoid extremely small weights caused
by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (42)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.

4 Connections to other methods

To establish connections with other methods all PDFs are
assumed to be normal, and consequently, the exponents
in Eqs. (19,21) could be combined to define a generalized
cost function:

Q(z) ⌘ (z � hzi)|C�1(z � hzi) (43)

Q(z) ⌘ (z̃ � hzi)|C�1(z̃ � hzi) (44)

where the constraint T (P )�D = � is enforced by defining
z̃ ⌘ (P,D, T (P ) � D). This cost function can be mini-
mized by using Laplace transform and Newton-Raphson
method to yield approximate posterior expectation values
of generalized data hzi0 ⇡ zmin and of its covariance ma-
trix C

0 ⇡ Cmin [11]. For a perfect model, one may set
h�i ! 0 and � ! 0 to obtain

Q(z) ⇡ (ẑ � hẑi)| ˆC�1(ẑ � hẑi), (45)

where ẑ ⌘ (P,D) and ˆ

C is the corresponding covariance
matrix, with the constraint T (P ) = D. A constrained min-
imization of this cost function performed by the TSURFER
code [8] and the APLCON code [14], where the constraint
is enforced by the Lagrange multiplier method. The values
of zmin that minimize �2 are then approximate expecta-
tion values of posterior generalized data hzi0 ⇡ zmin. Since
TSURFER makes a linear approximation of the model, its
method is referred to as generalized linear least squares
(GLLS). The CLS method implicitly applies to general-
ized data and it could be rightfully called constrained
generalized least squares (CGLS) to distinguish from un-
constrained generalized least squares (GLS) method de-
scribed below.

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data ẑ ⌘ (P,D) ! (P, T (P )), and the di↵erence
(ẑ � hẑi) in Eq. (44) is replaced by

(ẑ � hẑi) ⌘ (P � hP i, D � hDi)
! (P � hP i, T (P )� hDi), (46)

with no constraint enforced. This definition of �2 has been
used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:

�2 = (P � hP i)|M�1(P � hP i)
+ (T (P )� hDi)|V�1(T (P )� hDi). (47)

Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
expectation value of parameters hP i0.
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This construction guarantees that the covariance matrix
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by discrepant model and data, these weights could be di-
vided for numerical convenience by a constant number,

p(hzi0|hzi,C), (42)

that is the equivalent of subtracting potentially large ex-
ponents prior to normalizing weights.

The iterative nature of this method ensures optimal
coverage of the generalized data space around the poste-
rior PDF, while its iterative character makes it suitable
for nonlinear models whose sensitivities to model param-
eters may be di�cult to compute. The method makes it
straightforward to sample multidimensional experimental
data, like cross sections as a function of energy, for a more
accurate account of experimental covariance data. In its
most general form, the method presented herein enables
sampling of 1-, 2- or higher-dimensional data, just as the
constrained least squares (CLS) method implemented in
the APLCON code does.
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assumed to be normal, and consequently, the exponents
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cost function:
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where the constraint T (P )�D = � is enforced by defining
z̃ ⌘ (P,D, T (P ) � D). This cost function can be mini-
mized by using Laplace transform and Newton-Raphson
method to yield approximate posterior expectation values
of generalized data hzi0 ⇡ zmin and of its covariance ma-
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0 ⇡ Cmin [11]. For a perfect model, one may set
h�i ! 0 and � ! 0 to obtain
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where ẑ ⌘ (P,D) and ˆ

C is the corresponding covariance
matrix, with the constraint T (P ) = D. A constrained min-
imization of this cost function performed by the TSURFER
code [8] and the APLCON code [14], where the constraint
is enforced by the Lagrange multiplier method. The values
of zmin that minimize �2 are then approximate expecta-
tion values of posterior generalized data hzi0 ⇡ zmin. Since
TSURFER makes a linear approximation of the model, its
method is referred to as generalized linear least squares
(GLLS). The CLS method implicitly applies to general-
ized data and it could be rightfully called constrained
generalized least squares (CGLS) to distinguish from un-
constrained generalized least squares (GLS) method de-
scribed below.

