Progress on NCSP Training and Education Programs at Sandia

Allison Miller
Sandia National Laboratories
SAND2013 - XXXX
SNL Hands on Criticality Safety Training Course

- Course Attendance
- Course Content
- Experiments
 - Approach on Fuel
 - Approach on Moderator Height
 - Approach on Separation
 - Approach on Removal of Fuel
Course Attendance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LANL</td>
<td>Savannah River Site</td>
<td>Washington River Protection Solutions</td>
<td>NSA</td>
<td>NNSA</td>
</tr>
<tr>
<td>Savannah River Remediation</td>
<td>NRC</td>
<td>WTP-Bechtel</td>
<td>NNSA</td>
<td>SAIC</td>
</tr>
<tr>
<td>Transport Logistics International</td>
<td>University of Florida</td>
<td>WTP-Bechtel</td>
<td>DOE-Richland</td>
<td>NNSA</td>
</tr>
<tr>
<td>Global Nuclear Fuels</td>
<td>Hanford</td>
<td>NRC</td>
<td>ORNL</td>
<td>SAIC</td>
</tr>
<tr>
<td>Global Nuclear Fuels</td>
<td>US Enrichment Corp.</td>
<td>DOE-ORP</td>
<td>DNFSB</td>
<td>LLNL</td>
</tr>
<tr>
<td>INL</td>
<td>SNL</td>
<td>INL</td>
<td>INL</td>
<td>PNNL</td>
</tr>
<tr>
<td>Iowa State University</td>
<td>Sellafield Ltd.</td>
<td>NRC</td>
<td>DOE-Idaho</td>
<td></td>
</tr>
<tr>
<td>Nuclear Waster Partnership</td>
<td></td>
<td>NNSA</td>
<td>LANL</td>
<td></td>
</tr>
<tr>
<td>SNL</td>
<td>SNL</td>
<td>SNL</td>
<td>UNM</td>
<td></td>
</tr>
<tr>
<td>LANL</td>
<td>LANL</td>
<td>LANL</td>
<td>LANL</td>
<td></td>
</tr>
<tr>
<td>LANL</td>
<td>LANL</td>
<td>LANL</td>
<td>Columbia Basin College</td>
<td>DOE-Richland</td>
</tr>
<tr>
<td>Day</td>
<td>Module</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>Module 00</td>
<td>Logistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 01</td>
<td>Fundamentals of Nuclear Criticality Safety – Criticality Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 02</td>
<td>Experiment Bases for Nuclear Criticality Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 03</td>
<td>Critical-Measurement Accident - Chelyabinsk-40 1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 04</td>
<td>Subcritical Multiplication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 05</td>
<td>Design of SPRF/CX Critical Experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 06</td>
<td>Experiment 1 – Approach to Critical on Fuel Loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>Module 07</td>
<td>Conduct of Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 08</td>
<td>Nuclear Instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 09</td>
<td>Critical-Measurement Accident – Kurchatov May 1971</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 10</td>
<td>SPRF/CX Reactor Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 11</td>
<td>Reactor Kinetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Module 12</td>
<td>Experiment 2 – Approach to Critical on Moderator Height</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 13</td>
<td>Critical-Measurement Accident – Saclay/ALIZE 1960</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 14</td>
<td>Nuclear Criticality Safety Data and Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 15</td>
<td>The International Criticality Safety Benchmark Evaluation Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 16</td>
<td>Results from the Sandia Critical Experiments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Module 17</td>
<td>Experiment 3 – Approach to Critical on Fuel Separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 18</td>
<td>Critical-Measurement Accident – Mol/VENUS 1965</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 19</td>
<td>Critical-Measurement Accident – Arzamas-16/Sarov 1997</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 20</td>
<td>Critical-Measurement Accident – Los Alamos 1945/1946</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 21</td>
<td>ANS-1 Section 3.0, 4.0, 5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Module 22</td>
<td>Experiment 4 – Interior Fuel Rod Removal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 23</td>
<td>Light Water Reactor (LWR) Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 24</td>
<td>Fuel Depletion/Burnup</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 25</td>
<td>LWR Fuel Paradigms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module 26</td>
<td>Review of the Experiments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exam</td>
<td>Closed-Book Exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Classroom discussions are interspersed through the experiments

- The basics of criticality safety
- Criticality safety data and limits
- Historic critical experiments
- Subcritical multiplication
- Reactor theory and kinetics
- Description of selected critical mass accidents
- The design and operation of critical experiments at Sandia
- Radiation detection in the experiments
- Results of Sandia critical experiments
- The development and use of critical experiment benchmarks
- Light water reactor concepts as applied to the Sandia experiments
Hands-On Training

