Use of a continuous integration and deployment software to automate nuclear data V&V

David Brown
NNDC, Brookhaven National Laboratory

Cross Section Evaluation Working Group (CSEWG)
2/3 of BNL’s NCSP Nuclear Data tasks are now fully automated

- ✔ Perform data verification of new NCSP evaluations and store them on GForge server (Q1, Q2, Q3, Q4)
- ✔ Perform QA of new NCSP covariance data (Q2, Q4)
- ☐ Update Atlas of Neutron Resonances (Q4)

Our scheme is so useful, NNDC seeking to automate many other tasks with same system

Brookhaven Science Associates
Benefits of automation are clear

- No waiting for assistance from processing code experts
- Extensive testing with minimum effort
 - Number of new commits verified
 - 1 deuteron-incident evaluation
 - 5 decay evaluations
 - 111 neutron-incident evaluations
- High-quality evaluations due to extensive and frequent testing
- Timely feedback on every change enables easier ID and correction of deficiencies

Expected Result
- Expedited submission of evaluations for CSEWG review
- Faster release of new evaluated data libraries
Why did we do it?

What’s the Problem?

- Data verification and data validation (V&V) is tedious, so evaluators usually “forget”
- Not all evaluators know how to run the commonly used V&V codes
- Evaluators may have different versions (read: different bugs) of the same V&V code thereby producing different results

What’s the solution?

- A highly automated, modular V&V system publicly accessible to evaluators

Automated Data Verification and Assurance for Nuclear Calculations Enhancement (ADVANCE)
Outline

- Motivation
- Benefits of ADVANCE
- The ADVANCE ND/QA System
 ADVANCE System Architecture
 ADVANCE Process Flow
- Future Directions
ADVANCE: The ENDF Continuous Integration System

ENDF/B Development

The development version of the Evaluated Nuclear Data File (ENDF/B)

Latest Updates:
- sublib_release_notes: neutrons
 Report sublib_release_notes on neutrons generated. The result was a SUCCESS
 2013-04-30 16:57:59.661872

- sublib_html: neutrons
 Report sublib_html on neutrons generated. The result was a SUCCESS
 2013-04-30 16:52:01.501892

- sublib_release_notes: neutrons
 Report sublib_release_notes on neutrons generated. The result was a SUCCESS
 2013-04-30 15:41:29.748913

Neutrons sublibraries:

- Neutrons Sublibrary
- Neutron-Induced Fission Yields Sublibrary
- Standards Sublibrary
- Thermal Neutron Scattering Sublibrary
Neutrons Sublibrary

ENDF/B Development Library

- General Information:
 - ENDF sublib designator: 10
- Revision Number: 611M
- Last Modified Revision: 532:611M
- Build Status:
 - Build status: ERROR
 - Build time: 2013-04-30 16:52:01.394282
- Listfile: neutrons.list
- Release Notes: neutrons-releaseNotes.pdf
- GForge Links:
 - Browse SVN
 - Browse sublibrary tracker