In conventional GLS, which is also known as the �2

minimization method, the constraint is applied to the gen-
eralized data ẑ ⌘ (P,D) ! (P, T (P )), and the di↵erence
(ẑ � hẑi) in Eq. (44) is replaced by
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used in nuclear data evaluations and is also the quantity
that is minimized in generic optimization codes like MI-
NUIT [13].

A common form of the (unconstrained) �2-function is
obtained for a block-diagonal generalized data covariance
matrix C with parameter covariance matrix M and ex-
perimental data covariance matrix V along the diagonal:
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Minimization of �2 with respect to P yields a solution
vector Pmin, that is assumed to be equal to the posterior
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4. Distinction between expectation values, i.e., hzi, and
their instance value, i.e., z, is maintained in PDFs, and

5. Posterior expectation values are indicated by a prime,
hzi0 and C

0, while unprimed ones represent prior ex-
pectation values, hzi and C.

The following expressions are referenced within the pa-
per by assigning a context-dependent meaning to generic
variables ↵, �, and � used below. A generic Bayes theorem
could be stated as

p(↵|��) = p(↵|��) / p(↵|�)p(�|↵�), (1)

while a generic product rule of probability theory is

p(↵�|�) = p(↵|��)p(�|�). (2)

Integrating Eq. (2) over � yields the law of total proba-
bility,

p(↵|�) =
Z

d� p(↵|��)⇥ p(�|�), (3)

that is equivalent to marginalization of nuisance parame-
ter � by integrating over its all possible values.

2.1 Derivation in generalized data notation

A generalized data vector z is a union of parameters P ,
measured data D, and a model defect �:

z ⌘ (P,D, �), (4)

where prior values of generalized data are

hzi ⌘ (hP i, hDi, h�i), (5)

and where the prior covariance matrix of generalized data
is represented by a 3⇥ 3 block diagonal matrix C

C ⌘ h(z � hzi)(z � hzi)|i (6)

⌘

0

@
M W X

W

|
V Y

X

|
Y

|
�

1

A , (7)

where square matrices M, V, and � along the diago-
nal represent covariance matrix of parameters, measured
data, and the model defect, respectively, while W, X, and
Y are their respective pair-wise covariances. Prior expec-
tation value of model defect h�i is a vector of the same
size as measured data hDi, and it is expectation value of
deviations between model predictions T (P ) and the mea-
sured data caused by the model defect alone. The Bayes’
theorem is used to write a posterior PDF for z ⌘ (P,D, �)
by making the following substitution in Eq. (1),

↵ ! z
� ! T (·)
� ! hzi,C

(8)

to obtain

p(z|hzi,C, T (·)) / p(z|hzi,C)⇥ p(T (·)|z, hzi,C). (9)

This posterior PDF of generalized data contains a pos-
terior PDF of parameters and of measured data. The pos-
terior PDF of measured data should be viewed as the opti-
mal PDF that has been informed by all prior information
available, namely, by hzi, C, and the model T (·).

Upon normalizing the posterior PDF of generalized
data to unity, posterior expectation values of any function
f(z) of posterior generalized data z could be computed as
an integral over generalized data weighted by the normal-
ized posterior PDF,

hf(z)i0 =
Z

dzf(z)p(z|hzi,C, T (·)). (10)

This provides a recipe for computation of posterior expec-
tation values of generalized data, their covariances, or of
any other expression of interest, namely:

hzi0 =
Z

dzzp(z|hzi,C, T (·)) (11)

C

0 ⌘ h(z � hzi0)(z � hzi0)|i0 (12)

= hzz|i0 � hzi0hzi0|. (13)

One consequence of the derivation of the posterior PDF
of generalized data is that any computation of expecta-
tion values computed with this PDF entails integration
over all generalized data, just as in marginalization of
nuisance parameters via integration. From this perspec-
tive, model parameters and experimental data could be
considered nuisance parameters that are marginalized via
integration.