- Sort Fuel
- Hand Fuel to Load into Experiment
- Load Fuel into Experiment
Experiment 1 Overview

- Approach-to-critical experiment by loading fuel into the fully-reflected assembly
- Same process that is performed for experiments
- Criticality safety parameters that are in play:
 - Mass
 - Moderation
 - Reflection
 - Absorption

- Application to criticality safety:
 - What happens when the number of fuel lumps in an array increases?
Core Loading Experiment
Configuration 1

Fuel Rods: 836

k ~ 0.95
Core Loading Experiment
Configuration 2

Fuel Rods: 895
k ~ 0.97
~Critical Core Loading

Fuel Rods: 1060

k ~ 1.00 (at 1059.6 rods)
Experiment 2 Overview

- Approach-to-critical experiment by increasing the moderator height in the assembly with a constant fuel loading

- Criticality safety parameters that are in play:
 - Moderation
 - Geometry
 - Mass

- Application to criticality safety:
 - What happens to an array that becomes flooded?
The Fuel Rod Configuration

1137 fuel rods

The blue rods are the difference from the fully-reflected critical array in the first experiment.

This configuration goes critical with the moderator at about 95% of the fuel height.

Source (at the midplane of the fuel)
Moderator Height Experiment
Configuration 1

Fuel Rods: 1137
\(k_{\text{eff}}: \sim 0.90 \)
Water Depth: 271.6 mm
Moderator Height Experiment
Configuration 2

Fuel Rods: 1137
\(k_{\text{eff}} \): \(\sim 0.95 \)
Water Depth: 341.3 mm
Moderator Height Experiment at DC

Fuel Rods: 1137
\[k_{\text{eff}}: \sim 1.0 \]
Water Depth: 461 mm
Experiment 3 Overview

- Approach-to-critical experiment by moving two roughly equal (and unchanging) fuel lumps toward each other
- This simulates experiments done with a horizontal split table machine
- Criticality safety parameters that were in play:
 - Interaction
 - Moderation

Application to criticality safety:
- What happens as two fuel masses are moved progressively closer to one another?
- What happens when two neighboring fuel masses are moved apart?
- This experiment is applicable to many accident configurations.
Core Separation Experiment
Configurations

Fuel Rods: 477 (left) + 444 (right) = 921 (total)
Separation: 5.130 cm
Core Separation Experiment
Configurations

Fuel Rods: 477 (left) + 444 (right) = 921 (total)
Separation: 4.275 cm
Fuel Rods: 477 (left) + 444 (right) = 921 (total)
Separation: 3.420 cm
Core Separation Experiment
Configurations

Fuel Rods: 477 (left) + 444 (right) = 921 (total)
Separation: 2.565 cm
Core Separation Experiment

Configurations

Fuel Rods: 477 (left) + 444 (right) = 921 (total)

Separation: 1.710 cm
Core Separation Experiment
Configurations

Fuel Rods: 477 (left) + 444 (right) = 921 (total)
Separation: 0.855 cm
Core Separation Experiment
Configurations

Fuel Rods: 921
Fuel Separation Experiment

This experiment demonstrates the trade-off between increasing interaction between the core halves as they come together and decreasing moderation as the water is squeezed from between the core halves.
Experiment 4 Overview

- Effect of removing fuel rods from the interior of the fuel array
- Replacing fuel rods with water
- Criticality safety parameters that are in play:
 - Mass
 - Moderation
 - Reflection
 - Absorption

- Application to criticality safety:
 - What happens to a compact array of fuel lumps if the array becomes more spread out?
Fuel Replacement with Water
Configuration 0

1032 Fuel Rods
0 Water Holes (the source doesn’t count)

Remember that this core is critical with about 1060 rods (first experiment)
Fuel Replacement with Water
Configuration 1

1028 Fuel Rods
4 Water Holes
Fuel Replacement with Water Configuration 2

1024 Fuel Rods
8 Water Holes
Fuel Replacement with Water Configuration 3

1020 Fuel Rods
12 Water Holes
Fuel Replacement with Water
Configuration 4

1016 Fuel Rods
16 Water Holes
Approach on Water Holes
Concluding Remarks

- Hands-on criticality experiments class
 - Second week in the NCSP T&EP course for Nuclear Criticality Safety Engineers
 - Conducted Five Classes
- The class consists of four experiments, all using a different approach variable
- The experiments are accompanied by a series of lectures intended to supplement the experiments