Periodic Table

Material List

Brookhaven Science Associates

NATIONAL LABORATORY
<table>
<thead>
<tr>
<th>Status</th>
<th>Material</th>
<th>MAT #</th>
<th>Revision #</th>
<th># Tests</th>
<th># Failures</th>
<th># Errors</th>
<th>Lab.</th>
<th>Date</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>236 Pu</td>
<td>Pu</td>
<td>9428</td>
<td>603</td>
<td>756</td>
<td>0</td>
<td>44</td>
<td>JAEA+</td>
<td>FEB10</td>
<td>O. Iwamoto, T. Nakagawa, et al.</td>
</tr>
<tr>
<td>237 Pu</td>
<td>Pu</td>
<td>9431</td>
<td>603</td>
<td>1398</td>
<td>0</td>
<td>136</td>
<td>JAEA+</td>
<td>FEB10</td>
<td>O. Iwamoto, T. Nakagawa, et al.</td>
</tr>
<tr>
<td>238 Pu</td>
<td>Pu</td>
<td>9434</td>
<td>597</td>
<td>1004</td>
<td>0</td>
<td>180</td>
<td>LANL</td>
<td>SEP10</td>
<td>YOUNG, TALOU, KAWANO, KAHLER, CHADWICK</td>
</tr>
<tr>
<td>239 Pu</td>
<td>Pu</td>
<td>9437</td>
<td>591</td>
<td>1508</td>
<td>0</td>
<td>68</td>
<td>LANL</td>
<td>SEP06</td>
<td>Young, Chadwick, MacFarlane, Derrien</td>
</tr>
<tr>
<td>240 Pu</td>
<td>Pu</td>
<td>9440</td>
<td>532</td>
<td>1298</td>
<td>0</td>
<td>216</td>
<td>LANL</td>
<td>SEP09</td>
<td>YOUNG, TALOU, CHADWICK, KAHLER, KAWAN</td>
</tr>
<tr>
<td>241 Pu</td>
<td>Pu</td>
<td>9443</td>
<td>532</td>
<td>924</td>
<td>0</td>
<td>10</td>
<td>ORNL</td>
<td>OCT03</td>
<td>L. Weston, R. Wright, H. Derrien, et al.</td>
</tr>
<tr>
<td>243 Pu</td>
<td>Pu</td>
<td>9449</td>
<td>597</td>
<td>536</td>
<td>0</td>
<td>24</td>
<td>SRL, LLNL</td>
<td>JUL76</td>
<td>Benjamin, McCrosson, Howerton</td>
</tr>
<tr>
<td>244 Pu</td>
<td>Pu</td>
<td>9452</td>
<td>603</td>
<td>846</td>
<td>0</td>
<td>60</td>
<td>JAEA+</td>
<td>FEB10</td>
<td>O. Iwamoto, T. Nakagawa, et al.</td>
</tr>
<tr>
<td>246 Pu</td>
<td>Pu</td>
<td>9458</td>
<td>603</td>
<td>850</td>
<td>0</td>
<td>60</td>
<td>JAEA+</td>
<td>FEB10</td>
<td>O. Iwamoto, T. Nakagawa, et al.</td>
</tr>
</tbody>
</table>

* Lanthanides (Lanthanoids) | 57 La | 58 Ce | 59 Pr | 60 Nd | 61 Pm | 62 Sm | 63 Eu | 64 Gd | 65 Tb | 66 Dy | 67 Ho | 68 Er | 69 Tm | 70 Yb | 71 Lu |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>** Actinides (Actinoids)</td>
<td>89 Ac</td>
<td>90 Th</td>
<td>91 Pa</td>
<td>92 U</td>
<td>93 Np</td>
<td>94 Pu</td>
<td>95 Am</td>
<td>96 Cm</td>
<td>97 Bk</td>
<td>98 Cf</td>
<td>99 Es</td>
<td>100 Fm</td>
<td>101 Md</td>
<td>102 No</td>
<td>103 Lr</td>
</tr>
</tbody>
</table>
Neutrons Sublibrary

- **General Information:**
 - ENDF MAT designator: 9437
 - Evaluated by Young, Chadwick, MacFarlane, Derrien (LANL), SEP06
 - Natural abundance: 0.0 +/- 0.0 %
 - Check out Wikipedia's entry for plutonium

- **Revision Number:** 611M
- **Last Modified Revision:** 532:611M
- **Build Status:**
 - Build status: **ERROR** (Submit tracker item)
 - Build time: 2013-04-30 06:17:38.108808

- **GForge Links:**
 - Browse SVN
 - View current revision
 - Download current revision

Summary of all tests on this evaluation.

Use checking code button to show/hide errors.

<table>
<thead>
<tr>
<th>Status</th>
<th>Code</th>
<th># Tests</th>
<th># Failures</th>
<th># Errors</th>
<th>Run time (sec)</th>
<th>Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td>STAN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31.533</td>
<td>STN File</td>
</tr>
<tr>
<td>✔</td>
<td>STANEF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29.316</td>
<td></td>
</tr>
</tbody>
</table>
Comparison between cross section data in this ENDF file and data retrieved from EXFOR

Aggregate channels:

Regular channels:

ADVANCE Version 0.7 (svn rev: 669)
Codes used in ADVANCE version 0.7

- NNDC checking codes
 - STAN
 - STANEF
 - CHECKR
 - FIZCON
 - PSYCHE

- PREPRO
 - LINEAR
 - RECENT
 - SIGMA1

- NJOY2012 (upgraded from NJOY99)
 - grouping, heating, checking
 - ACE file

- Fudge-4.0 (upgraded from Fudge-2.0)
 - checking
 - cross section plotting
 - xml/html5 overview

- Other Codes
 - INTER: integral quantities
 - ACELST: ACE file overview
 - ENDF2HTM: ENDF overview
 - x4i: EXFOR data for plotting
Outline

★ Motivation
★ Benefits of ADVANCE
★ The ADVANCE ND/QA System
★ ADVANCE System Architecture
★ ADVANCE Process Flow
★ Future Directions
• GForge Server as the versioning system (Subversion).
• Each commit to ENDF repository triggers data verification
• Results automatically posted on NNDC Web server
The ADVANCE ND/QA System (continued)

Why ControlTier?

- Robust and reliable
- Cost-free: Good for NNDC’s tight budget
- Open-source: Can change system code
- Platform independent: 100% Java
- Most complete platform:
 - Continuous integration + continuous deployment
- Highly scalable: Add servers + clients as needed
ADVANCE Process Flow
Data Verification

Code Dependencies

- A code may depend on output of another code. Thus, a code may not begin processing until the immediate preceding code completes.
- If new commit does not modify input file to a code, then the code and its dependent codes are not executed.
Outline

- Motivation
- Benefits of ADVANCE
- The ADVANCE ND/QA System
- ADVANCE System Architecture
- ADVANCE Process Flow
- Future Directions
Rest of FY13 plans (in addition to ENDF upkeep)

- More reports:
 - Plots of integral quantities (MACS, RI, Cf spectrum ave.)
 - Better energy balance report
 - Covariance QA report

- Full library tarballs (ACE, gnd, gendf)

- More processing codes:
 - PREPRO/sigma1, sixpack
 - CALENDVF
 - Fudge improvements
 - NJOY improvements

- Database of errors:
 - Processing code error mining
 - Regressions

- Notifications
 - RSS Feed
 - Emails

- Help pages

- Unit tests/docs

- About ADVANCE pages

- An ADVANCE paper

- Prepare for benchmarking?

Tuesday, May 28, 13
Next logical step: automate simulation of critical assemblies and other benchmarks

- Criticality benchmarks are already the core of our data testing regimen
- Many other tests check things of importance to NCSP
 - Reaction rates in irradiated foils target individual reactions
 - SINBAD shielding benchmarks can be used to benchmark decay/activation data

Current testing is human-driven and ad-hoc:
- We often test outdated libraries (ENDF/B-V??)
- We rerun same tests (do we need to run JEZEBEL again?)
- We often don’t run tests because of lack of resources: models, codes computing and/or manpower
Automated benchmarking is one of NCSP’s 5 year goals

Opportunities

- `cnp_test_suite release`
- Transport code and test suite donations
 - `COG release`
 - COG suite release
 - `MCNP6 release`
 - Mosteller suite of 119 tests
 - BNL 1D Sn tests
- NNDC cluster upgrade: cluster size to double to 184 Intel Xeon nodes
- ADVANCE master node upgrade

Challenges

- NNDC webserver upgrade: may force adoption of web content management system instead of static web pages for reports
- ControlTier project ended: in long term must switch control system to either RunDeck or BuildBot or similar

We would like to develop a meaningful requirements documentation
Gathering requirements for next major release of ADVANCE

- More processing codes: AMPX
- Local (NNDC) benchmarking
 - Using MCNP6, ANISN, TWOTRAN and COG
- Hooks for remote benchmarking
 - LLNL CNP group collaboration
- Try/accept functionality
 (try an evaluation before committing to GForge)
- Better notifications
- CMS for better report management
- Comments subsystem
- Better functionality for CI/CD for non-data projects
 (e.g. EMPIRE)
- Open source release

What else?
Acknowledgments

Many thanks to C. Mattoon (LLNL), B. Beck (LLNL), N. Summers (LLNL) and M.-A. Descalle (LLNL) for the advice and valuable assistance they provided especially at the early stage of the ADVANCE project and for providing us with LLNL’s cnp_test_suite package.

D. Heinrichs and C. Lee for preparing COG for general release.