Data D alone could be considered nuisance parame-
ters whose e↵ect on the posterior expectation values of
model parameters and their covariance matrix could be
marginalized by integrating over all possible values of D.
This can be seen by observing that expressions for expec-
tation values of posterior model parameters contained in
Eq. (11) and their covariance matrix contained in Eq. (13)
include integration over all values of D:

hP i0 =
Z
dPP

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (14)

hPP |i0 =
Z
dPPP |

Z
dD

Z
(d�)p(z|hzi,C, T (·)), (15)

M

0 = hPP |i0 � hP i0hP i0|. (16)

Completely analogous expressions are obtained by exchang-
ing P ! D, D ! P , and M

0 ! V

0.
The posterior generalized data PDF enables compu-

tation of covariance matrix ⇥ of posterior model values
hT (P )i0, corresponding to experimental data D, to all or-
ders

⇥ ⌘ h(T (P )� hT (P )i0)(T (P )� hT (P )i0)|i0, (17)

in contrast to the first-order approximation expression,

⇥0 =
@T (P )

@P

����
P=hPi0

h(P � hP i0)(P � hP i0)|i0 @T (P )

@P

����
|

P=hPi0

,

(18)
reported in evaluated nuclear data files like the ENDF
[10].

G. Arbanas et al. (CW2017) 

Constraint: Cost function (chi2): 

where generalized data includes defect: 
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Generalized Reich-Moore approximation 
•  γ -ray channels  

–  Defined by EM multipolarity, helicity, and final state quantum numbers 
–  Selection rules based on final state quantum numbers, γ-ray multipolarity 
–  Electric: E1, E2, E3 … 
–  Magnetic: M1, M2, M3 … 

•  Level-level interference takes place via identical γ -ray channels 

G. Arbanas, V. Sobes, A. Holcomb, P. Ducru,  
M. Pigni, and D. Wiarda (ND2016), 
EPJ Web of Conferences 146, 12006 (2017) 
https://doi.org/10.1051/epjconf/201714612006 
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Generalized Reich-Moore approximation 
•  Consider capture-width parameter matrix for                 : 
 

= Γγ/2 = γgRMγgRM x x γγ γγNλ

Nγ

Nλ

Nλ << Nγ 
 

•  Since total capture cross section depends on Γγ , it could be 
fit equally as well by Nλ as it could by all Nγ capture channels, 
which is true for total capture only (individual γ-channels 
require full R-matrix)    
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Summary and outlook 
•  SAMMY 8.1 released in 2017 

•  SAMMY is under the SCALE SQA framework 

•  Modernization proceeds via API framework, including Coulomb 
functions, optimization… 

•  Code sharing with AMPX/SCALE (D. Wiarda, A. Holcomb) 
guarantees consistency and is conducive to new data formats 

•  Potential improvements to evaluation methods have been identified 
–  Simultaneous evaluation of thermal and resolved resonance ranges 
–  Generalized Reich-Moore approximation 
–  Optimization of defective models 

•  Open source SAMMY is in progress, as well as AMPX (like NJOY), 
to enlarge developer/user base 

•  SAMMY 8.2 is expected later in 2018 
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Special thanks to SAMMY contributors 

•  Andrew M. Holcomb (ORNL) 
•  Dorothea Wiarda (ORNL) 
•  Marco T. Pigni (ORNL) 
•  Vladimir Sobes (ORNL) 
•  Christopher W. Chapman (ORNL) 

Supported by the U.S. Department of Energy 
Nuclear Criticality Safety Program 
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Auxiliary slides 
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Interface 
Data 

getNumberParams 
Get the number of parameters 

 getNumData 
Get the number of 
experimental data 

getData  
Get the list of experimental 
data (1-dim Array) 

getParam 
Get the list of initial params 
(1-dim Array) 

getCovMatrix 
Get the full covariance matrix 
(2-dim Array) 

getTheory 
Get theoretical values based 
on current parameters  
(1-dim Array) 

setParam 
Set the current parameters  
(1-dim Array) 

setCovMatrix 
Set the full covariance matrix 
(2-dim Array) 
 

 
  

Interface 
Fit 

setData 
Set an instance of Data 
interface 

initialize 
After setting data object 
initialize internal data 
structures 

execute  
Do the actual fitting  

finalize 
Clean up any internal 
resources 

 
  

Interface 
Array 

getNumDim 
Get the number of dimensions 

 getSize(int dim) 
Get the array size for 
dimension m 

getValue(int i1, int i2, …) 
Get the value for the indicated 
indices. In C++ we would pass 
in a vector of length 
getNumDim 

setValue(int i1,int i2, …_ 
Set value 
  

•  Actual instances are instantiated by a factory class 

•  Data will have a method to obtain the derivatives  
(2-dim Array: getNumberParams x getNumData); 
there will be a function that computes derivatives 
numerically 

•  Fit calls setParams, getTheory, setCovMatrix 
repeatedly in the course of fitting the data 

 

Fit API: Preliminary interface 
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V11 
Covariance for 

Exp.1 

V12 
Cross-

Covariance 
between  

Exp.1 and 2 
(optional) 

V22 
Covariance for 

Exp.2 
V21=V12 

M 

Params Concatenated 1D array of exp. data 

•  Parameters and experimental data cast into 1D array by implementation of data  
–  for generic use inside SCALE framework 
–  Froehner’s formulation and notation: 

Fit API: GLS implementation 

“C”= 

“z” = 

(optional cross covariance) 
(o

pt
io

na
l c

ro
ss

 c
ov

ar
ia

nc
e)
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Fit API: GLS, Bayesian Monte Carlo 

•  Generalized least squares (GLS) 
–  Nuclear Engineering Science Laboratory Synthesis (NESLS) summer intern 

Jinghua Feng implemented a prototype 
–  Andrew Holcomb ported the prototype into the FitAPI 

•  Implementation uses cpp-array library (CPC 185,1681, 2014)  
–  Transparently parallelized via BLAS library (Intel MKL) 
–  Compact expressions implemented directly (Sect. 2.2, JEFF Report 18, 2000) 

•  BLAS speeds up large matrix operations in SAMMY and shortens code  
–  Arbanas, Dunn, Wiarda, M&C2011, 

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/47/073/47073019.pdf  

GLS 

 
Bayesian  

Monte Carlo 
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Experimental effects (EE) API 
•  Convolution of Doppler broadening, target, and detector effects, each 

one implenting the EE API: 

Doppler broadening: 
FGM, DDXS, S(a,b) 
BROADEN/AMPX 

Neutron transport:   
SHIFT API 

•  SHIFT API for on-the-fly neutron transport aspects 
–  To enable fitting integral benchmark experiments (IBEs) 
–  Developed for SCALE by Cihangir Celik in FY2017 
–  Message passaging interface (MPI) enabled 
–  Could use MCNP input  

•  In principle, the entire experimental setup could be simulated; fitting 
to raw data may be desirable to avoid PPP; varying opinions 
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    Modular modernization of SAMMY using APIs 

For each SAMMY Fortran 77 legacy module to modernize: 

1.  Create a layer of indirection to the module by designing its C++ API 

2.  Move the module out of SAMMY and use it to implement its C++ API 

3.  Redirect all module calls to the C++ API implementation outside 
SAMMY and then re-run SAMMY test cases and correct any problems 
until identical results are reproduced 

4.  Implement the C++ API using a modernized code or a third-party library 

5.  Recompile SAMMY with the modern implementation of the C++ API 
and then re-run SAMMY test cases and re-baseline the results  
when justified 
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Phenomenological Dirac R-matrix formalism 
•  Originally derived for calculable R-matrix, but expressed in a form that 

could be used for phenomenological fitting:  
PhD Thesis  (2011): http://scholarworks.wmich.edu/dissertations/411   

•  Boundary condition is determined by the channel radius 

•  Compare to approximations and the nonrelativistic R-matrix 

J.  Grineviciute and Dean Halderson, Physical Review C, 85,  
054617 (2012) 

J. GRINEVICIUTE AND DEAN HALDERSON PHYSICAL REVIEW C 85, 054617 (2012)

approximation for the matrix elements with pseudovector πN
coupling.

II. R MATRIX FORMALISM

Solutions to the one-channel Dirac equation will be written
in the two-component form

uD =
(

[F (r)/r]"κm

[iG(r)/r]"−κm

)
τ, (1)

where

"κm =
∑

mℓms

Cl1/2j
mlmsm

Ylml
(θ,φ)χms

, (2)

wherej = |κ| − 1
2 and ℓ = κ for κ > 0 but ℓ = −(κ + 1) for

κ < 0 and τ indicates a proton or neutron. The regular and
irregular Dirac-Coulomb functions are generated as given by
Young and Norrington [11] employing the code COULCC [12],
and they are given the asymptotic form

FR =
√

E + m sin φ(r) and GR =
√

E − m cos φ(r),

FIR =
√

E + m cos φ(r) and GIR = −
√

E − m sin φ(r),

where ϕ(r) = kr + y log 2kr + δ′
κ − ℓπ /2, k is the momentum

of the proton in the center-of-momentum system, y =
Ze2E/k, E2 = m2

p + k2, δ′
κ = + − arg ,(γ + iy) + π

2 (l +
1 − γ ), e2i+ = iZe2 / k−κ

γ+iy
, and γ = (κ2 − Z2e4)1/2. Throughout

this paper, c = h̄ = 1. Incoming and outgoing waves are
constructed as

FI = FIR − iFR and GI = GIR − iGR making up Ic,

and

FO = FIR + iFR and GO = GIR + iGR making up Oc,

where c indicates a particular channel, |ljκτ, JA(JB)⟩, JA is
the target spin, and JB the total angular momentum. A wave
function with unit outgoing flux is Oc/

√
2kc.

The appropriate modifications for expanding the one-
channel case, given in Ref. [5], to the many-channel case
are as follows. The wave function is expanded within the
channel radius as ψ =

∑
λ Aλ|λ⟩. The set of |λ⟩ will be Dirac

oscillators coupled to the spin of the target. The Hamiltonian
to be solved is

∑

λ′

[
⟨λ|H − E|λ′⟩ +

∑

c

γλc(bλ′c − bc)γλ′c

]
Aλ′ = 0, (3)

where

bc = Gc(ac)/Fc(ac), (4)

bλc = Gλc(ac)/Fλc(ac), (5)

and

γλc = Fλc(ac). (6)

Gc and Fc are the components of the physical wave function
in channel c. The theory is placed in calculable form in the

method of Philpott [13] in which one finds a transformation T
such that

∑

λλ′

Tλµ[⟨λ|H |λ′⟩ +
∑

c

γλcbλ′cγλ′c]Tλ′µ′ = Eµδµµ′ . (7)

With this transformation, Eq. (3) becomes
∑

µ′

[(Eµ − E)δµµ′ −
∑

c

γµcbcγµ′c]Aµ′ = 0, (8)

where γµc =
∑

λ γλcTλµ andAλ =
∑

µ TλµAµ. One changes c

to c′ in Eq. (8), multiplies by γµc/(Eµ − E), and sums over µ
to obtain

γc =
∑

c′µ

γµc′γµcbc′

Eµ − E

∑

µ′

Aµ′γµ′c′ , (9)

or
∑

c′

[δcc′ − Rcc′bc′ ]γc′ = 0, (10)

where

γc =
∑

µ

Aµγµc, (11)

and

Rcc′ =
∑

µ

γµcγµc′/(Eµ − E). (12)

The amplitudes are extracted from Eq. (9),

Aµ = 1
Eµ − E

∑

c

γµcbcγc = 1
Eµ − E

∑

c

γµcGc(ac). (13)

A general solution for the coupled channels wave function
in the external region is [1]

+ =
∑

c

(
xc√
2kc

Oc + yc√
2kc

Ic

)
. (14)

The collision matrix S provides an expression for the xc in
terms of the yc. In matrix notation,

x = −Sy. (15)

From Eqs. (4), (6), (10), and (14), the fundamental R matrix
equation for the relativistic case relates the upper components
of the wave functions to the lower,

Fc =
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∑
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Rcc′ [GOc′xc′/
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√
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= FOcxc/
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2kc. (16)

If one defines diagonal matrices vcc ′ = 2kcδcc ′ , xcc ′ = δcc ′xc,
ycc ′ = δcc ′yc, GOcc ′ = δcc ′GOc, GIcc ′ = δcc ′GIc, FOcc ′ =
δcc ′FOc, and FIcc ′ = δcc ′FIc, this equation can be written as

FOv−1/2x + FIv−1/2y = RGOv−1/2x + RGIv−1/2y. If one
solves for x, one obtains the form in Eq. (15), x = −Sy, where

S = v1/2(Fo − RGo)−1(FI − RGI)v−1/2. (17)

Then the T matrix, Tcc′ , is in the usual form, i(δcc′ − Scc′ )/2.
The scattering amplitude is found by following standard

techniques. Target (residual) states are noted as |αJAMA⟩,
where JA, MA are the spin and its projection and α
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approximation for the matrix elements with pseudovector πN
coupling.

II. R MATRIX FORMALISM

Solutions to the one-channel Dirac equation will be written
in the two-component form

uD =
(

[F (r)/r]"κm

[iG(r)/r]"−κm
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τ, (1)

where

"κm =
∑

mℓms

Cl1/2j
mlmsm

Ylml
(θ,φ)χms

, (2)

wherej = |κ| − 1
2 and ℓ = κ for κ > 0 but ℓ = −(κ + 1) for

κ < 0 and τ indicates a proton or neutron. The regular and
irregular Dirac-Coulomb functions are generated as given by
Young and Norrington [11] employing the code COULCC [12],
and they are given the asymptotic form

FR =
√

E + m sin φ(r) and GR =
√

E − m cos φ(r),

FIR =
√

E + m cos φ(r) and GIR = −
√

E − m sin φ(r),

where ϕ(r) = kr + y log 2kr + δ′
κ − ℓπ /2, k is the momentum

of the proton in the center-of-momentum system, y =
Ze2E/k, E2 = m2

p + k2, δ′
κ = + − arg ,(γ + iy) + π

2 (l +
1 − γ ), e2i+ = iZe2 / k−κ

γ+iy
, and γ = (κ2 − Z2e4)1/2. Throughout

this paper, c = h̄ = 1. Incoming and outgoing waves are
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FO = FIR + iFR and GO = GIR + iGR making up Oc,

where c indicates a particular channel, |ljκτ, JA(JB)⟩, JA is
the target spin, and JB the total angular momentum. A wave
function with unit outgoing flux is Oc/

√
2kc.

The appropriate modifications for expanding the one-
channel case, given in Ref. [5], to the many-channel case
are as follows. The wave function is expanded within the
channel radius as ψ =

∑
λ Aλ|λ⟩. The set of |λ⟩ will be Dirac

oscillators coupled to the spin of the target. The Hamiltonian
to be solved is

∑

λ′
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⟨λ|H − E|λ′⟩ +

∑

c
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in channel c. The theory is placed in calculable form in the
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such that
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∑
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∑
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∑
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the target spin, and JB the total angular momentum. A wave
function with unit outgoing flux is Oc/
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The appropriate modifications for expanding the one-
channel case, given in Ref. [5], to the many-channel case
are as follows. The wave function is expanded within the
channel radius as ψ =

∑
λ Aλ|λ⟩. The set of |λ⟩ will be Dirac

oscillators coupled to the spin of the target. The Hamiltonian
to be solved is
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where
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and
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Gc and Fc are the components of the physical wave function
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The collision matrix S provides an expression for the xc in
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solves for x, one obtains the form in Eq. (15), x = −Sy, where
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ

g2
ω

4π

e−mωr

r

+ γ λ
1 γ2λ

τ 1·τ 2

4

g2
ρ

4π

e−mρr

r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB

MAmMB
C

J ′
Aj ′JB

M ′
Am′MB

C
ℓ′1/2j ′

m′
ℓσm′

× i(ℓ−ℓ′)ei(δ′
κ+δ′

κ′ )TαJAℓjJB ,α′J ′
Aℓ′j ′J ′

B
Yℓ′m′

ℓ
(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
σ

4π

e−mσ r

r
+ γ λ

1 γ2λ
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e−mωr
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+ γ λ
1 γ2λ
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r
+ γ 0

1 γ 0
2

e2

r
, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
|αJAℓjJBMB⟩. The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile σ . The resulting scattering amplitude is

⟨f ⟩ασMA,α′σ ′M ′
A

= 1
k

∑ √
4π (2ℓ + 1)Cℓ1/2j

0σm C
JAjJB
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× i(ℓ−ℓ′)ei(δ′
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κ′ )TαJAℓjJB ,α′J ′
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B
Yℓ′m′
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(k′). (18)

The sum is over κ , κ ′, α′, JB , MB , m, m′, and mℓ′ . Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

dσ

d'
(θ ) = 1

2(2JA + 1)

∑

σσ ′M ′
AM ′

A

∣∣⟨fc⟩σσ ′δJAαMA,J ′
Aα′M ′

A

+ ⟨f ⟩ασMA,α′σ ′M ′
A

∣∣2
, (19)

where ⟨fc⟩σσ ′ is the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(ελ − εµ − ε)Cλµ +
∑

αβ

[⟨βλ|V |αµ⟩ − ⟨βλ|V |µα⟩]Cαβ = 0.

(20)

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The σ and ω coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the ρ coupling constant was determined from the
bulk symmetry energy. The σ mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the ρ, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

V = −g2
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4π
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, (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, εµ, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual

TABLE I. Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g2 HF, g2

σ 520 109.6 89.6
ω 783 190.4 102.6
ρ 770 65.2 12.4
π 138 0 181

output of the code to obtain εµ.) However, the particle SPE,
ελ, are replaced by the interaction of the particle with the core
nucleons,

Ejj = ⟨j |α· p + mβ|j ′⟩+
occ∑

jc,J

2J+1
2j+1

⟨γ0jγ0jc(J )|V

× [|j ′jc(J )⟩ − (−)j
′+jc−J |jcj

′(J )⟩], (22)

where the sum jc is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that ⟨γ0j | is ū = u+γ0 with angular
momentum j . A similar SPE definition could be made for the
hole states with |j ⟩ and |j ′⟩ replaced with |jh⟩ giving Ejhjh

.
Equation (20) is now an equation to be solved for the particle

wave functions for a given energy. The basis functions, the|λ⟩
of Eq. (3), are particle-hole functions where the |j ⟩ are Dirac
oscillators specified by |nℓjκ⟩ and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
jh = JA. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

⟨j ⊗ jh(JB)|H |j ′ ⊗ jh′(JB)⟩
= Ejj ′ − εjh

δjhjh′ −
∑

J

(2J + 1)W (jjhjh′j ′; JBJ )

×⟨γ0jh′γ0j (J )|V [|jhj (J )⟩ − (−)jh+j−J |jjh(J )⟩], (23)

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core Ejhjh

. The comparison is performed
for two nuclei 16O and 90Zr. One is interested in 16O because
it is the subject of numerous (e,e′x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for 90Zr, which has 21 SPEs. The
90Zr comparison is shown in Table II for Ex

jj ′ = Ejj ′ − MN .
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for 16O where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent

054617-3



26 SAMMY Modernization 

ORNL S(a,b) evaluation framework overview 
•  The objective is to combine experimental double differential 

scattering data and model parameters to yield the best 
estimate of double differential cross section (DDCS) and 
uncertainties 

•  Data and simulation fit is achieved using the unified Monte 
Carlo (UMC) [1] method 

•  Simulations are constrained by physical properties of material 

•  Framework is tested on light water 
–  Data collected from ORNL SNS 
–  Rensselaer Polytechnic Institute (RPI) collaboration 

•  Validated using benchmarks from the International Criticality 
Safety Benchmark Evaluation Project (ICSBEP) handbook 

•  C. Chapman’s Ph.D. https://smartech.gatech.edu/handle/1853/58693  


